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PREFACE

In 1999, in Nauka Publishing House, our “Dictionary of graph theory
and its applications in informatics and programming” was issued, which cov-
ered main graph-related terms from monographs in Russian. It was the first
dictionary of graphs in computing and it aroused a great interest of readers.
The dictionary offered to the readers is an extended dictionary of 1999 and
it includes more than 1000 new terms from journal articles whose abstracts
were published in Abstract Journal “Mathematics” in section “Graph The-
ory”, as well as from volumes of annual conferences “Graph-Theoretic Con-
cepts in Computer Science” and book series “Graph Theory Notes of New
York”. The dictionary can be used as a usual English-Russian dictionary.
For this purpose each term is accompanied by its Russian translation. In
future the dictionary will be supplemented with the Russian-English dictio-
nary and illustrations.

ITPEANCJIOBUE

B 1999 rony B m3narennctse «Haykas» BeImen B cseT Hamr «TOJIKOBBIi
CJIOBAph 10 Teopun rpadoB U eé MPUMEHEHNN B NH(MOPMATUKE U IIPOTPaM-
MHUPOBaHUU», KOTOPBIII OXBATHIBAJ OCHOBHBIE CBs3aHHbIE C rpadamu Tep-
MUHBI U3 MOHOrpaduUil, BBIIEININX HA PYCCKOM sI3bIKE. DTO ObLI EepPBbIi
caoBapsb 1o rpadam B nHGOPMATHAKE, 1 OH BbI3BaJ OOJIBIION HHTEPEC Cpein
gnrareseil. [IpesaraeMplit unTaressiM CI0Baph HpejcTaBiser coboit pac-
mupenue cioBapsi 1999 roma m Brjrogaer B cebst 60ee 1000 HOBBIX Tep-
MWHOB U3 CTareil, pedeparbl KOTOPHIX mybsukosasiuch B P2K «Maremarn-
Kay» B pasnene «Teopus rpadoB», a TaKXkKe U3 TOMOB €XKETrOJHBIX KOH@e-
pennuit «Graph-Theoretic Concepts in Computer Science» u KHUT cepun
«Graph Theory Notes of New Yorks. CiioBapb MOXKeT OBITH HCIIOJIH30BaH
KaK OOBITHBIN AHTJIO-PYCCKUil cJI0Baph. JlJist 3TOro KaxKIblii TEpMUH COIPO-
BOXKJA€TCS PYCCKUM IIepeBOIOM. B manbHeiimem caoBapb OyeT IOMOTHEH
DPYCCKO-aHIJIMHCKUM CJIOBAPEM U WJLIIOCTPAIUSIMHU.
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A

Abdiff-tolerance competition graph — rpad koHkypeHImu ab-pasHocT-
HOU TOJIEPAHTHOCTH.
See Generalized competition graphs.
Absolute hypergraph — abcomtorusrit runeprpad.
Absolute incenter — adcoJOTHBIIT BHY TPEHHUIT IEHTD.
Absolute inner radius — abco/TIOTHBIN BHYTPEHHU PaHYC.
Absolute median — abcomorHas MearaHa.
Absolute outcenter — abCcoIOTHBIN BHEITHUI EHTP.
Absolute outer radius — abcosmorHbIit BHENTHUIT panyc.
Absolute of a rooted tree — abcomror KopHEBOTO HIEpEBA.
Absolute retract — abcomoTHBII peTpPaxT.
See Retract.
Absorbant set — BHemHe ycTOYMBOE MHOYXKECTBO, JOMUHUPYIOIIEE MHO-
2KECTBO.
Absorbent set — morsomarormee MHOXKECTBO.
See Independent set.
Abstract graph — abcrpakTubiit rpad.
Abstract computer — abcTpakTHBIN KOMIIBIOTED.
The same as Model of computation.
Abstract machine — abcTpakTHas MaIIIHA.
The same as Model of computation.
(Abstract) syntax representation — (afcTpakTHoe) CHHTAKCHIECKOE
[peJICTaBJICHIE.
Abstract syntax tree — abcrpakTHOE CHHTaAKCUYECKOE JIEPEBO.
Acceptable assignment — maceimarormnas pa3meTrka.
Access term — BbIpaXkeHue JOCTyIA.
See Large-block schema.
Achromatic number — axpoMaTu4ecKoe 4uCIIO.
The achromatic number (G) of G is the maximum number of
sets in a partition of V into independent subsets Vi, Vs, ...,V such
that
(1) each V; is an independent set of vertices, and
(2) for i # j, there exists v; € V; and v; € Vj such that v;v; € E(G).
Achromatic status — axpomarudeckuii craryc.
Let G be a connected graph with its achromatic number ¢(G) = k.
The achromatic status ) ¢(G) is the minimum value of the total
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status for a set X of k vertices each from a different set V; in the
partition of V', where minimum is taken over all possible partitions of
V that satisfy (1) and (2) from the definition of achromatic number.

Acyclic chromatic number — anukjInyeckoe XpoMaTUIECKOE YHUCJIO.

Acyclic colouring — anukymmaeckasi pacKpacka.

Acyclic dominating set — anukyimaeckoe JOMUHAPYIOIEE MHOXKECTBO.
See Tree dominating set.

Acyclic domination number — anukauteckoe JOMUHUPYIOIIEE TUCIIO.
See Tree dominating set.

Acyclic graph — anukimdeckuit rpad, 6eCKOHTYpHBI rpad.

Acyclic orientation — arukmyeckast opueHTAaIHS.
See Orientation of a graph.

a-Acyclic hypergraph — a-amukimaeckuit rpad.
See Hypercycle.

Additive hereditary graph property — ajuruBHOe HacjeyeMoe CBOi-
cTBO Tpada.
An additive hereditary graph property is a set of graphs, closed
under isomorphism and under taking subgraphs and disjoint unions.
Let Py,..., P, be additive hereditary graph properties. A graph G
has a property (P; o --- o P,) if there is a partition (V1,...,V,) of
V(G) into n sets such that, for all 4, the induced subgraph G[V;] is
in P;. A property P is reducible if there are properties Q , R such
that P = Q o R; otherwise it is irreducible.

Addressable transformation graph — anukanaeckunit rpad mpeodbpaszo-
BaHUM.
See Addressing scheme.

Addressing scheme — ajpecyrommast cxema.
An addressing scheme for a transformation graph G = (Vg, Ag) is
a total function

a:Vg — MO(Ag),

such that the following two properties hold:
(1) for some origin vertex vy € Vg voa = Idy,,
(2) for all transformations A € Ag and all vertices v € Domain(\)

(Na = (va) - A,

the lefthand side denotes functional application, and the righthand
side denotes multiplication in Mo(Ag).
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A transformation graph is addressable if it admits an addressing
scheme.

Adjacency — cMeXHOCTbD.

Adjacency list — cimcok cMmexkHOCTH.
In an adjacency list representation of a graph, each vertex has an
associated list of its adjacent vertices. Their lists can be embodied in
a table T'. In order to trace the list for v;, say, in the table, we consult
T'(i,2) which points to T'(T'(4,2), 1), where the first vertex adjacent to
v; is recorded. Then T(T(4,2),2) points to T(T(T'(¢,2),2),1), where
the second vertex adjacent to v; is recorded, and so on. The list for
v; terminates, when a zero pointer is found. Notice the convention of
numerically ordering the vertices adjacent to v; within v;’s adjacency
list; this is relevant to understanding some later examples of applying
algorithms. Clearly, T has (n + |E|) rows for a directed graph and
(n + 2|E|) for an undirected graph. In some circumstances it is
additionally useful to use doubly linked lists for undirected graphs;
we might also link the two occurrences of an edge (u,v), the first in
u’s adjacency list and the second in v’s.

Adjacency matrix — MaTpuria CMeKHOCTH.
The adjacency matrix A(G) of a graph G = (V, E) and an ordering
(v1,...,v,) of V is the (0, 1)-matrix (a;;) defined by

1, if (vi,vj) € E
ij = 0, otherwise

Adjacency matrices are very handy when dealing with path problems
in graphs. Nodes 4, j are connected by a path (chain) of length k& if
and only if A¥(i,j) = 1.
Another its name is Neighborhood matrix.
The augmented adjacency matrix is formed by setting all values
a;; in the adjacency matrix to 1.

