Federal state autonomous educational institution for higher education
«Moscow institute of physics and technology

(National Research University)»

On the rights of a manuscript

Arij Al Adel

INVESTIGATION OF TRANSFORMER OPTIONS
FOR VARIOUS LONG DOCUMENTS PROCESSING TASKS

Specialty 2.3.5 - «Mathematical and software support for computers, complexes, and

computer networks»

Synopsis
submitted in requirements for the degree of

candidate of technical sciences

Supervisor:
PhD of physical and mathematical sciences

Valentin Malykh

Dolgoprudny - 2024

®DenrepanbHOE TOCyJapCTBEHHOE aBTOHOMHOE 0Opa3oBaTeIbHOE yUperXK/IeHne
BbICIIIero obpa3oBaHusa «IVMoCKOBCkUil (PU3NKO-TeXHUIECKNIT MHCTUTYT

(HaLlI/IOHaJIbeIﬁ I/ICCJIe,ZI;OBaTeJII)CKI/Iﬁ YHI/IBepCI/ITET)»

Ha npasax pyxonucu

Apux Anb Anen

NCCJIEJOBAHNE BAPMAHTOB TPAHCP®POPMEPA J1JIA
PA3JINYHBIX 3AJAY OBPABOTKUN JJIMHHBIX
JOKYMEHTOB

Crenuanbaocts 2.3.5 — «Maremarudyeckoe u mporpaMmMHoe odecIieveHne

BBITUCJIUTEJIbHBIX CUCTEM, KOMIIJIEKCOB M1 KOMIIBIOTEPHBIX cereiry

Juccepraliusi Ha COUCKaHME YIEHON CTelleHn

KaHaunJaTa TEXHUYIECKUX HaYK

Hayunbiii pykoBogUTEIb:
KaH/I1/1aT (PUBUKO-MATEeMATHICCKUX HAYK

Maubix Bastentur AnjpeeBud

HHonronpymabrit - 2023

The dissertation was approved at - name of the institute.

Scientific supervisor: ~ PhD of physical and mathematical sciences,

Leading organization: mname of the organization

The defence of the dissertation will be held on date and place at the meeting of the disserta-
tion council ®PKT (number) at the Moscow institute of physics and technology, located at 9
Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russian Federation.

The dissertation can be found in the library and on the website of Moscow institute of physics

and technology: https://mipt.ru/.....etc

The work was submitted on month day, year to the Attestation committee of the Federal State
Autonomous Educational Institution of Higher Education “Moscow institute of physics and
technology (national research university)” for consideration by the dissertation committee for
the candidate of science and doctor of science degrees in accordance with etc need to ensure

what to write here

General description of the work

The transformers have been limited to finite input lengths since their proposal [19]. This is
because attention in transformers needs to attend to every token in the input. Research efforts
since then have been spent to avoid this bottleneck by simplifying transformer structure [21]

or using new technical tricks to mitigate the overwhelming computational cost.
Scientific Actuality of the Research

Transformers have state-of-the-art results on most machine-learning tasks. The attention mech-
anism in the transformer is one of the main components of the transformer. Different attention

variants were proposed for different tasks, leading to different transformer models.

The main bottleneck for transformers to solve NLP tasks is attention complexity. The longer

the text input, the more computational cost is needed.

Processing long documents is an NLP research trend nowadays for many reasons in different
areas. Most real-life domains such as research, education, media, jurisdiction [15], finance,
health, etc. tend to produce medium to long documents. For example, for a researcher to
switch to a new research field, he needs to read a tremendous body of research papers. Systems
that help him find quick answers to specific questions need to be able to process long scientific

papers to produce an answer on demand.

Generally, pre-training and finetuning transformers are expensive because attention needs to
compute the similarity between each token in the input. This is quadratic computation cost.
According to the previously mentioned bottleneck, this cost increases as long as the length
of input increases. That is why more structure investigation is needed to benefit from the
transformer’s power and use it in processing long documents. Hence, we need to tune the
transformer and get its benefit in processing long documents using new transformer structural

modifications, and this is what this thesis topic is about.
The goal of the dissertation

The main goal of this dissertation is to suggest and study different structural modifications of the
encoder-decoder model to process longer input. These modifications are different combinations
of attention, masking, position bias, and additional memory to the transformer to process long
text inputs and check the proposed techniques on tasks such as translation, masked language

modeling, question answering, and summarization tasks.
To achieve this goal, it is necessary to solve the following Tasks:

1. Systematically study and review publications on the application of attention mechanism

in transformer for different tasks concentrating on long text inputs to suggest a new way

of processing long input;

. Propose and implement new transformer structures using different masking patterns,
position bias algorithms, additional memory tokens to inputs, and new attention schema

so the model can process long inputs;

. Apply the proposed model designs to four specific tasks: translation, masked language

modeling, question answering with context, and summarization;

. Based on the conducted experiments on given tasks, analyze the performance of the

different implemented designs;

. Propose new encoder-decoder architecture modifications based on t5 architecture for pro-

cessing input longer than standard input length;

. Propose new methods for the additional memory capacity of the encoder-decoder trans-

former;

. Develop related methods of masking and relative positional encoding for the new addi-

tional modifications on the encoder-decoder transformer;

. Investigate the effectiveness of the resulting modifications on the problems of translation,
mask language modeling, question answering with long-range context, and summarization

of long inputs;

. Develop and publish in the public domain the implementation of the proposed structural

modifications and results with analysis.

Scientific Novelty

This dissertation introduces a transformer with additional memory for processing long doc-

uments. This model and its variants were applied for various tasks on long text input like

translation, question answering, and summarization. This work is different from previous works

1. Propose new encoder-decoder architecture structural modifications based on t5 architec-

ture for processing input longer than standard input length;

2. An investigation of the effectiveness of these modifications applied to translation, mask

language modeling, question answering with long-range context, and summarization of

long inputs tasks.

Theoretical value of the work in the dissertation The theoretical value of the work in
the dissertation lies in the comprehensive exploration of the proposed variants of transformer

modifications for processing long input.

The thesis overcomes existing attention issues (limited transformer input length) by suggest-
ing new structural modifications to the encoder-decoder transformer structure. These new

modifications led to breaking attention barriers for processing long-range inputs.

Furthermore, this thesis presents a new usage for the internal global tokens called memory
tokens, proper masking technique, and proper usage for the original relative positional encoding

to relate chunked input with related memory slots.

Practical value of the work in the dissertation The proposed modifications were applied
to different tasks using different data sets. They resulted in consuming long-range input,
information interchange, and data compression. Models trained as part of the dissertation

work are made publicly available.
Statements to be defended

e The developed encoder-decoder architecture supplied with a sentence selector for in-

context-translation improves the translation quality;

e The proposed T5H modifications for MLM in separate input chunks have proven the abil-
ity to process longer inputs by introducing a memory system for information inter-flow

between chunks, where the memory slots are the only connection between the chunks;

e The proposed architecture is based on additional trainable parameters, masking atten-
tion, and pre-trained weights reusing has proven its efficiency in scaling input length for

summarization tasks compared with T5 and SLED models.
Presentations and Validation of the Research Results

The main findings and contributions of the dissertation were presented and discussed in three

conferences:

e Engineering and Telecommunications Conference, MIPT University, Moscow, Russia,

November 24-25, 2021.
o NEUROINFORMATICS-2022 International Conference on Artificial Neural Networks
o NEUROINFORMATICS-2023 International Conference on Artificial Neural Networks

Publications

1. Al Adel A., Burtsev M.S. (2021). Memory transformer with hierarchical attention for
long document processing. 2021 International Conference Engineering and Telecommu-

nication (En&T), 1-7. Url: https://ieeexplore.ieee.org/document/9681776

2. Al Adel, A. (2022). Global Memory Transformer for Processing Long Documents.
In Advances in Neural Computation, Machine Learning, and Cognitive Research VI.
NEUROINFORMATICS 2022. Studies in Computational Intelligence, vol 1064. Springer,
Cham. https://doi.org/10.1007/978-3-031-19032-2 36

3. Al Adel, A. (2023). SAMDIT: Systematic Study of Adding Memory to Divided Input in
the Transformer to Process Long Documents. In: Kryzhanovsky, B., Dunin-Barkowski,
W., Redko, V., Tiumentsev, Y., Klimov, V. (eds) Advances in Neural Computation,
Machine Learning, and Cognitive Research VII. NEUROINFORMATICS 2023. Studies
in Computational Intelligence, vol 1120. Springer, Cham. https://doi.org/10.1007/978-
3-031-44865-2 10

The author’s contribution in the works with co-authors is planning all the experiments,
studying, implementing, and experimenting with the model in all stages, code implementation,

training models, and baselines into analyzing the results and publication.