Adjacency operator — oneparop CMeXKHOCTH.
A directed infinite graph G is a pair of the set V' of the countable
vertices and the set E of the arrows (arcs) u < v. Let H be a Hilbert
space (2(G) on V with a canonical basis {e,| v € V}. Since every
arrow u < v € F induces a dyad e, ® e,, where (z ® y)z = (z,y)z
for z,y, 2z € H, the adjacency operator A(G) is expressed by

A(G) = Z ey ® ey

U—v
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if G has a bounded degree.
Adjacency operators are classified as follows:
e A is self-adjoint if A = A*.
e A is unitary if A*A = AA* =1.
e Ais normal if A*A = AA*.
e Ais hyponormal (resp. co-hyponormal) if A*A > AA* (resp.
AA* > A*A).
e A is projection if A = A* = A2
e A is partial isometry if A*A and AA*.
e A is isometry (resp. co-isometry) if A*A = I (resp. AA* =
I).
e A is nilpotent if there exists a number n such that A" =0
e A is idempotent if A = A2.
e A is positive if (Az|z) > 0 for z € H.
Here G* is the adjoint graph for a graph G.
Adjacency property — cBOifCTBO CMEXKHOCTH.
See Convez bipartite graph.
Adjacent arcs — cmexHbIe JIyru.
An arc (u,v) is adjacent to an arc (w,z) if v = w, and (u,v) is
adjacent from an arc (z,y) if y = u.
Adjacent edges — cmesxnble pedpa.
Two different edges which have a common vertex are called adjacent
edges.
Adjacent faces — cmexkHbIE rpaHu.
Adjacent forest graph — cmexnbiit rpad jecos.
Let G be a connected graph. Given 1 < w < |V(G)|—1, the adjacent
forest graph of G, denoted by F%(G), is defined as a spanning
subgraph of a forest graph F,(G); its two vertices are adjacent if
and only if the only two edges in the symmetric difference of their
corresponding forests are adjacent in G.
See Forest graph.
Adjacent vertices — cMexKHBIE BEPITHHDI.
1. Two different vertices that incident with the same edge are called
adjacent vertices.
2. In a digraph G = (V, A), a vertex u is adjacent to v if (u,v) €
A(G), and u is adjacent from w if (w,u) € A(G).
3. On adjacent vertices in a hypergraph, see Partial edge.
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H-adjacent graphs — H-cmexxubie rpadbl.
Let G1 and G5 be two graphs of the same order and same size such
that V(G1) = V(G2), and let H be a connected graph of order 3 at
least.
Two subgraphs H; and Hs of G; and G5, respectively, are H-adja-
cent if Hy =2 Hy = H and H; and H, share some but not all edges,
that is, E(Hy, N E(Hy) # (0 and E(Hs) — E(H,) # (0. The graphs Gy
and G5 are themselves H-adjacent if Gy and G5 contain H-adjacent
subgraphs H; and Ha, respectively, such that E(Hs) — E(H;) C
E(G,) and Gy = G| — E(H,) + E(H>).
See also H -distance.

Adjoint digraph — comnpsizkennbrit oprpad.
The adjoint digraph is defined as a graph, that is, the one whose
arcs are exactly the converses for those of G. The adjacency operator
A(G*) of G* is the adjoint operator A(G)*. Though G* is called the
converse digraph of G among graph theorists, the term adjoint is
often used in this sense.
The coadjoint graphs are graphs G and G* satisfying G = G*.

Admissible sequence — gomycruMasi moc/€/10BaTEIHHOCTD,
Let G = (V, E) be a simple undirected graph of order n. Let 7 —

(n1,...,ng) denote a sequence of positive integers such that ny +
...+ ng = n. Such a sequence will be called admissible for G. If
7 = (n1,...,nk) is an admissible sequence for G and there exists

a partition (V1,..., Vi) of the vertex set V such that for each i €
{1,...,k}, |Vi] = n; and the subgraph induced by V; is connected,
then 7 is called realizable in G and the sequence (V,..., V%) is said
to be G-realization of T or a realization of 7 in G. A graph G is
arbitrarily vertex decomposable if for each admissible sequence
7 for G there exists a G-realization of 7.

Advancing arcs — onepexarorasi jiyra.
The same as Forward arcs.

Alive Petri net — xxuBas cers [leTpu.
A Petri net N is called alive iff whenever m is a reachable marking
for V and ¢ is a transition of N, it is possible for N to reach, starting
from m, a marking in which ¢ is enabled.

Algebraic connectivity — ajrebpanyeckasi CBsI3HOCTb.
See Laplacian matrix.
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Algebraic graph theory — anrebpandeckasi Teopust rpadoB.
Algebraic graph theory can be considered as a branch of the graph
theory, where eigenvalues and eigenvectors of certain matrices associ-
ated with graphs are employed to deduce some of their properties. In
fact, eigenvalues are closely related to almost all major invariants of
a graph, linking one extremal property to another. These eigenvalues
play a central role in our fundamental understanding of graphs. Many
interesting books on the algebraic graph theory can be found, such
as Biggs (1993), Cvetkovic et al. (1980), Seidel (1989), and Chung
(1997).
One of the major contributions to the algebraic graph theory is due to
Fiedler, where the properties of the second eigenvalue and eigenvector
of the Laplacian of a graph have been introduced. This eigenvector,
known as the Fiedler vector, is used in graph partitioning and nodal
ordering.

Algorithm — asropurm.
An algorithm is a specific set of instructions for carrying out a
procedure or solving a problem, usually with the requirement that
the procedure terminates at some point. Specific algorithms are some-
times called a method, a procedure, or a technique. The word "algo-
rithm” is a distortion of al-Khwarizmi, a Persian mathematician who
wrote an influential treatise about algebraic methods. The process
of applying an algorithm to an input to obtain an output is called a
computation.
Clearly, each Turing machine constitutes an algorithm in the intuitive
sense. The statement that a Turing machine is a general-enough
mathematical model for the intuitive notion of an algorithm is usually
referred to as Church’s thesis.

Almost cubic graph — nourn xybudeckuit rpad.
See Cubic graph.

Almost 3-regular — nouru 3-peryJisipubiii rpad.
See Cubic graph.

Alphabet — andasur.
This is a finite nonempty set of elements called letters or symbols.

Alt — agpT, anbTepHATUBHBIN (PparMeHT, 3aKPBITHIN (DParMeHT.
An alt is a fragment with a single initial node.
Let A be a set of alts of a ¢f-graph G that contains Hy, and Hy. H;
is immediately embedded in H, with respect to A if H; C Hy
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and there is no alt H3 € A such that Hy C H3 C Hy. H; is called
an internal alt with respect to A if there is no alt in A immediately
embedded in H, and an external alt with respect to A if there is no
alt in A, into which H is immediately embedded.

A set of nontrivial alts A is called a nested set of alts (or hierarchy
of embedded alts) of the cf-graph G if G € A and, for any pair
of alts from A, either their intersection is empty or one of them is
embedded in the other.

A sequence of cf-graphs Gy, Gy, ...,G, is called a representation of
the cf-graph G in the form of a nested set of alts A (A-representation
of the cf-graph G) if Gy = G, G, is a trivial graph and for any
1> 0, G, is a factor cf-graph B;(G), where B; is the set of all external
alts with respect to U{4; : j € [1,4]} and A; is the set of all internal
alts with respect to A\ (U{Ax : k € [1,1))}.

Alternating chain — ajprepHupyIOIIast Melb, YepeIyIoIasics Ielb.

Given a chain P = vy, vy, ..., v, P is alternating with respect to a
matching M if each edge in P that does not belong to M is followed
in P by an edge that belongs to M, and vice versa. If P is alternating,
the index k is odd, and vy, vy & V(M), then P is augmenting with
respect to M. A well known result due to Berge states that M is
maximum if and only if M does not admit any augmenting chains.

Amalgam — amajbrama.

Given two plane trees 77 and 75, with the same number of leaves
and without degree 2 vertices, and a bijection ¢ between their leaf
sets which preserves their order on the plane. The amalgam A =
A(Ty, Ty, @) is the union of the corresponding Halin graphs H(T})
and H(T5) in which the leaf vertices v and ¢(v) are identified.

Amalgamation of a graph — amanbramanus rpada.

Amalgamating a graph H can be thought of as taking H, partitioning
its vertices, then, for each element of the partition, squashing together
the vertices to form a single vertex in the amalgamated graph G. Any
edges incident with original vertices in H are then incident with the
corresponding new vertex in GG, and any edge joining two vertices
that are squashed together in H becomes a loop on the new vertex
in G. The number of vertices squashed together to form a new vertex
w is the amalgamation number n(w) of w. The resulting graph
is the amalgamation of the original. Formally, this is represented
by a graph homomorphism f : V(G) — V(H); so for example if
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w € V(H), then n(w) = [{~(w)].
Amallamorphic graphs — amammamopdubie rpadbl.
Let M be a multigraph. Let G(M) denote a graph obtained from M
by replacing every multiple edge by a simple edge. Two multigraphs
M; and Ms are amallamorphic if G(M;) is isomorphic to G(My).
Amount of a flow — Besmmunna nmoroxka.
See Flow.
Anarboricity of a graph — neapesecmocts rpada.
Ancestor of a vertex — npesiok BepIITHHBL.
See Directed tree.
Animal — xuBorHOe.
Annihilator — amaUrHISTOD.
See Irredundant set.
Antichain — anTunens.
Given a poset P = (X, <p), an antichain of P is a subset of X
consisted of pairwise incomparable elements.
Anticlique — anTuk/ImKA.
The same as Independent set (of vertices).
Antidependence — aHTU3aBUCUMOCTb.
See Data dependence.
Antidirected Hamiltonian cycle — anTunanpaBieHHbBIi TaMUILTOHOBBII
UKL
See Antidirected path.
Antidirected Hamiltonian path — anTunamnpaseHHbIi TAMIILTOHOBDIH

IIyTh.
See Antidirected path.

Antidirected path — anTnOopreHTUPOBAHHBI! Ty Th.
An antidirected path in a digraph is a simple path, every two
adjacent arcs of which have opposite orientations, i.e. no two con-
secutive arcs of the path form a directed path. An antidirected
Hamiltonian path in a digraph is a simple antidirected path
containing all the vertices. Similarly, an antidirected Hamiltonian
cycle is defined.

Anti-gem — aHTHIpParoNeHHOCTD.
See Gem.

Antihole — anTuanipa.
See Hole.
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Antimagic graph — anrumarmgeckuit rpad.
An antimagic graph is a graph whose edges can be labeled with
integers 1,2, ..., e so that the sum of the labels at any given vertex
is different from the sum of the labels of any other vertex, that is,
no two vertices have the same sum. Hartsfield and Ringel conjecture
that every tree other than K5 is antimagic and, more strongly, that
every connected graph other than K5 is antimagic.
A special case is an (a,d)-antimagic graph. The weight w(z) of a
vertex © € V(G) under an edge labeling f : F — {1,2,...,e} is the
sum of values f(xy) assigned to all edges incident with a given vertex
z. A connected graph G = (V, E) is said to be (a,d)-antimagic if
there exist positive integers a,d and a bijection f : E — {1,2,... e}
such that the induced mapping g : V(G) — W is also bijection,
where W = {w(z);z € V(G)} = {a,a+d,a+2d,...,a+ (v—1)D}
is the set of the weights of vertices.

Antiparallel arcs — arTunapaJiesabHbIe TyTU.
Given a directed graph G, antiparallel arcs are arcs (v,w) and
(w,v), such that v # w.

Antiprism — anTunpusma.
The antiprism A,,, n > 3, is the plane regular graph of degree 4 (an
Archimedean convex polytope). In particular, As is the octahedron.
The k-antiprism is the 4-regular plane graph consisting of two k-
gons and 2k triangles such that every vertex is incident with three
triangles and one k-gon.

Antisymmetric graph — arTucuvmmerpuynsiit rpad.
If D is an orientaion of underlying graph UG(D), then D is also called
an antisymmetric digraph.

Antisymmetric relation — arTucuMMeTpudHOE OTHOIIEHUE.
See Binary relation.

a-Approximable problem — a-anmnpokcumupyemasi 3aja4a.

Apex graph — BepmunHbIi rpad.
An apex graph is a graph G that has a vertex v € V(G) such that
G\ {v} is planar.

Approximate point spectrum —  anmpoOKCUMUPYIOMWI  TOYCTHDIN
CHEKTP.
See Spectrum.

Approximation algorithm — annpokcumupyromuit ajaropuTm.
For the travelling salesman problem, as indeed for any other intract-
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able problem, it is useful to have a polynomial time algorithm which
will produce, within known bounds, an approximation to the required
result. Such algorithms are called approximation algorithms. Let
L Dbe the value obtained (for example, this may be the length of a
travelling salesman’s circuit) by an approximation algorithm and let
Ly be an exact value. We require a performance guarantee for the
approximation algorithm which could, for a minimisation problem,
be stated in the form:
1 S L/L() S Q.

For a maximisation problem we invert the ratio L/Lg. Of course, we
would like « to be as close to one as possible.

Unfortunately, not every heuristic produces a useful approximation
algorithm.

Arbitrarily hamiltonian graph — npousBosbHO TaMUIBTOHOB Tpad.
Arbitrarily traceable graph — npousBoJibHO BbIYepUYNBaeMblil rpad.
Arbitrarily traverseable graph — mpousBosibHO TpOXOIUMBIT Tpad.
Arbitrarily vertex decomposable graph — npou3BosbHO BepITUHHO

Pa3IOKUMBIH Tpad.

A graph G of order n is said to be arbitrarily vertex decompos-
able, if for each sequence (nq,...,ny) of positive integers such that
ny + ...+ ng = n there exists a partition (Vi,..., Vi) of the vertex
set of G such that, for each i € {1,...,k}, V; induces a connected
subgraph of G on n; vertices.

See also Admissible sequence.

Arboreal hypergraph — apepecusblii runeprpad.

See Hypertree.

Arborescence — OpreHTHPOBAHHOE JIEPEBO.

This is a digraph G with a specified vertex a called a root such that
each point x # a has indegree 1 and there is a unique (a, z)-path for
each point x. Arborescence can be obtained by specifying a vertex
a of a tree and then orienting each edge e such that the unique path
connecting a to e ends at the tail of e. An inverse arborescence is
a digraph obtained from an arborescence by inverting its edges.

Arboricity of a graph — apesecrocts rpada.
Arc — nyra.

See Directed graph.

F-Arc — F-nyra.

See Numbering of cf-graph.
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Arc base — 6aza ayr.

Arc-forwarding index — mpsiMmoayToBOI MHIEKC.
See Routing.

Arithmetic graph — apudmernuckuit rpad.
Let m be a power of a prime p, then the arithmetic graph G,, is
defined to be a graph whose vertex set is the set of all divisors of m
(excluding 1) and two distinct vertices a and b are adjacent if and
only if ged(a,b) = p’, where i =1 (mod 2).

(k,d)-Arithmetic graph — (k, d)-apudmernuackuit rpad.
See Weakly (k, d)-arithmetic graph.

(k,d)-Arithmetic numbering — (k, d)-apudmernueckas mymepanus.
See Weakly (k, d)-arithmetic graph.

Argument — apryment (omeparopa).
See Large-block schema.

Arrangeable alt — apamkupyemblii aJbT.
An alt is called arrangeable if its arrangement exists and non-
arrangeable otherwise.