Thesis structure and content: The dissertation is divided into seven chapters:
Introduction delves into natural language processing, starting with its definition and ending
with its main applications, such as translation, question-answering systems, masked language
processing, and summarization. It gives an overview of each task and the related work for long
inputs.

Chapter 1 starts with a glimpse of natural language processing, starting from definition and
ending with the main applications in translation, question-answering systems, masked language
processing, and summarization. It displays an overview of each task and its related work for
long inputs.

Chapter 2 is dedicated to the evolution of the model and its mathematical representation
throughout the design process. It introduces the preliminary design of the model used in
the translation experiments. The section also covers the various modification variants used
for subsequent tasks. Additionally, this section provides a detailed description of the model

components and their mathematical representation as follows.

Model design for translation task The first design version used in the translation tasks is

depicted in figure 1

https://ieeexplore.ieee.org/document/9681776

]
selector 1 4
=]
f]
]
"""""""""""""""" [softmax]
P N X R — i
« memory-) 1+ Sentences- [Inear]
| Tepresentation 1) Tepresentation 1
.......... 3 NI T
I I /7

:
:
] MemAttention
:
% ooodloooocacooooodboooooocnaoan T
Cquery | [key-value query
@ \uj 1).. n, chunk chunk,
(\ljupda(e@@ n‘ chunky chunk;
k @@ (n| chunk, chunk,
chunk, chunk;

_"' Decoder

key_value

Multi-Head
Self_decoder attention

[embedding layer]

(505 gt |

Figure 1: The overall view of the model structure used for the translation task.

Model design for MLM and QA tasks: For masked language modeling and question-

answering tasks, several modifications were made to the model design, Fig. 2 shows the first

modification. This modification suggests feeding the selector with a query resulting from the

decoder’s self-attention.

..... |
| memory- | \ chunks- !
| Tepresentation 1 , Tepresentation d
t —
FFN N\
[Im)
Encoder | |
L L L L L b ~
' v
' '
B 4TTTTTTSTTmmsssssssssscosossssooomsos y]
v Ve
v Lo
. MemAttention P
i .
Nl S
' '
' '
[key-value query
@ @QO..in] cnk chunk;
Quptais @D - 0] chunke chunk,
‘\U_/ 1 n e aae
k @) ..(n| chunk, chunk,
chunk,, chunk,

Sequence
selector
>

(softmax]

Multi-Head

[embedaing layer]

SRR

'
'
'
Self_decoder attention 1
'
h

Figure 2: The first modified model structure used for masked language modeling and QA tasks.

Model design variants for QA and MLM tasks

The computational cost of the selector was reduced in the second modification, as shown in

Fig. 3

| /0

FFN \

N \

Encoder | |

E 3 MemAttention E
----T—--------l;-I--] """""" query
©@ ©@..n| chunkj chunk]
| update ﬁiﬂm_age[_))@,,_ n| chunky chunky
k ©(...n| chunkp chunkp
... | chunkp

(softmax |
(linear]
T5Decoder
(FFN
PR .
| T5CrossAttention
S —
Query
....... .
Multi-Head

Self_decoder attention

[embedding layer]

Figure 3: The second modified model structure used for masked language modeling and QA

tasks.

The third modification was also to mitigate the computational cost that resulted from adding

the selector and to check the importance of the MemAttention. This modification is reflected

in figure 4

[

update.

.‘\\

e chunk;

[Encoder

n chunk;,

Tk,

/T5Decoder

(sottmax]

Multi-Head
Self_decoder attention

[‘embedaing layer]

Figure 4: The third modified model structure used for masked language modeling and QA

tasks.

The mathematical representation of the translation model This section introduces the

mathematical representation of the model displayed in figure 1.

e Encoder: Each encoder layer in a transformer model consists of two sub-layers, namely

a ThMemAttention layer and a feed-forward layer. These two layers differ from the layers
present in the T5 transformer. The process of encoding involves the following steps: The
encoder input could either be a single sequence or a source sequence with (n) previous
sequences as context. In the latter case, the model needs to learn which of these sequences
is the source and which ones are from the context. It also determines whether the context
sequences can aid in improving the translation or not. If the encoder input is divided into

multiple sequences, then each sequence will have its slot memory.

Each memory slot consists of one or many memory tokens. Memory tokens are simply
T5 tokenizer’s special tokens. Slot memory is added to each sequence inside the encoder
and applies attention between the memory slots and the sequences as follows: every slot
has access to all other slots, and only to token representations of related sequences, and
every token in a sequence has access to all tokens of the same sequence (inner sequence

attention) and all slots with noting that sequences are encoded in parallel.

At the end of the encoding process, we will have two hidden states: memory slots hidden
states and their related sequences hidden states. For positional encoding, we pay atten-
tion to encoding each slot memory with its sequence. No positional encoding between

sequences was applied. This is the memory slot’s mission.

Positional encoding: There was no positional encoding between consequent input se-
quences. T5 default positional encoding was used instead in a way that take into consider-
ation the position between each memory slot and its related sequence. We left the mission

of positional encoding between sequences to the memory slots and sequence selector.
Multi-head encoder cross attention:

We call this attention THMemAttention. It takes as input a combination of X™emtsent,
which represents each memory slot along with its related sentence. This input is split
into two separate queries within our attention. The input also consists of XemFsent of
dimension dj, for each head. This is the sentence prefixed by all memory slots of all
sentences from the same input sample in the same order in the sample sentences. It is

used to represent the keys and values in THMemAttention.

Inside THSMemAttention, the memory slot is separated from its related sentence to get
two queries, keeping the key and value without any change and then calculating attention
for each memory slot and related sentence independently. The output of the attention

layer is:

att = LN(Xmem+sent) + T5MemAttenti0n(Xmem+8€"t, Xcmem—l—sent’ X:”Lem-l—sent)’ (2)

e Feed forward network: After attention, we need to apply FFN as a traditional trans-

former as follows:

H = LN(X)+ FFN(X), (3)

to remember X here is the output of the previous attention layer which is the con-

catenation between memory slot representation and the related sentence representation;

X = A= [Anem ; Asent] € RletL)dmoder the dimension of the hidden layer of

mems—+sent’ “ "mems+sent

FFN is dff = 2048

e Sequence selector: The output of the encoder is separated into memory slots repre-
sentation H™*™ and related sentence representation H**" to recall, before encoding we
have reshaped the memory representation sentence representation input embedding, so
after encoding we return the original batched shapes; batched memory representation
after encoding € Rb***¢*dmodet The batched sentences representation is € RV*F*Exdmoder; T
is the batch size, k is the number of input sentences including the source and context,
¢ is the number of memory tokens in the memory slot and L is the length of each sen-
tence in the input. The inputs of the sentence selector are three; query comes from the
decoder(model output), key memory representations from the encoder, and sentences rep-
resentations from the encoder. To choose the next token to be generated from one of the
source-context sequences, we need to calculate the weighted score between the decoder
output and memory slots resulting from the encoder. We calculate the score between
the decoder and memory slots. Then, each sequence representation is multiplied by its
score. The weighted representations are summed up to get one vector representation of

the source size for each token in the target. This process can be expressed as:

S = softmax(Query * Key") (4)

where Query = query x W4, W41 € Rdmodel*(c—dmodﬁl), C_dmodel = € * dmoder, ey = key *
Wk, Wk E Rdmodel*dmodel'

We note that the query is simply the embedded target as follows:

query = ta'r’get % Wemb; target c Rvocab_size’ Wemb c Rvocab_size*dmodel (1)

This means that every target token has k scores for each sentence in the corresponding

input. Then we multiply each sentence representation with its score. Finally, the weighted

sentences representations are summed up to get one vector € RI*@medet for each target

token.