Arrangeable graph — apamxxupyembrit rpad.
A cf-graph is called arrangeable if its arrangement exists and non-
arrangeable otherwise.
Every arc of an arrangeable graph G is either forward or backward
arc. An arc of G is called a backward arc if it is an F-inverse arc
for an arrangement of G and a forward arc if it is an F'-direct arc
for an arrangement of G.
A depth of an arrangeable graph G is defined as the depth of an
arrangement of G.

Arrangement — apaH>XKUPOBKA.
A numbering F of an alt C is called an arrangement if every simple
path in C from its initial node is F'-path.

Articulation point — Touka counenenus rpada, pasIeIsonas BepIInHA,
ApPHUD.
A vertex v € V is an articulation point of a graph G = (V, E) if
G(V \ {v}) is disconnected. A graph G is 2-connected if G has no
articulation points. The maximal 2-connected subgraphs of G are
the blocks of G.
Other names are Cutpoint, Cutting vertex, Cutvertex.

Articulation set — mHOXKecTBO codieHEHUsI.
Given a hypergraph & = (V,{F1,...,E,}), aset A C V is an
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articulation set for £ if A = E; N Es for some pair of hyperedges
Ey,Ey € £ and [V \ A] has more connected components than €.

m-Ary tree — m-apHoe JiepeBO, CUIILHO BETBSIIEECs JIEPEBO.

Assignment problem — 3aja4ya 0 Ha3HaYEHUSIX.

Associated Cayley digraph — coornecénnsiit oprpad Kam.
Let I" be a group and S be a generating set of I' such that
(1) e ¢ S, e is the identity in T,
(2)seSestes.
The associated Cayley digraph Cay(T,S) is a digraph whose
vertices are the elements of T' and arcs are the couples (z,sz) for
zel and s € S.
With this definition, Cay(T, S) is a connected symmetric digraph (in
fact, a strongly connected digraph).

Associated undirected graph — cooTHeceHHBIII HEOPUEHTUPOBAHHBIM
rpad.

Associative search — acconuaTuBHBIN TONCK.

Asteroidal set — acrepouniaabHOE MHOXKECTBO.
See Asteroidal number.

Asteroidal number — acrepouabHOe IUCTO.
A set of vertices A C V of a graph G = (V, E) is an asteroidal set
if for each a € A the set A — a is contained in one component of
G — NJa]. The asteroidal number of a graph G, denoted by an(G),
is the maximum cardinality of the asteroidal set in G.
Graphs with asteroidal number at most two are commonly known as
AT-free graphs. The class of AT-free graphs contains well-known
graph classes such as interval, permutation and cocomparability
graphs.

Asteroidal triple — acrepoumanbuas Tpoiika.
Three pairwise nonadjacent vertices u,v,w of G are an asteroidal
triple of G if for any two of them there is a path connecting the two
vertices which avoids the neighborhood of the remaining vertex.

Asymmetric graph — acummerpuunstit rpad.

Asymmetric relation — acummerpudHoe oTHOIIEHHE.

Atomic formula — aromapuas dpopmyia.
See Logic for expressing graph properties.

Attachment graph — coenunsitomuii rpad.

Attribute grammar — arpubyTHas rpaMMaTHKA.

L-Attribute grammar — L-aTpubyTHas rpaMMaTHKA.
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Attribute tree — arpubyrHoe aepeso.

Augmented adjacency matrix — pacimupentass MaTpPUIa CMEKHOCTH.
See Adjacency matriz.

Augmenting chain — ysenuuuBarorasi 1emb.
See Alternating chain.

Automata theory — Teopuss aBToMaToB.
In theoretical computer science, automata theory is the study
of abstract machines and problems which they are able to solve.
Automata theory is closely related to formal language theory as
the automata are often classified by the class of formal languages
they are able to recognize.

Automorphism — asromopdusm (op)rpada.
1. For an undirected graph, see Isomorphic graphs.
2. For a directed graph, automorphism is a permutation « of V(G)
such that the number of (z,y)-edges is the same as the number of
(a(x), a(y))-edges (z,y € V(G)). We also speak of the automor-
phism of a graph G with colored edges. This means a permutation
a such that the number of (z,y)-edges is the same as the number of
(a(z), ay))-edges with any given color.
The set of all automorphisms of a (di)graph forms a permutation
group A(G).

Automorphism group — rpynmna aBroMopdu3MoB.
See Isomorphic graphs.

Automorphism problem — mpobiema aBTomMopdusma.
See Isomorphic graphs.

Average connectivity — cpemHsisi CBSI3BHOCTb.
See Connectivity.

Average independent domination number — cpennee unciao HezaBuU-
CUMOTO JIOMUHUPOBAHUSI.
See Dominating set.

Average domination number — cpejHee UnCI0 JOMUHUPOBAHUSI.
See Dominating set.

AVL-tree — ABJI-nepeso.
A binary search tree is an AV L-tree, if for each internal node u with
children v and vo,

|height(vy) — height(ve)| < 1.

See Heightbalanced tree.
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B

Backbone — xpeber.

The backbone § of a caterpillar C is a (possibly trivial) path that
remains after a pruning of C.

Backbone coloring — xpebroBasi packpacka.

Consider a graph G = (V,E) with a spanning tree T = (V, Er)
(backbone). A vertex coloring f : V — {1,2,...} is proper, if | f(u) —
f(v)] > 1 holds for all edges (u,v) € E. A vertex coloring is a
backbone coloring for (G,T), if it is proper and, additionally,
|f(u) — f(v)| > 2 holds for all edges (u,v) € Er in the spanning
tree T'.

The backbone coloring number BBC(G,T) of (G,T) is the smal-
lest integer ¢ for which a backbone coloring f : V. — {1,2,...,¢}
exists.

Backbone coloring number — 4ucyio Xxpe6TOBOI pacKpacKu.

See Backbone coloring.

Back-edge — obparnas myra.

See Depth-first search. 2.

Backward arc — obparHasi jayra, Jiyra HasaJ.

1. See Basic numberings.
2. See Numbering of a cf-graph.
3. See Arrangeable graph.

Balance of a vertex — 6ajamnc BepIuHbI.
Balanced circuit — cbanancupoBaHHBIN UK.

A balanced circuit in a hypergraph is a circuit (z1, E1, ..., Tk, Fx)
such that either k& = 2 or there is an incidence z; € E;, where

j#i,i—1and (4,5) # (1,k).

Balanced digraph — c6anancupoBannbiit oprpad.

1. A digraph is balanced, if for every vertex v, deg™(v) = deg™ (v).
2. A directed graph is called balanced if each of its cycles contains
equal numbers of forward and backward arcs.

3. A directed graph G is balanced if there exists a homomorphism
of G to a monotone path.

Balanced graph — cbamancupoBanubiit rpad.

See Density.

w-Balanced graph — w-cbaiancupoBanubiii rpad.

See w-density.
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Balanced hypergraph — cbamancupoBanubiii rumneprpad.
A hypergraph is a balanced hypergraph if every circuit of odd
length is balanced. A hypergraph is a totally balanced hypergraph
if every circuit is balanced.

Balanced signed graph — cbasiancupoBaHHBI{l 3HAKOBBIN rpad.
See Signed labeled graph.

Ball number — maposoe 1ucio (rpada).
By a family of solid balls in R?, we mean a family of balls no two of
which penetrate each other. A chain is a finite sequence of solid balls
b1,b2,...,b, in which each consecutive pair of balls is tangent. The
two balls by, b,, are called the end balls of the chain.
Let a1, a2 be two solid balls. If an end of a chain is tangent to aq,
and the other end of the chain is tangent to ao, then the chain is
said to connect aj,as. Let G = (V,E) be a finite graph. Take a
family of red solid balls a;, i € V. Connect each non-tangent pair
a;,a; (ij € E) by a chain of blue solid balls so that no two distinct
chains share a blue ball. Then we have a family F consisting of solid
balls a;, i € V, and the solid balls making the chains. This family
is called a representation of G. The ball number b(G) of G is the
minimum number of balls necessary to make a representation of G.
For example, b(Kg) = 8, b(K7) = 13.

Bandwidth — mmpuna nosocsr.
Let G = (V, E) be a simple graph and let f be a numbering of vertices
of G.

B(G, f) = max |[f(u) = f(v)]
(u,v)EE

is called the bandwidth of the numbering f.
The bandwidth of G, denoted B(G), is defined to be the minimum
bandwidth of numberings of G.
The bandwidth problem for graphs has attracted many graph theorists
for its strong practical background and theoretical interest. The deci-
sion problem for finding the bandwidths of arbitrary graphs is NP-
complete, even for trees having the maximum degree 3, caterpillars
with hairs of length at most 3 and cobipartite graphs. The problem
is polynomially solvable for caterpillars with hairs of length 1 and 2,
cographs, and interval graphs.
See also Layout, Graceful graph.
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Bandwidth sum — mmpokomnosocuas cymma.

The bandwidth sum of a graph G, denoted by Bs(G), is defined
by
By(G)=min Y [f(u) = f(v)],

weEE(G)

where minimum is is taken for all proper labelings of G.

Bar-visibility graph — mosoco-Bunumsrit rpad.

See Visibility graph.

Base digraph — 6azosbrit oprpad.
Base of a directed graph — 6a3a oprpada, ocHoBanue oprpada.
Base of a matroid — 6a3a maTpousa.

See Matroid.

1-Base — 1-6a3a.
Based graph — 6asupyewmsrit rpad.

Basic

Basic
Basic

Basic

block — nuHeiHbI yIACTOK, JIyH.

1. A basic block is a sequence of consecutive statements (of a
program) such that control flow enters the sequence at the beginning
and leaves the sequence at the end without halt or possibility of
branching except for the end.

2. A simple path P = (p1,p2,...,P.), r > 1, in a control flow graph
is called a basic block (or ray) if p;_; is a single predecessor of p;
and p; is a single successor of p; 11 for all 2 > 1 and j <.

cycle — OazucHbI UKII, DYHIAMEHTAJBHBIA ITUKJI.

cycle set — Ga3mcHOE MHOXKECTBO IUKJIOB, MHOYXKECTBO (DyHIaMEH-
TaJIbHBIX IUKJIOB.

numberings — 6a3ucHbIe HYMEPaIIH.

Let G be a cf-graph with the initial node py. Basic numberings M
and N of G are defined as follows.

A numbering F of a cf-graph G is called a direct numbering (or an
M-numbering) of G if the following three properties hold:

(1) F(po) = 1;

(2) for any node p distinct from pg there is a predecessor ¢ of p such
that F'(q) < F(p);

(3) for any two nodes g and p, if (¢, p) is an F-direct arc and F[F(q)+
1, F(p) — 1] contains no predecessors of p, then F(r) < F(p) for any
successor 1 of any node from F[F(q) + 1, F(p) — 1].

A numbering F of G is called an inverse numbering (or an N-num-
bering) correlated with a direct numbering M of G if for any two
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nodes g and p of G, F(¢) < F(p) if and only if either p is M -reachable
from ¢ or M(p) < M(q) and ¢ is not M-reachable from p.
Any cf-graph G has at least one pair of correlated basic numberings,
but the same inverse numbering of G can be correlated with different
direct numberings of G.
The set of all arcs (p, ¢) of G is divided with respect to its correlated
basic numberings M and N into the four subclasses: tree arcs T,
forward arcs F', backward arcs B and cross arcs C defined as
follows:
(1) (p,q) € T iff (p,q) is M-direct arc and there is no M-direct arc
(s,q) such that M(p) < M(s);
(2) (p,q) € F iff (p,q) is M-direct arc and (p,q) € T
(3) (p,q) € Biff M(q) < M(p) and N(q) < N(p);
(4) (p,q) € C iff M(q) < M(p) and N(p) < N(q).
A graph (X, T,pg) were X is the set of vertices of G is a spanning
tree of G with root pyg.
Every pair of correlated basic numberings can be computed in linear
time by the procedure DFS(po) (See Depth-first search).

Basis number — 6a3ucHoe uncio.
A basis B for cycle space C(G) is called a d-fold if each edge of G
occurs in at most d of the cycles in the basis B. The basis number
b(G) of G is the least non-negative integer d such that C(G) has a
d-fold basis.

Berge’s complete graph — nosmbrit rpad Bepxka.

Berge graph — rpad Bepxka.
1. See Hole.
2. A graph for which Berge’s conjecture is fulfilled is called a Berge
graph; clearly, each Berge graph is perfect.

Berge’s conjecture — rumoresa Bepxka.
In 1960, C.Berge conjectured that a graph is perfect iff none of its
induced subgraphs is a Capy1 or the complement of such a cycle,
k> 2.
This conjecture is well-known as the Strong Perfect Graph Conjecture
and is still open.

Berge’s Formula — dopmyna Bepxka.
Let G be a graph and let o(G) be the number of odd components of
G.
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Berge’s Formula for estimating the deficiency of the graph:

def(G) = srcnx?f{c){o(G \S) — 5]}

Biblock — 6ubsok.

Bicenter — ourmentp.

Bicenter tree — ourenTpasibHOE JIEPEBO.

Bicentre — GunenTp.

Bicentroid of a tree — 6unenrpouns gepesa.

Bichordal bipartite graph — 6uxopaaJbHbIil 1ByI0IbHBIT Tpad.
A bipartite graph G is defined as bichordal, if any cycle C,,, n > 4,
of G has at least two chords.

Bichromatic graph — 6uxpomaruyeckuii rpad.

Bichromatic hypergraph — 6uxpomaruueckuii runeprpad.

Biclique — Oukiuka.
1. In a bipartite graph G = (V,W, E), a subset A C VU W is called
a biclique if it induces a complete bipartite graph.
2. Given a graph, this is an inclusion-maximal induced complete
bipartite subgraph of a graph.

Biclique edge cover — 6UKINKOBOE MTOKPBLITHE pebep.
Given a bipartite graph B = (U UV, E), a biclique edge cover for
B is a covering of the edge set E by bicliques.

Biclique edge covering number — uncjio GUKJIUKOBOIO MOKPBITUS Pe-
oep.
The biclique edge covering number of a bipartire graph B, 3*(B),
is defined as the minimum number of bicliques required to cover the
edges of B.

Biclique number — 6ukInKOBOE YUCIIO.
The biclique number w*(B) of a bipartite graph B is defined as
the cardinality of the maximum cross-free matching in B.

Bicoloured subgraph — nyusersbiit mogarpad.

Bicomponent — 6ukommonenTa.
The same as Strongly connected component.

Biconnected component — KoMIoHeHTa JBYCBA3HOCTH, OJIOK.
A biconnected component of a graph G is a maximal set of edges
such that any two edges in the set lie on a common cycle. A block
is a bridge(2) or a biconnected component of G.
See also Articulation point, 2-Connected graph, Block.
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Biconvex bipartite graph — OuBbiykJIBIil ABY10/IBHBIN Tpad.
See Convez bipartite graph.

Bicritical graph — 6ukpuruteckuit rpad.
A finite, undirected, connected and simple graph G is said to be
bicritical if G —u—wv has a perfect matching for each pair of vertices
u and v in G such that u # v.
Bicritical graphs play a central role in the decomposition theory of
graphs in terms of their maximum matchings.

Bicubic graph — 6ukybudeckunit rpad.
bicubic graph is a bipartite cubic graph.

Bidirectional arcs — 6unanpasiennble Jyru.
That is a pair of arcs (z,y), (y,z). If a directed graph D has no
bidirectional arcs, then D is called an orientation of underlying graph
UG(D).

Bifurcant — 6udypxka#nr.

Bigraph — 6urpad, aBymosbabIil rpad.
The same as Bipartite graph.

Bi-Helly family — 6u-Xennu cemeiicTso.
A hypergraph H is called a bi-Helly family if it satisfies the following
property: if any two edges of a subhypergraph H’ C H share at least
two vertices, then

N H

HecalH'

> 2.