Z = Z Sent; * S;, (5)

1<=i<=k

where Sent; = Sent; x Wsert: /st ¢ Rmoder*dmodel

e Decoder Since the key-value vectors are not coming directly from the encoder but from
the sequence selector which has one more additional dimension than the encoder output;
this leads to having one vector for each target token, unlike the transformer which uses just
one memory representation to generate all target tokens. Consequently, cross-attention

in the decoder has been modified to handle this issue.
— Decoder Multi-head self attention: The same as T5 self-attention

— Multi-head encoder-decoder cross attention: This is the bottleneck of our model and
is the future study topic in this thesis. Apply attention between sequence selector

output and decoder self-attention output. We can express it as follows:

MHA(Q, K, V) = diagonal(concat(head,, .., heady,)W©°), (6)

where head; = Attention(QWZ2, KWK VIWY).
W& WK WY € Rimoder*dnead are the parameter matrices of linear transformation,
Q € RT*dnead for each head; and it is the previous layer output in the decoder. K and

V are the sequence selector output € RT*I*dhead for each head. WO € Rémodet*dmoder

The mathematical representation of the used model for MLM and QA Task The
mathematical representation of the modification is reflected on query 1 that is fed into the

selector as follows:

query = DSA(taT’get * Wemb); target c Rvocabﬁsiza Wemb c R”OCGb,Size*dmodez (2)

So, the query here resulted from applying caused self-attention in the decoder(DSA-decoder
self-attention) on the embedded target.

Model variants that were used for the MLM and QA Task: In the mathematical

representation for the first variant, which is depicted in Fig. 3, the sequence selector was

10

deleted, and the concatenation of memory slots was used as a compressed representation of

related chunks as the key and value in the T5 encoder-decoder attention.

The key value representation of the encoder-decoder attention is given as a concatenation of

memory representations of all related sequenced chunks in the batch after encoding:

KV = concat[Hpmem,; Hmemsy s -+ Himem,] (3)

In the mathematical representation for the second variant which is depicted in Fig. 4 the se-
quence selector was deleted and the concatenation of memory slots was used as a compressed
representation of related chunks as a key-value in the T5H encoder-decoder attention as in the
first variant. The small modification that was added here to the first variant is replacing the

ThMemAttention in the encoder with Thcross attention with added t5 positional bias.

Chapter 3 This chapter covers the application of the proposed model on translation task.
The task is to translate of a sentence combined with three previous sentences as a context.
In this section a comparison between the context-aware translation and the context-agnostic
translation for document-level translation. For this mission, a new T5 structural modification

was proposed and investigated. The model is detailed in Fig. 1.

Machine translation is to translate text from the human source language to another human
target language. The first version of the transformer was for context-agnostic translation tasks
(sentence-level translation). Transformer was trained on a tremendous amount of sentence-
level translation, but during the translation of long documents, translation happens for each
sentence independently, which results in ignoring the contextual relations between tokens in

sentences|22].

In this section, the task was to propose a model structure based on the encoder-decoder trans-
former, which can be used simultaneously for context-agnostic and context-aware translation.

The context-aware translation was formulated as follows:

Given a corpus of tokens x = (x1, 29, ..., ,,) splitting it into K equal segments where the last
segment is the source that requires a response, and the previous &k — 1 segments represent the
context. This formulation is suitable for translation tasks, question-answering tasks with the
context, and reading comprehension tasks. Dataset The used data set is the same data set
used by [20]. This data set was derived from OpenSubtitles2018 corpus [13]. This data set is
for English and Russian translation tasks. After processing the steps mentioned in the paper
appendix [20] on the OpenSubtitles2018 corpus. They got 6 million training instances from

the resulting data for context-agnostic translation. From these 6 million sentences, there were

11

1.5 million sentences that have context. Each record in the context-aware data set consists of
four consequent sentences for each language. (s1,...,54), (S2, ..., 85), -y (Sng, -+, Sp) from a group
of consecutive sentences si, Sa, ..., s,. Three context sentences were used to form the context-
aware data set. The resulting context-aware data set has 1.5m sentences and has the context
of three sentences. Two sub-sets of 10k instances were randomly chosen for development and

testing sets.

chunking approach The main idea of the chunking approach is to chunk the long text after
tokenization into n equal chunks. For the translation tasks, since the data set was based on
individual sentences and the context of these sentences in the case of presence the context, the
data set was used for building the input into the model first. This data set gives the same length
for each sentence in the source or the target. In this case, all sentences are padded or truncated
to be the same length. In context-aware translation, the target is the translation of the last
(fourth) sentence in the source sentence. Considering the previous consequent sentences are the
context. Inside the model. The input in case sentence with its previous context sentences is
divided equally into four chunks. Each chunk is one complete tokenized sentence. Each chunk
is provided internally with its related memory slot as, explained in Fig. 5 in the encoder. These

memory slots have their trainable weights.

A7 T ids
1.2 | [batch_size * num_chunks,
[batch_size * num_chunks, v 1_:;__ 7 chunk_length]
slot_length] Z
1.
1: add memory 2.1
slot for each 20
chunk 4 i 4
23
2.4
.J 11 727/ 13 14
i
[2.1][2.2 2.3 2.4

Figure 5: One memory slot for each chunk.

T5MemAttention Design In this section, the detailed description of the ThmemAttention
was initially modified from T5H Attention. Figure 6 displays an overview of the proposed atten-
tion design. The T5MemAttention layer in the encoder receives composed inputs, query (memory
slot and its related chunk), key, and value (all memory slots of the long chunked input and the

same chunk in the query). Inside this layer, the query is split into two separate queries.

12

Next, figures 7 and 8 detailed the design of the implementation of the attention. The only
difference between them is using a linear layer of the attention output. In figure 7, just one
linear layer is used for the attention output after concatenating the memory slot with its related
chunk. In Fig. 8, two linear layers are used for the memory slot and its related chunk. For
the rest of the T5MemAttention design, after separating the memory slot and related chunk,
we calculate the weights as in THAttention. After that, we concatenate the memory and
chunk weights to calculate and add the relative positional encoding as calculated bias. Relative
positional encoding was calculated similarly to positional encoding in T5 but included memory
slot positions in addition to relating each chunk with its memory slot. After masking and
adding the calculated bias, we separate the representations of memory and chunk to calculate
the attention for each one. For applying the linear output layer, it could be as in Fig. 7 or in

figure 8

[memj} sequencel
sequence2

[memp} sequence3

T

T5MemAdttention

(2] (amen)
T

memy sequence] meml .. [memp| Ssequence]
sequence2 | [meml .. |memp
memp, I sequence3 I mem1] .. Jmem,| sequencep I

Figure 6: The ThMemAttention design inside the encoder of the proposed model.