Bihypergraph — ouruneprpad.
Let H and H! be hypergraphs with the same vertex set V. An
ordered pair H = (HY, H') is called a bihypergraph with the set
of 0-edges E(H") and the set of 1-edges F(H'). Every hyperedge of
either HY or H' is considered as a hyperedge of H. The order of H
is n(H) = |V|. The rank of H is r(H) = max{r(H),r(H")}.
A bihypergraph H = (H%, H') is called bipartite if there exists an
ordered partition VOUV?! = V(H) (bipartition) such that the set V*
is stable in H*, i =0, 1.

Binary Hamming graph — 6unapubrit rpad XsMmmunra.

Binary de Bruijn graph — 6unapnbiii rpad e Bpéitaa.
See De Bruijn graph.

Binary n-dimensional cube — aBowdHbIil n-MepHBIH KyO.

Binary matroid — 6unapmbrit maTpon.
See Matrixz matroid.
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Binary relation — 6unaproe oTHomeHme.
R is a binary relation on V if R C V xV. R is reflexive on V if for
allv € V (v,v) € R and irreflexive otherwise. R is transitive on V,
if for all u,v,w € V (u,v) € R and (v,w) € R implies (u,w) € R. R
is symmetric, if (v, w) € R implies (w,v) € R, and antisymmetric
on V, if for all u,v € V (u,v) € R and (v,u) € R implies u = v.
The inverse of a relation R, denoted by R~!, is obtained by reversing
each of the pairs belonging to R, so that aR™'b iff bRa. Let RV
denote the union and R’ the intersection of a collection of relations
{Ry : k€C}in S, where C is some nonempty index set. Then aRYb
iff aRyb for some k in C, and aR'b iff aRyb for each k in C.
See also Equivalence relation, Partial order.

Binary search tree — 6unapnoe mepeBo moncka.
Binary search trees (BT) are a special class of GBST (generalized
binary split trees) with equal key and split values in all nodes.
Note that the BST’s and BT’s do not contain each other. The inter-
section of BT’s and BST’s is the set of frequency-ordered binary
search trees (FOBT’s).

Binary sorting tree — 6unapHoe 1epeBO COPTUPOBKU.

Binary split tree — 6unapHoe pacimernisiemMmoe J1epeBo.
Binary split trees (BST’s) are a data structure for storing static
records with skewed frequency distribution. Each node of the tree
contains two values, one of them being the key (records stored in this
node are associated with this value), the other being a split value.
The split value is used as a guide for further search in the tree if the
key value is not equal to the search value. The reason to store two
values is to "decouple” the conflicting functions of frequency ordering
and subtree construction.
By separating the split value from the key value, we are allowed to
store whatever key we want in the root without putting constraints
on the structure of the subtree. The most reasonable choice of the
root is by selecting the most frequent key in the tree.
Binary split trees are also a special class of GBST’s (generalized
binary split trees) with the constraint of decreasing frequency.
Note that the BST’s and BT’s do not contain each other.

Binary tree — GunapHoe jiepeso.
An n-node binary tree is defined to be a rooted tree where each
of the n nodes has zero, one or two descendants, and a distinction is
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made between the left and right subtrees.

One class of operation which may be performed on binary trees is
that of traversing the whole tree: each node in the tree is “visited”,
or “processed”, exactly once in some predefined order. The three
most natural traversal orders are known as preorder, inorder and
postorder (Knuth, 1975). Preorder and postorder traversals are also
commonly called depth-first and bottom-up traversals, respectively,
though these latter terms are normally used in connection with more
general types of trees.

Binary vertex — 6unapnas BepIinHa.

See Unary node.

k-Binding number — k-cBsa3bIBatoiee 9ucio.

The k-binding number of G is defined to be

(X))
bind*(G) = mi |
ot = i (g

where
F(@)={X: 0# X CV(G) and TH(X) # V(G)}.

Let k > 2. The following two properties are obvious.

1. Let G be a graph with n vertices. If diam(G) < k — 1, then
bind*(G) =n — 1.

2. If a graph G has at least one isolated vertex, then bind*(G) = 0.

Binode — Gusepmmuma.

See T-Numbering.

Binomial tree — bunomuanbpHOE HEpEBO.

There are several equivalent definitions of a binomial tree. One
recursive definition is to define the tree By as a single vertex, and
then the rooted tree B;;1 is obtained by taking one copy of each of
By through B;, adding a root, and making the old roots the children
of the new root. In particular, the tree B; has 2' vertices.

An equivalent definition is based on the corona of a graph. Recall
that the corona of a graph is obtained by adding a new leaf adjacent
to each existing vertex. Then B;;1 is the corona of B;.

Bipanpositionable graph — 6unannpomnosunupyemsriit rpad.

A bipartite hamiltonian graph G is bipanpropositionable if for
any two different vertices x and y of G and for any integer k& with
da(z,y) <k < |V(G)|/2 and (k — Dg(z,y)) is even, there exists a
hamiltonian cycle C of G such that d — C(z,y) = k.
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Bipartite bihypergraph — aBymonbubrit 6urnmneprpad.
See Bihypergraph.

Bipartite density — aByqosbHasT JIOTHOCTD.
Let G = (V, E) be a simple graph. Let H be any bipartite subgraph
of G with the maximum number of edges. Then (¢(G) = |E(G)))

_e(H)

is called the bipartite density of G. The problem of determining
the bipartite density of a graph is NP-complete problem, even if G is
cubic and triangle-free.

Bipartite graph — nBynosbabIl rpad.
A bipartite graph is a graph whose vertex set can be partitioned
into two nonempty subsets V' and W such that every edge of G joins
V and W.

Bipartite matroid — aBy1O/IBHBIN MaTPOW/I.

Bipartite permutation graph — aByjoibHBIN T'pad MEPECTAHOBOK.
A class of bipartite permutation graphs is the intersection of two
well studied subclasses of perfect graphs, namely bipartite and permu-
tation graphs. The other name is bipartite tolerance graphs.

Bipartite tolerance graph — aBymosbHbII I'pad TEpeCTAHOBOK.
See Bipartite permutation graph.

Bipyramid — 6unupamu;a.
The plane dual graph D}, of a prism D, is the graph of a bipyramid.
See also Quasibipyramid.

Bisection width of a graph — mmpuna 6ucexiun rpada.
The bisection width bw(G) of a graph G is the minimal number of
edges between vertex sets A and A of almost equal sizes, i.e. AUA =
V(G) and ||A] — |A|| < 1. If A C V(G), then E(A, A) denotes the set
of edges of G having one end in A and another end in V(G)\ A = A.
The isoperimetric number i(G) of a graph G equals the minimum
of the ratio |[E(A, A|/|A] for all A C V(G) such that 2|A| < [V(G)| =
n.
From the definitions, we have the following inequality for these charac-
teristics:

i(@Q) < 2bw(@).

n
Bisimplicial edge — 6ucummuimaasuoe pedpo.
An edge e = (x,y) of a bipartite graph H is called a bisimplicial
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edge if N(z) U N(y) (N(z) is the neighborhood of z) induces a
complete bipartite subgraph of H.

Bistochastic matrix — 6ucroxacTudeckass MaTpHUIIA.

Block — 6i0k.
See Articulation point.

Block duplicate graph — 6souno yaBoenusiit rpad.
A block duplicate graph (BD-graph) is a graph obtained by
adding zero or more true twins to each vertex of a block graph (or
equivalently to each cut-vertex, since adding a true twin to a non-cut
vertex preserves the property of being a block graph).

Block graph — 6siokoBsrit rpad.
A graph G is a block graph if G is connected and every maximal 2-
connected subgraph (i.e., a block) is complete (i.e., a clique). Another
name is completed Husimi tree.

Block of a graph — 610k rpada, KOMIIOHEHTa JIBYCBSI3HOCTH.
For a graph G, the maximal 2-connected subgraph of G. Another
name is Biconnected component.
See also Leaf, Endblock.