This gives us two design variants. We need to experiment with the two variants to see which
is better. Not just that, for the feed-forward layer, we also had two variants. Either use just
one feed-forward layer for the output of the ThMemAttention as in figure 9a or a separate
feed-forward layer for memory representation and its related chunk as in figure 9b. This put us

in front of two additional design variants. In this case, we have four design variants to study.
Design variants for translation task

e v1: uses one linear layer for the output Fig. 7 inside the ThMemAttention to handle
both memory slots and related sequences but two separated Feed Forward Fig. 9b after

MemAttention; one for memory slots and the other for sequences representations.

e v2: uses one linear layer for the output Fig. 7 inside the THMemAttention to handle both
memory slots and related sequences and one Feed Forward Fig. 9a after ThMemAttention;

for both memory slots and the other for sequences representations.

13

e v3: uses two linear layers for the output of ThMemAttention Fig. 8 to handle memory
slots and related sequences independently, and two separated Feed Forward Fig. 9b after
ThMemAttention; one for memory slots and the other for sequences representations, I

should mention that this was the main proposed design of the model.

e v4: uses two linear layers Fig. 8 in ThMemAttention and just one feed forward Fig. 9a

after attention.

Add

1 Linear attention
| Linear |

TI’TlEIl'I_S[IIIl"l!S Seq_scores
position_bias
add

Multi-headed attention

Figure 7: The internal design of the THMemAttention uses the shared linear output for the

v | |
[scale] [scale] M
t t
[MatMul(calculate score)] [MatMul(calculate score)]
f 1 I
I Qmem, KT }
| Qseq KlT
: [normalization of Q] :
! A _ _ Y K-V
Qmem Qseq |

memory slot and its related chunk concatenation.

14

Add
2 Linear attention

Linear — concat «——| Linear J

m Multi-headed attention

Tmemfscums seq_scores
ad position_bias
1 | |
[scale] [scale] v
t T
[MatMul(calculate score)] [MatMul(calculate score)]
‘ I Qmem KT i
Q
| ’:_feq KT
[i
1 [normalization of Q] 1
! - Y ! K-V
Qmem Qseq |
|

Figure 8: The internal design of the ThMemAttention uses separate linear output for the

memory slot and its related chunk.

T A

T5MemBlock/1FF ‘ T5MemBlock / 2FF l:ﬁil
FFN | |
FFN FFN
I‘nem_seq T
T5MemAttention ment | seq
I T5MemAdttention l
1 1 + *
l ‘ i l
mem K-V seq mem K-V seq
(a) (b)

Figure 9: Figure (a) uses one feed-forward for memory and chunk representations concatenation,

and figure (b) uses a separate feed-forward for memory and related chunks.

Experiments setups This section outlines our setup of experimental. SentencePiece tokenizer
was trained on training data files for both languages Russian and English [12] and was used
to encode text as WordPiece tokens with source and target vocabularies of 32128 tokens for all

experiments. We use a batch size of 160. length of all source sentences, and the target is 100

!Data used for training and pretraining model and tokenizer can be found: https://www.dropbox.com/s/

5drjpx07541eqstacl19_good_translation_wrong_in_context.zip?dl=0

https://www.dropbox.com/s/5drjpx07541eqstacl19_good_translation_wrong_in_context.zip?dl=0
https://www.dropbox.com/s/5drjpx07541eqstacl19_good_translation_wrong_in_context.zip?dl=0

15

tokens. Adam optimizer was used with fixed learning rate I = 0.00005 with no weight decay
or warm-up. dpeder = 512,d; = 512/8 = 64, h = 8, num_layers = 2,dsy = 2048 If a source
has one or more contexts then the input will be divided into the given number of sentences
and rearranged in the shape shown in the encoder Fig. 1 for each sample in the batch. In
our experiments, three context sequences were used as context. These are the settings for all
experiments if it was not declared about different settings separately. For inference, the greedy

search was used.
Experiments results and conclusion

e Sentence level translation Table 1 displays the results of the experiments using the four
versions. The used data set is the context-agnostic data set for sentence-level translation

2 Reference baseline for translation task is the T5 transformer.

variant train loss | val loss | test loss | val BLEU | test BLEU
T5(baseline) 1.455 1.596 2.349 26.12 25.648
vl 1.466 1.632 1.634 26.34 26.725
v2 1.472 1.642 1.639 26.09 26.437
v3 1.465 1.629 1.621 26.5 26.706
v4 1.476 1.636 1.639 26.34 26.354

* sacreBLEU was used https://github.com/mjpost/sacrebleu

Table 1: Loss and blue scores on Agnostic aware data set.

e Context level translation

Table 2 displays the results of training the model from scratch on the context-aware data

set. As shown, the model has a low BLEU score for all versions.

variant | train loss | val loss | test loss | val BLEU | test BLEU
vl 2.93 3.859 3.8 1.533 1.019
v2 2.946 3.86 3.837 1.944 0.882
v3 2.94 3.787 3.753 1.597 1.543
v4 2.908 3.823 3.806 1.698 1.291

Table 2: Loss and blue scores on Context-aware data set before finetuning, training the context-

aware from scratch.

’https://www.dropbox.com/s/5dr jpx07541eqst/ac119_good_translation_wrong_in_context.zip?
d1=0

https://github.com/mjpost/sacrebleu
https://www.dropbox.com/s/5drjpx07541eqst/acl19_good_translation_wrong_in_context.zip?dl=0
https://www.dropbox.com/s/5drjpx07541eqst/acl19_good_translation_wrong_in_context.zip?dl=0

16

For fine-tuning the model has trained on context agnostic corpus on context-aware corpus.
We use transfer learning by using the trained model itself to train the context-aware. This
is possible because the same model can be used for processing one or more chunks using
the chunking approach explained in the section. Using weights of the model trained on
sentence-level translation to train the model on context-aware translation data set we

noticed that the model got better BLEU scores for all versions. Results are displayed in

table 3.
variant | train loss | val loss | test loss | val BLEU | test BLEU
vl 1.322 1.678 1.665 26.12 26.615
v2 1.374 1.7 1.685 26.03 26.120
v3 1.33 1.698 1.667 25.88 26.356
v4 1.303 1.656 1.652 26.64 26.582

Table 3: Loss and blue scores on Context-aware data set after finetuning.

There is a noticeable improvement from training from scratch on context-aware into fine-

tuning after training on context-agnostic corpus.

Discussion We suggested using a transformer-based model to cope with attention limitation
by adding another layer of hierarchical attention over document chunks. Specifically, we intro-
duced the attention over memory slots related to the document chunks. Applying attention to
memory slots to choose the proper chunk for the next generation step is cheaper than using
the representation of the related chunks. Training the model on a context-agnostic data set
and then tuning the model on a context-aware data set helped to get more precise translation
and promoted translating context-aware sentences. Results showed superior BLEU scores for
sentence-level translation for all model variants compared with the T5 transformer baseline,

and high BLEU scores for context-aware translation.

Chapter 4 presents the model that was used for masked language modeling and question-
answering tasks, obstacles, solutions, results, discussion of results, limitations, and future work.
In this section, we abandon the encoder output usage, replacing it with selector output|1] as
shown in Fig. 4. This brings two advantages: First, much more focus and attention on
the source and target tokens during generation, and second, depending on the most relevant
part of the input to generate the token, the model pays attention to the overall input during
generation. The main difference between our model and models[5, 2] is that they used sparse
attention where chunking the input is happening inside the attention layer. Input chunking

in our model is already done in the encoder before using the attention layer inside the model,

17

which makes it easier to implement. We have two main tasks; we use MLM pre-training task

with the same objective used in [17] and use question answering finetuning task on HotpotQA.

This study does not aim to benchmark on any of the mentioned data sets in this chapter but to
verify the ability of the proposed model to handle chunks as if they were one chunk compared
with the base model as a step forward to increase the input length. Our work follows the line of
works that added general memory to the transformer input [5, 1, 6] and uses T5 as a baseline

to compare results and as a base structure to implement all the modifications.
Data sets and metrics
The used data sets for this chapter are:

e For pre-training: Since pre-training is a very costly process and for initial results and
comparison, there was a need to choose a medium size data set for pre-training on mask

language modeling for this purpose; wikitext-103-raw-v1 3.

e For the question-answering task, the HotpotQA data set was used. HotpotQA is
a challenging data set. It was introduced to encourage systems to learn more complex
reasoning, where the evidence pieces to answer a question are scattered among different

documents.

HotpotQA consists of two parts full-wiki data set and a distractor data set. The two
data sets are identical in structure. Gold paragraphs, i.e., the paragraphs containing the
support facts, are included in the context paragraphs of the distractor validation data set.
In the full-wiki validation data set, these gold paragraphs are not included in the context
paragraphs. For this reason, the full-wiki data set is more challenging. I have used a
distractor data set. HotpotQA contains the features: ['id’, ’question’, 'answer’, ’type’,
level’, 'supporting facts’, 'context’] and has 90447 training records and 7405 validation

records. An example of data and data structure is displayed in table 4

3wikitext-103-v1-1 can be found here: https://huggingface.co/datasets/wikitext#wikitext-103-vi-1

https://huggingface.co/data sets/wikitext#wikitext-103-v1-1

18

Column Value

id "5a7a06935542990198eaf050’

question "Which magazine was started first Arthur’s Magazine or First for Women?"

answer "Arthur’s Magazine"

contert [Radio City is India’s first private FM radio station and was started on 3 July 2001.’,
" It broadcasts on 91.1 (earlier 91.0 in most cities) megahertz from Mumbai...]

type "comparison’

level ‘medium’

Supporting _facts | ["Arthur’s Magazine", "First for Women’]

Table 4: Example of HotpotQA data set records.

Each context consists of a list of ten paragraphs. Each paragraph is a list of sentences.
For each paragraph, all sentences were merged into one text. Then, all paragraphs were

merged to form one context for each question.

To feed inputs to the T5 and THMemModel, a data set class was built to tokenize question
and context in the following way question ids </s> context ids </s> and target as
target ids< /s > . If the model uses more than one chunk, the input ids in the encoder
are divided into the specified number of chunks without any positional encoding for the
chunks.[1].

Results of pre-training task MLM We compared the results of the THMem model with
T5(baseline) with two main input lengths: a) input length 128 table 5 model uses just one
chunk and b) input length 512 table 6 either as one chunk or divided into four chunks each
chunk of 128 length. As displayed in the table. 5 THMem model surpasses the baseline.

Table 5: Experimental results on train and dev set of wikitext-103-raw-v1 data set for Masked
language modeling task using just one chunk as input length 128. The best results for the
proposed model are highlighted.

Expriment name Train loss Valid loss Perplexity
T5 basline 128 3.709 3.455 32.265
T5Mem MLM 1 chunk 128 3.122 3.417 22.78

Table 6 T5Mem model surpasses the baseline for both variants using just one or four chunks.
However, using just one chunk results are still better than four chunks. This may return to the
loss of full representation because of chunking in the encoder part. For the final goal to process
longer text, having more than one chunk is acceptable since the final result is still comparable

or competitive as we can compare line 5 and line 1 in the table 6. If we continue training the

19

pre-trained model on length 128 using length 512 even for baseline (t5) or our model, then this
will not give a better result than training the model from scratch using the 512 length. This
can be noticed by comparing line 1, which refers to training from scratch, and line 2, which
refers to the continued training for another 100 epochs using longer input for baseline, and lines
4 and 5 for the proposed model. As a result, increasing input length while pre-training did not
bring any good, and using a lower chunk number with shorter lengths was more efficient than
longer ones. As a result, The proposed model using four chunks or one chunk outperformed the
baseline for 128 input length and 512 input length as one chunk or 512 input length divided

into four chunks, each chunk of 128 lengths as seen in tables 5 and 6.

Table 6: Experimental results on train and dev set of wikitext-103-raw-v1 data set for Masked
language modeling task using input length 512. Input length for all models is 512 length as
one chunk or divided into four chunks of 128 chunk length. 128 to 512 means continuing pre-
training the model using 512 input length after training it for 100 epochs using input length

128 since the model is resilient to the input length.

Experiment name Train loss Valid loss Perplexity
T5 basline 512 4.327 4.204 66.94
T5 128 to 512 4.772 4.589 98.46
T5Mem MLM 1 chunk 512 4.101 4.186 60.422
T5Mem MLM 1 to 4 chunks® 4.735 4.5147 91.35
T5Mem MLM 4 chunks?® 4.281 4.184 65.66

& Model has been trained once.

Results of fine-tuning proposed model on HotpotQA

For fine-tuning the baseline and the proposed model on the HotpotQA data set. In table 7,
the model did not outperform the baseline when using four chunks. This can be interpreted as
follows: the main idea of the selector component in the model is to pay more attention to one
chunk than to other chunks. The answer could be scattered in many chunks, so concentrating
the attention on just one chunk can be the reason for this degradation. This is why it worked

well for the translation task but not the question-answering task.

20

Table 7: Experimental results of fine-tuning the proposed model on HotpotQA data
set(distractor part) using input length as 512 even as one chunk(T5 takes input as a chunk
of 512 lengths) or 512 input length is divided into four chunks. Lines in grey use Adam Opti-

mizer. All experiments were pretrained and fine-tuned using a constant learning rate.

Experiment name Train loss Valid loss Test loss exact match f1 recall precission
T5 hp AF const 512 0.757 3.231 3.231 17.008 24.619 24.995 25.825
T5 hp Adm _const 512 0.755 3.285 3.285 16.819 24.175 24.522 25.279
T5Mem_hp 4 chunks AF const 1.696 4.024 4.024 8.727 14.007 13.977 14.894
T5Mem hp 4 chunks Adm _const 2.416 4.150 4.150 4.090 5.507 5.480 5.781

From here, the idea of dropping the selector to try other design variants comes to use.
The following subsection displays the model variants without a selector component results.

Results of modified variants on MLM task
Results of experiments on these two new variants compared with the previous results presented

in the tables 8 and 9. To remember the new proposed design variants are:

e THMemWsWMA T5Hmemory model without selector component as explained in chapter

2 and displayed in Fig. 3

e ToMemWsWMA Tbhmemory model without selector component without memory attention

as explained in chapter 2 and displayed in figure 4

For clarity, in the following tables, after the name of the model, we have the suffix (_ 2mem.AF, linear),
which means (_(n)mem. name of the optimizer, name of the scheduler). Where n number of
memory tokens in each memory slot, n = 2, that means that the memory slot is composed of

2 memory tokens.

21

Table 8: Experimental MLM task results using just two layers - training for 100 epochs input
length is 512 for T5. For the T5Mem model and its variants. The input length 512 is divided into
four chunks. optimizers(Adafactor “AF“ and AdamW “Adm*), the used scheduler is linear. All
models use two memory tokens for each chunk as a slot, except for the ToMemWsWMA 1mem
model, which utilizes one memory token. Lines in grey use Adam Optimizer. The best results

for the Adafactor optimizer are underlined. The best results for Adam Optimizer are bold.