Block-cutvertex tree, block-cutpoint graph — nepeso (rpad) 6a0koB
U TOYEK COYJIEHEHUS.
The block-cutvertex tree of a connected graph G has a B-node
for each block (biconnected component) of G, and a C-node for each
cutvertex of G. There is an edge between a C-node u and a B-node
b if and only if u belongs to the corresponding block of b in G. The
block-cutvertex tree can be constructed in linear time.

Bondy—Chvaital closure operation — onepanust 3ambikanust Bongu-XBa-
TaJa.
Given a graph of order n, repeat the following operation as long as
possible. For each pair of nonadjacent vertices a and b, if d(a)+d(b) >
n, then add the edge ab to G. We denote by cl(G) the resulting graph
and call it the Bondy—Chvétal closure of G.
The other name is Hamiltonian closure.

Boundary NCE graph grammar — rpanumdnas rpadgoBasg IpaMMaTHKa
tuna NCE.
An NCE graph grammar is boundary (B-NCE) if the axiom and the
right hand-side of each production do not contain adjacent nontermi-
nal nodes.

Boundary of a face — rpanuna rpann.
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Boundary of a 2-mesh — rpanumna 2-ceTku.
See n-Mesh.

Boundary operator — rpaHuvHbIi omIepaTop.

Boundary node of a fragment — rpanuunas BepiiuHa GpparMeHTa.
See Fragment.

Bounded reachability matrix — maTpuia orpaHHYEeHHBIX JTOCTHXKIMO-
cTe.

Bounded Petri net — orpannyiennas cers Ilerpm.
A Petri net is bounded if its set of reachable markings is finite.
The boundedness problem for Petri nets is decidable, but it is a
PSPACE-hard problem.

k-Bounded Petri net — k-orpannuennas cerb I[lerpm.
Let N be a Petri net with initial marking mg. N is called k-bounded
if the number of tokens in each place doesn’t exceed k for any marking
reachable from myg.

Bounded reaching matrix — mMaTpura orpaHuIeHHBIX KOHTPAJIOCTUKU-
MOCTeM.

Bounded tolerance graph — orpanndenubiii ToJepaHTHBINA Tpad.
See Tolerance graph.

Boundedness problem — mpobJiema orpaHuYeHHOCTH.
See Bounded Petri net.

Branch of a tree relative to a vertex v — Bersb K BeprmHE V.
See Centroid.

Branch-weight centroid number — wucso meaTponia co B3BEIIeHHBIMA
pébpamu.
See Centroid.

Breadth first search — nouck B mupuny.
Given the adjacency lists A(v) for each vertex v of a connected graph
(directed or undirected), the following algorithm conducts a breadth
first search. On completion of the search, each vertex has acquired a
breadth first index (BFI) indicating the order in which the vertex
was visited. The vertex u is visited first and BFI(u) = 0.

Bridge — mocr.
1. A bridge of a cycle C' is the shortest path in C' joining noncon-
secutive vertices of C' which is shorter than both of the edges of C'
joining those vertices. Thus a chord is a bridge of length 1, and a
graph is bridged iff every cycle of length at least 4 has a bridge.
2. A bridge of G is an edge whose removal disconnects G.
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Bridged graph — rpad ¢ moctammu.
A graph G is a bridged graph if each cycle C of length at least 4
contains two vertices whose distance from each other in G is strictly
less than that in C. A graph is called bridged if every cycle of length
at least 4 has a bridge. Observe that in a bridged graph every cycle of
length 4 or 5 has a chord. Bridged graphs are in general not perfect,
as the wheel Wy shows.

Bridgeless graph — rpad 6e3 MocToB.
The same as 2-Connected graph.

Broadcast digraph — oprpad mmupokosemanusi.
See Broadcast graph.

Broadcast graph — rpad mupokoBemamnms.
Let us first consider the full-duplex model (See Broadcasting problem.)
Let G be a graph modeling an interconnection network. We will
denote by b(v) the broadcast time of v, that is the time to achieve
broadcasting from a vertex v of G in the network. Moreover, b(G),
the broadcast time of G, is defined as follows:

b(G) = max{b(v)| v € V(G)}.

If we consider a complete graph of order n, K,, it is not difficult to
see that b(K,,) = [logy(n)]. Any graph G such that b(G) = b(K,,) =
[logy(n)] is called a broadcast graph. We call a minimum broad-
cast graph of order n any broadcast graph G having the minimum
number of edges. This number is denoted by B(n).

Similarly, a broadcast digraph is defined, using the half-duplex
model.

Broadcasting problem — mpobiema mupoKoBeIaHusI.

The broadcasting problem is the problem of information dissemi-
nation described in a group of individuals connected by a communica-
tion network. In broadcasting, one node knows a piece of information
and needs to transmit it to everyone else. This is achieved by placing
communication calls over the communication lines of the network.
It is assumed that a node can communicate with at most one of its
neighbors at any given time, and communication between two nodes
takes one unit of time. This model implies that we will deal with
connected graphs without loops and multiple edges to model the
communication network. Note also that, depending on their cases,
we will either consider a half-duplex or a full-duplex model. In the
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letter, when communication takes place along a communication line,
the information flows in both directions, while in the former only
one direction is allowed. Hence, in the half-duplex model, we will
deal with directed graphs, while we will consider undirected graphs
in the full-duplex model.
See also Gossiping problem.

Brooks graph — rpad Bpyxkca.
A Brooks graph is a connected graph that is neither a complete
graph nor an odd cycle.
Brooks’ Theorem. The chromatic number of a Brooks graph does
not exceed its maximum degree.

Brother of a vertex — 6par BepIuHbL.
A brother of a vertex v, denoted [(v), is a vertex in an oriented
tree having the same father as v has.

Brother tree — 6parckoe aepeso, HB-nepeso.
A brother tree is a rooted oriented tree each of whose internal nodes
has either one or two sons. Each unary node must have a binary
brother. All external nodes are at the same depth. The number of
internal binary nodes of a brother tree is called its size. Note that
the number of external nodes of a brother tree is always by 1 greater
than its size.
Another name is HB-Tree.

1-2 Brother tree — 1-2-6patckoe mepeso.

2-3 Brother tree — 2-3-6parckoe nepeso.
A 2-3 brother tree is a 2-3 tree satisfying an additional brother
property: except for the sons of a binary root, each binary node has a
ternary brother. Obviously, the class of 2-3 brother trees is properly
contained in the class of 2-3 trees.

“Brute force” method — meros “rpy6oit cuibr’, repedbop.
See Exhaustive search.

Bull — 6wik.
A bull is a (self complementary) graph with 5 vertices a, b, ¢, d, e and
5 edges (a,b), (b, c), (¢,d), (b, e), (c,e).

k-Bunch — k-mydoxk.

k-Bunch isomorphic graph — k-nmyukoBo mzomopdmbie rpadml.

(L,Y)-Bunch — (L,Y)-cBsska.

Butterfly graph — rpad-6abouka.
Let n be a positive integer. The n-level butterfly graph B(n) is a
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digraph whose vertices comprise the set V;, = Z,, x Z%. The subset
Vi ={q} x Z% of V,, (0 < q < n) comprises the ¢ level of B(n).

The arcs of B(n) form directed butterflies (or, copies of the directed
complete bipartite graph K3 o) between consecutive levels of vertices,
with wraparound in the sense that level 0 is identified with level n.
Each butterfly connects each vertex (g, 5o - - - Bg—108q+1 - - Bn—1)
on level q of B(n) (¢ € Z,,; o and each f; in Z3) to both vertices

<q +1 (mOd 'fl), 6061 e ﬂq—l’}/ﬂq—i-l te ﬁn—1>

onlevel ¢+ 1 (mod n) of B(n), for v =0,1.
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C

Cactus — KakTyc, 1IepeBo XyCUMU.
A graph G is a cactus if every its edge is a part of at most one cycle
in G. Cactus graphs are outerplanar since they cannot contain K, or
K 3 as a minor. Cactus graphs have treewidth < 2.

Cage number — (k, g)-xkierka.
See (k, g)-Cage.