Model Train loss.Valid loss.val acc.val PPLTest loss.test acc.test PPL
T5. AF linear! 4.327 4.196 30.060 66.394 4.163 30.218 64.289
T5. Adm,linear 4.368 4.258 27.605 70.648 4.234 27.675 68.991
T5Mem. AF, linear®3 4.286 4171 29.775 64.769 4.140 29.808 62.816
T5Mem Adm,linear? 4.422 4301 27.620 73.754 4.280 27919 72.258
ThMemWs 2mem. AF linear 4.193 4.093 30.090 59.979 4.091 30.891 59.779
ThMemWs 2mem. Adm,linear 4.247 4.143 30.210 62.998 4.113 30.397 61.158

T5MemWsWMA 1mem. AF linear 4.149 4.050 31.145 57417 3999 31.3556 54.589
T5MemWsWMA 1mem. Adm,linear 4.307 4.202 28316 66.873 4.176 28.316 65.117
T5MemWsWMA 2mem. AF linear 4.196 4.069 31.010 58.497 4.0217 31.262 55.813
T5MemWsWMA 2mem. Adm, linear 4.266 4.161 29.985 64.111 4.136 30.103 62.548

175, AF, linear refers to the model T5 baseline 512. The name in the table is to make it easy to compare in this table.

2 The Model has been trained once.
3 T5Mem. AF, linear refers to the model T5Mem _MLM _4_chunks. The name was changed in the table to make it easy to compare.

Table 9: Experimental MLM task results using just two layers - training for 100 epochs input
length is 512 for T5. For the TSMem model and its variants. The input length 512 is divided
into four chunks. optimizers(Adafactor“AF* and AdamW “Ad“), the used scheduler is constant.
All models use two memory tokens for each chunk as a slot, except for TSMemWsWMA _1mem,
which uses one memory token. Lines in grey use Adam Optimizer. The best results for the
Adafactor optimizer are underlined. The best results for Adam Optimizer are bold. For all

best results, the baseline is superior.

Model Train loss. Valid loss. val acc. val PPL Test loss. test_ acc. test PPL
T5. AFconst 2.486 2.308 59.225 10.0595 2.265 60.150 9.634
T5. Adm,const 2.495 2.309 59.59 10.060 2.269 60.523 9.673
T5Mem. AF const® 3.094 2.892 52.47 18.020 2.864 52.742 17.533
T5Mem. Adm,const® 3.304 3.078 47.77 21.720 3.757 33.659 42.822
T5MemWs_2mem. AF const 3.126 2.889 50.87 17.990 2.865 51.175 17.555
T5MemWs 2mem. Adm,const 3.117 2.886 51.005 17.916 2.864 51.213 17.531
T5MemWsWMA 1mem. AF const 3.369 3.157 44.805 23.495 3.126 45.216 22.789
T5MemWsWMA 1mem. Adm,const 3.328 3.104 47.275 22.290 3.076 47.656 21.677
T5MemWsWMA 2mem. AF const 3.280 3.086 47.585 21.541 3.055 47.961 21.225
T5MemWsWMA 2mem. Adm,const 3.277 3.085 47.465 21.88 3.0535 47.806 21.195

2 Model has been trained once.

22

As we can see from Table 9, using a constant scheduler during the pre-training stage has a
significant impact on the pre-training process. The baseline model outperforms all the pro-
posed structural modifications. Moreover, the results show that MemAttention outperforms
T5Cross attention, suggesting that MemAttention is superior to ThAttention for experiments
with Adafactor optimizer. Using separate parameters for the memory slot and its related
chunk helped to get this improvement. Appending just one memory token for each chunk in
the TSMemWS WMA 1mem model, we noticed that the quality of results was decreased us-
ing the Adam optimizer. This emphasizes that increasing memory slot capacity can improve the
results. Baseline, which uses Adam optimizer and constant learning rate, gives better accuracy
but not better perplexity compared with itself. For our model, T5Mem and all its modifica-
tions using Adam optimizer with a constant learning rate led to worse results regarding both
accuracy and perplexity. Table 10 displays the results of the finetuned pre-trained models from
table 8 and 9 on question answering task using HotpotQA data set. The same tendency of
using a constant learning rate to improve the results was kept in the finetning stage. Still, the
baseline is better than the proposed model, but both the baseline and the proposed model in
all design variants start tackling the task. Interestingly, the results with dropped selector and
MemAttention used were the best compared with all other model variants except for (T5Mem.
AF, const) in the fine-tuning stage. This was the best among all model variant results. Using a
constant learning rate gives better results on all experiments. Fine-tuning results again display
preference MemAttention on Thcross attention and the role of compressed representation in
auto-regressive response generation. The length used in these experiments was not enough to
know whether feeding the model with longer inputs would be better. This is possible in future
work. In the result, we understand that the selector does the mission using a linear learning
rate and surpasses the baseline while the performance is on par during fine-tuning with the
baseline. Using a constant learning rate enables the models to handle the finetuning task, the
baseline is better for all the experiments that used the constant schedule. Using compressed rep-
resentation for extractive responses is possible and promising. This can mitigate the expensive

computational cost of cross-attention in the decoder while processing long documents.

Results of modified model variants on HotpotQA data set

23

Table 10: Experimental results of fine-tuning all pre-trained models and modified models on
HotpotQA data set(distractor part) using input length as 512 even as one chunk(T5 takes input
as a chunk of 512 lengths) or 512 input length is divided into four chunks. Lines in grey use

Adam Optimizer. All experiments were pretrained and fine-tuned using a constant learning

rate.
Experiment name Train loss Valid loss Test loss exact match f1 recall precission
T5 hp_ AF const 512 0.757 3.231 3.231 17.008 24.619 24.995 25.825
T5 hp Adm _const 512 0.755 3.285 3.285 16.819 24.175 24.522 25.279
T5Mem_hp 4 chunks AF _const 1.696 4.024 4.024 8.727 14.007 13.977 14.894
T5Mem_ hp 4 chunks Adm_ const 2.416 4.150 4.150 4.090 5.507 5.480 5.781
T5MemWS2mem hp 4 chunks AF const 1.227 4.090 4.090 7.930 14.227 14.190 15.190
T5MemWS2mem hp 4 chunks Adm_const 1.236 4.133 4.133 8.140 14.797 14.369 15.372
T5MemWSWMAlmem hp 4 chunks AF_const 1.296 4.052 4.052 7.876 13.905 13.911 14.904
T5MemWSWMAlmem hp 4 chunks Adm_ const 1.112 4.331 4.331 6.965 12.657 12.610 13.587
T5MemWSWMA2mem hp 4 chunks AF const 1.233 4.217 4.218 7.843 13.964 13.966 14.87
T5MemWSWMA2mem hp 4 chunks Adm_const 1.117 4.401 4.401 6.959 12.888 12.941 13.658

Results discussion

This chapter presented a study of our proposed model on two new tasks: Masked language
modeling as a pre-training task and a question-answering task using HotpotQA as a fine-
tuning task. Experimental results showed good performance of the model on masked language
modeling using a linear learning rate. The proposed model with chunked input outperformed
T5 as a baseline. This approves previous results on translation tasks where the proposed model
overcomes the baseline. The results of the proposed model were on par with the baseline on
a fine-tuning task. Both models were not able to manage to solve the finetuning task. There
were no preferred optimizer results between two different optimizers: Adam and Adafactor.
The proposed model does not show good results for segmented inputs using a segment selector
for fine-tuning on HotpotQA using a fixed learning rate. Across the way, using memory slots
as a compressed representation of chunks led to better results on fine-tuning tasks than the
proposed model but did not beat the baseline T5. This result is important because all previous
sequence-to-sequence models still use the long input representation in the decoder part, and it

can be studied in future work in encoder-decoder transformers such as T5.

Chapter 5 dedicated to the model modifications using just the memory added to the encoder
with the new masking and relative positional encoding while investigating the effectiveness the
these modifications on summarization data sets.

Summarize long documents In this section using the memory tokens was in a different
way than was used in the previous chapters. It depends on consuming the documents long
document by long document simulating the human reading way. Second, inside the model each

long document is chunked into chunks dynamically based on fixed chunk length, adding slot

24

memory that consists of one or more memory tokens, the size of the memory slot is a hyper-
parameter and it is a proportion of the chunk length. Then we use masking so each memory
slot depends only on itself and related chunk, and each chunk relates to all memory slots of the
chunked document and itself. Finally for positional encoding; we adapt the relative positional
encoding that was used in the t5 model between the memory slots and the chunks. Summariza-
tion task in general is a very challenging task for many reasons especially when the document
gets longer; some reasons are related to the models others are related to data sets. Most of the
long documents are domain-specific articles such as scientific papers that contain more complex
formulas and terminologies [10, 16]. With relation to data sets many studies cover that the
nature of summarization data sets plays a very important role and has clear consequences on
the summarization results based on summarization method used even extractive, abstractive

or hybrid [4, 11, 10, 14, 18].

Task definition Text summarization is the process of building a fluent, cohesive, and concise
summary of a lengthier text document and distilling the content by pulling out the meaningful

facts of the document that we need to summarize.

In our era, we witness an information explosion. Professionals in many fields (scientific, medical,
economic,..etc.) may consume plenty of text at work or for many purposes, usually in scientific
papers form, reports, news ..etc. Usually, they need just a specific part from all that is read.
Consequently, not all texts are at the same level of importance, and they need to capture the
gist of content related to the main idea in the text they read. This is where NLP can step in,
using automatic summarization, making life easier. Reading a summary of a document from

previously mentioned areas is much easier than reading the whole document.

Usually, there is a setup called Oracle setup [11, 9] where the gold facts or the crux information
is located or specially designed at the beginning of the document or long input. This setup
makes using the longer document not meaningful because less meaningful information can be
found or not after processing longer input, which consumes more cost. This setup was not used

in our experiments.

Datasets In this section, we provide a short overview of the data sets used for experiments on

the proposed model in this chapter for the summarization task.

e CNN/Daily Mail |7]: version 3.0.0, English-language data set. This data set can be
used for both abstractive and extractive summarization. It has two fields: article as long

text and highlights as two-sentence summary. These articles were written by journalists

at CNN between April 2007 and April 2015, and at Daily Mail between June 2010 and

April 2015.

25

e SAMSum [3]: This data set was written by linguists and used for abstractive summa-

rization. It contains about 16k messenger-like conversations with summaries.

e GovReport was proposed by [8] for summarizing long documents, this dataset is chal-

lenging for many reasons. First, the summary itself is long and scattered over very long

document.
Data set Number of Instances in Split | Length of tokenized input | Length of tokenized target
Train | Validation | Test Mean | Median | Max Mean | Median | Max
SAMSum 14732 | 818 819 148 119 1153 28 25 94
GovReport 17517 | 973 973 10305 | 8571 324004 637 658 2360
cnn__dailymail | 287113 | 13368 11490 985 898 5269 75 70 3151

Table 11: Statistics for the used summarization data sets. Input length is measured in tokens

using a pre-trained t5 tokenizer.

Results on SAMSum Dataset

As can be seen in table 13 Thmem succeeded

all metrics except R1 metric and overcome

in giving better results than baseline considering

SLED that used block size 256 considering all

metrics?.

Model Validation Test Loss

R1 R2 RL RLsum | R1 R2 RL RLsum | train | validation | test
T5-base(base line) 52.543 | 28.181 | 43.734 | 48.433 | 50.895 | 25.852 | 42.068 | 46.316 | 1.199 | 1.328 1.234
SLED 256 43.023 | 20.202 | 35.232 | 39.198 | 42.084 | 18.893 | 34.345 | 38.15 2.485 | 1.74 1.622
T5mem-base 256 32 | 52.092 | 27.855 | 43.46 47.994 | 50.394 | 25.904 | 42.032 | 45.97 1.201 | 1.332 1.241
T5mem-base 256 16 | 51.84 27.654 | 43.087 | 47.76 51.086 | 26.672 | 42.643 | 46.76 1.224 | 1.328 1.233
Tb5mem-base 256 8 | 52.084 | 27.815 | 43.664 | 48.047 | 51.305 | 26.346 | 42.685 | 46.916 | 1.22 1.347 1.24
Thmem-base 384 8 | 52.503 | 28.23 | 43.853 | 48.507 | 50.996 | 26.002 | 42.251 | 46.456 | 1.203 | 1.331 1.236

Table 12: Comparing Rouge metrics for the proposed model with T5 as baseline and SLED as

another model for processing long documents on SAMSum data set. 256 and 364 represent the

block size 32,16,8 represent the number of memory tokens in each slot.

Increasing memory capacity was supposed to give us better results, practically using less mem-

ory capacity (8 memory tokens for every 256 tokens) was more efficient computationally and

gets better ROUGE scores on the evaluation data set using 384 block size and better scores

on test data set using 256 block size 5. After analyzing the memory content, it was explained

4Experiments on SAMSum data set were done using 8 Tesla P100 SXM2 GPU
SResults of training models and baseline can be found on wandb cite

https://api.wandb.ai/links/arij/qckm357a

26

that the memory tokens in each memory slot have just one token in all positions for each
chunk. According to that, the reason that increasing the memory size was not beneficial was

understandable.

Results on CNN / DailyMail Dataset The experiments on CNN/Daily Mail were for ten
epochs. While the results in the table 13 are for epoch 6 since the models start to overfit after

epoch four ©.

Model Validation Test Loss

R1 R2 RL RLsum | R1 R2 RL RLsum | train | validation | test
T5-base (baseline) 44.074 | 21.421 | 31.154 | 41.024 | 43.21 | 20.647 | 30.566 | 40.102 | 1.262 | 1.409 1.443
SLED 256 42.196 | 19.99 | 29.865 | 39.14 - - - - 1.609 | - -
Thmem-base 8mem 384b | 43.67 | 21.023 | 30.759 | 40.603 | 42.905 | 20.483 | 30.381 | 39.871 | 1.255 | 1.394 1.422
T5mem-base 32mem_256b | 43.547 | 26.971 | 30.76 | 40.532 | 42.777 | 20.332 | 30.226 | 39.723 | 1.295 | 1.442 1.455

Table 13: Analysing Rouge metrics for the proposed model with T5 as baseline and SLED as

another model for processing long documents on CNN/Daily Mail data set.

As we can see from the table, our model overcomes SLED as a model for processing long
documents, but both our model and SLED did not overcome the baseline t5 under the same
conditions. Many notes can be made here since both SLED and our model depend on the
fusion of separate encoder representations in the decoder. We infer that using memory slots is
important for communication between the independent blocks. SLED model configuration did
not include the prefix for the summarization task.

Results on GovReport

Results are displayed in the table 14. Since Powerful server was used ” and for fair comparison,
the same long input length was used for all experiments on GovReprt data set®. The tokenized
input length is 3072, and the tokenized target length is 384. As we see, t5 still overcomes
both models SLED and our model. Hence, our model overcomes SLED regarding all metrics.
This emphasizes that using the whole length is better than chunking it, whatever it is long.

GovReport is a very challenging data set because the input is very long, and the output is long.

6More information about results can be found onwandb cite
“NVIDIA DGX A100 320GB
8Full experiments training and hyperparameters details can be found and displayed on wandb cite

https://api.wandb.ai/links/arij/2c9jcnnj
https://www.deltacomputer.com/nvidia-dgx-a100-320gb.html
https://api.wandb.ai/links/arij/fvj8w7ew

27

Model Validation Test Loss
R1 R2 RL | RLsum R1 R2 RL | RLsum | train | validation | test
T5-base (base line) | 52.796 | 22.655 | 27.96 | 48.866 | 53.35 | 23.328 | 28.614 | 49.578 | 1.773 1.751 1.808
SLED1024_ 256 38.59 | 14.579 | 25.357 | 33.801 | 38.82 | 15.058 | 25.785 | 34.254 | 2.216 1.963 1.959
SLED3072_ 256 36.02 | 11.545 | 21.463 | 31.852 | 36.305 | 11.809 | 21.704 | 32.175 | 2.381 2.044 2.104
Thmem-base 49.727 | 20.241 | 26.442 | 45.668 | 50.058 | 20.833 | 26.838 | 46.115 | 1.825 1.785 1.843

Table 14: Rouge metrics for the proposed model with T5 as baseline and SLED as another

model for processing long documents on the GovReport data set.

Consistent with results on previous data sets, using less memory slot size with longer block
length gave better results. This is understandable since the memory slot uses just one fixed
token representation in all memory tokens updated during training. Using more memory tokens

will not help. Otherwise, these tokens save different compressed representations for each chunk.

As final thoughts of this chapter, our main results show that chunking the long input into
non-overlapped chunks during encoding allows these chunks to communicate only through the
related memory slots. Chunking the long input into equal chunks dynamically allows the
computation time of the model to grow linearly with the number of chunks instead of quadratic.
This scales well with the input length and gives competitive results on the summarization task.
Analyzing memory content reveals that memory tokens with the same positional encoding store
identical tokens for each related chunk. Analyzing attention maps showed active interaction
between memory tokens and related chunks and active interaction between tokens chunks and
most of the memory tokens in all layers. The interaction was from the first layers, where the

memory was empty.

Chapter 6: Conclusion of the overall thesis, limitations, and future work.

Currently processing long text inputs is a fertile field for research. The tasks within this
dissertation were carried out as a part of efforts in this direction to discover new ways and
add valuable contributions, focusing on transformer design modification to address transformer
input bottlenecks. Design modifications were carried out on the T5 transformer and applied in
different stages of development on three main tasks, translation, QA, and summarization tasks.
In conclusion, the following theoretical and practical outcomes of overall model modification

development stages are:
1. A review of proposed models for processing long documents for different NLP tasks;

2. New usage of the global tokens as memory slots to relate chunked inputs and as com-

pressed representation;

3. Developing a proper masking mechanism and proper usage of the relative positional en-

28

coding for binding memory slots with related segments(chunks);

The proposed transformer structural modifications for increasing the transformer input length.
The outcomes of experiments are of high importance to academic researchers for processing
longer contexts. The findings provide different insights for processing longer inputs using trans-

formers on different NLP tasks that require long-range information usage.

Finally, there are many recommendations and directions to continue research in this direction.
It will be of consequential scientific merit to conduct a fair comparison study between all models
directed to processing long-range documents using LLMs and the same data. The field needs
this kind of study to decouple the effects of algorithms/models from other factors such as
training details, ample computational cost, and big data. In this case, it is worth investigating
applying memory in a much more creative way as we did before for the translation task, using
separate attention for each memory slot and its related chunk so we can have an initial memory
representation for the chunk and then apply attention on the related chunk, and give memory
tokens in each slot different positional encoding. This needs experiments with various design
variants and investigating the best layer or place to use the memory slots. Research in this
direction is extensive. In the future, working on metrics dedicated to measuring the model’s
predictions over long documents is an appealable direction. Studying metrics was not the crux
of the thesis at the current stage. Also, it is worth collecting long-range data for tasks that
require long-range information comprehension. This led to better-taking stock of the current

research landscape. .

29

References

10.

11.

12.

13.

Arij Al Adel and Mikhail S. Burtsev. “Memory transformer with hierarchical attention for
long document processing”. In: 2021 International Conference Engineering and Telecom-
munication (EnéT) (2021), pp. 1-7.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. “Longformer: The Long-Document
Transformer”. In: ArXiv abs/2004.05150 (2020).

Bogdan Gliwa et al. “SAMSum Corpus: A Human-annotated Dialogue Dataset for Ab-
stractive Summarization”. In: Proceedings of the 2nd Workshop on New Frontiers in Sum-
marization. Hong Kong, China: Association for Computational Linguistics, Nov. 2019,
pp. 70-79. DOIL: 10.18653/v1/D19-5409. URL: https://www.aclweb.org/anthology/
D19-54009.

Max Grusky, Mor Naaman, and Yoav Artzi. “Newsroom: A Dataset of 1.3 Million Sum-
maries with Diverse Extractive Strategies”. In: North American Chapter of the Association
for Computational Linguistics. 2018.

Mandy Guo et al. “LongT5: Efficient Text-To-Text Transformer for Long Sequences”. In:
NAACL-HLT. 2022.

Ankit Gupta and Jonathan Berant. “GMAT: Global Memory Augmentation for Trans-
formers”. In: ArXiv abs/2006.03274 (2020).

Karl Moritz Hermann et al. “Teaching Machines to Read and Comprehend”. In: Advances
in Neural Information Processing Systems (NIPS). 2015. URL: http://arxiv.org/abs/
1506.03340.

Luyang Robby Huang et al. “Efficient Attentions for Long Document Summarization”. In:
North American Chapter of the Association for Computational Linguistics. 2021.

Maor Ivgi, Uri Shaham, and Jonathan Berant. “Efficient Long-Text Understanding with
Short-Text Models”. In: ArXiv abs/2208.00748 (2022).

Huan Yee Koh et al. “An Empirical Survey on Long Document Summarization: Datasets,
Models, and Metrics”. In: ACM Computing Surveys 55 (2022), pp. 1-35.

Wojciech Kryscinski et al. “Neural Text Summarization: A Critical Evaluation”. In: Con-
ference on Empirical Methods in Natural Language Processing. 2019.

Taku Kudo and John Richardson. “Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing”. In: arXiv preprint
arXiv:1808.06226 (2018).

Pierre Lison, Jorg Tiedemann, and Milen Kouylekov. “OpenSubtitles2018: Statistical
Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora”. In: International

Conference on Language Resources and Evaluation. 2018.

https://doi.org/10.18653/v1/D19-5409
https://www.aclweb.org/anthology/D19-5409
https://www.aclweb.org/anthology/D19-5409
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340

14.

15.

16.

17.

18.

19.

20.

21.

22.

30

Yang Liu and Mirella Lapata. “Text Summarization with Pretrained Encoders”. In: ArXiv
abs/1908.08345 (2019).

Dimitris Mamakas et al. “Processing Long Legal Documents with Pre-trained Trans-
formers: Modding Legal BERT and Longformer”. In: ArXiv abs/2211.00974 (2022). URL:
https://api.semanticscholar.org/CorpusID:253254835.

Potsawee Manakul and Mark John Francis Gales. “Long-Span Summarization via Local
Attention and Content Selection”. In: Annual Meeting of the Association for Computa-
tional Linguistics. 2021.

Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. In: ArXiv abs/1910.10683 (2020).

A. See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Summarization
with Pointer-Generator Networks”. In: ArXiv abs/1704.04368 (2017).

Ashish Vaswani et al. “Attention is All you Need”. In: NIPS. 2017.

Elena Voita, Rico Sennrich, and Ivan Titov. “When a Good Translation is Wrong in
Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical
Cohesion”. In: ACL. 2019.

Sinong Wang et al. “Linformer: Self-Attention with Linear Complexity”. In: ArXiv
abs/2006.04768 (2020).

Hongfei Xu et al. “Efficient Context-Aware Neural Machine Translation with Layer-Wise
Weighting and Input-Aware Gating”. In: IJCAI 2020.

https://api.semanticscholar.org/CorpusID:253254835