(k,g)-Cage — (k, g)-kieTKa.
For a given ordered pair of integers (k,g), with k > 2 and g > 3, a
k-regular graph with the smallest cycle length, or girth, equal to g is
said to be a (k, g)-graph. A (k, g)-cage is a (k, g)-graph having the
least number, f(k,g), of vertices. We call f(k, g) the cage number
of a (k, g)-graph. One readily observes that (2, g)-cages are cycles of
length ¢, and (k, 3)-cages are complete graphs of order k + 1.
The unique (3,7)-cage known as the McGee graph is an example of
a cage that is not transitive. It has 24 vertices and its automorphism
group has order 32.

Call graph — rpad [Bbr30Ba| IPONEYD.

Capacity of an arc — npomnyckHasi ciocoOGHOCTB JIyTH.
See Flow.

Capacity of a cut-set — mpomycknasi crtoco6HOCTH pa3pesa.
The capacity of a cut-set (P, P’) is defined to be the sum of the
capacities of those edges incident from vertices in P and incident to
vertices in P’.

Cardinal product — kapauHaJbHOE IPOU3BEICHUE, MPIMOE IIPOU3BEIEC-
HUE.
The same as Direct product.

Cardinality constrained circuit problem — mpobiema 1mmkmIa ¢ orpa-
HU4YeHHOIT MOITHOCTHIO.
See Weighted girth problem.

Cartesian product of graphs — nekaproso npoussejenue rpados.
SeeProduct of two graphs.

Cartesian sum of graphs — nekaproBa cymma rpados.

k-Case term — BoIpaxkenue k-BbIOOpA.
See Large-block schema.

Categorical product of graphs — kareropuiinoe npoussejenue rpados.
See Product of two graphs.
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Caterpillar — rycenura.
1. A tree such that the removal of all pendant vertices or leaves
(vertices with exactly one neighbor) yields a path is a caterpillar.
2. A caterpillar is a graph derived from a path by hanging any
number of pendant vertices from vertices of the path.
3. A caterpillar C is a tree of order n > 3 whose pruned tree is a
(possibly trivial) path.

Caterpillar-pure graph — rycennano-uncTtsoiit rpad.
A connected graph G is caterpillar-pure if each spanning tree of G
is a caterpillar.

Case term — mepekJrouaTesb, CJIOBO BbIOODA.
See Large-block schema.

Cayley graph — rpad Kaum.
1. Let Z, = {0,1,...,n—1} be an additive abelian group of integers
modulo n, and H be a subset of Z,, with 0 ¢ H. Then the Cayley
graph Cyz, g is an undirected graph with V(Cz, n) = Z,, and
E(Cz,u) = {(z,x+y) : = € Z,,y € H and the addition is
taken modulo n}. The adjacency matriz of Cz_ g is n X n symmetric
circulant with entries 0 and 1.
2. Let T be a finite group and S be a symmetric generator set of I,
ie. (S) =T, s€ S =s1teSand Ir ¢ S. The Cayley graph
Gg(T) is defined as an undirected graph with its vertex set V =T
and edge set E = {(g,h)| g~'h € S}.

Center — 1enTtp.
See Center vertex.

Center of gravity of a graph — 1eaTp TsikecTu rpada.

Center vertex — meHTpaJibHasi BEPIIHHA.
A vertex v in a connected graph G is called a center (central)
vertex if e(v) = rad(G). A subgraph induced by central vertices
of G is called the center C(G) of G. It was proved that the center
of every graph H is contained in a block (a maximal 2-connected
subgraph) of H.

p-Center — p-1ieHTp.
A p-center of G = (V,E) is a set C C V that realizes the p-radius
of G.
The p-center problem is one of the main problems in facility location
theory. For general graphs, the problem of finding p-centers is NP-
hard. Polynomial algorithms for the p-center problem are known



CioBapb 1o rpadam B nadopmaruke 37

only for trees and almost-trees. The best known algorithms have
time complexity O(|V]) for unweighted trees and O(|V|-log? |V]) for
weighted trees.

Central distance — nenTpajibHOE paccTOsIHUE.
The central distance c(v) of v is the largest nonnegative integer n
such that whenever d(v,z) < n the vertex x is in the center of G.

Central fringe — menrpasbaas 06/1acTb.
Some central vertices of G are barely in C'(G), in the sense that they
are adjacent to the vertices that are not central. The subgraph of
C(G) induced by those vertices with central distance 0 is called the
central fringe of G and is denoted by CF(G).

Central vertex — menTpasibHasi BEPIIHHA.
See Center vertex.

Centroid — nenTpou,.
A branch of a tree T at a vertex v is a maximal subtree T, of T, in
which the degree of v is unity. Therefore, the number of branches at
v is deg(v). The branch-weight centroid number of a vertex v in
a tree T', denoted by bw(v) is the the maximum size of any branch at
v. A vertex v of a tree T' is a centroid vertex of T' if v has minimum
branch-weight centroid number. The centroid of T consists of its set
of centroid vertices. Jordan (1869) has proved the following theorem.
Theorem. The centroid of a tree consists of either a single vertex or
a pair of adjacent vertices.
See also Slater number.

Centroid sequence — 1eHTPOUHAS IOCJIEOBATEBHOCTb.
Let T be a nontrivial tree; that is, a tree of order n > 2. A centroid

sequence A = {aj,as,...,a,} of T is a sequence of the weights of
the vertices of T, arranged in a non-increasing order (a; > ag > ... >
ap).

Centroid vertex — meHTpoun iHas BepIINHA.
See Centroid.
Centroidal vertex — nenTpounHasi BepIImHa.
The same as Centroid vertex.
Chain — memnb, nemovka.
1. Given a poset P = (X, <p), a chain of P is a subset of X consisted
of pairwise comparable elements.
2. See Martynyuk schemata.
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Chain graph — memnnoit rpad.
A bipartite graph G = (P,Q, F) is called a chain graph if there is
an ordering 7 of the vertices in P, 7 : {1,...,|P|} — P, such that

N(m(1)) € N(m(2)) € --- € N(x(|P])).

Here N (v) is a neighborhood of v. It is known that G is a chain graph
iff it does not contain an independent pair of edges (an induced 2K5).

0-Chain of a graph — 0-tienis rpada.

1-Chain of a graph — 1l-tiens rpadea.

Characteristic number of a graph — xapakrepucrtudeckoe 4mcsio rpa-
da.

Characteristic polynomial of a graph — =xapakrepucTudyeckuii moJm-
HoM rpada.
Given a graph G, the polynomial pg(\) = det(Al — Ag), where Ag
is the adjacency matriz of G. This clearly does not depend on the
labeling of vertices. The roots of the characteristic polynomial, i.e.
the eigenvalues of Ag, are called the eigenvalues of the graph G.
The spectrum of G is the set of solutions to p(A\) = 0 denoted by
Sp = {1, A2, ..., A} with Ay > Ao > ..., \,. The first eigenvalue
A1 is called the index or spectral radius.

Characteristic polynomial of Laplacian — xapakrepucruueckwuit mosm-
HOM JIAIIJIACHAHA.
The characteristic polynomial of Laplacian L(G) is u(G,z) =
det(zI — L(G)).

Chinese postman’s problem — 3amada KuTaiicKoro modrajaboHa.
Let G = (V,E) be a connected undirected graph. A non-negative
cost (or length) is associated with each edge of G. The Chinese
postman’s problem consists in determining a least-cost traversal
of G.

Choice number — crnucoyHoe XpoMaTHIECKOE TUCIO0, YHUCJIO BHIOOPA.
The same as List chromatic number.

Chomsky hierarchy — uepapxus Xomckoro.
When Noam Chomsky first formalized grammars in 1956, he classified
them into types now known as the Chomsky hierarchy. The difference
between these types is that they have increasingly strict production
rules and can express fewer formal languages. The Chomsky hierar-
chy consists of the following four types of grammars and languages.
(0) Type-0 grammars (or unrestricted grammars) include all
formal grammars. They generate exactly all languages that can be
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recognized by Turing machine. These languages are also known as
the recursively enumerable languages.
(1) Type-1 grammars (context-sensitive grammars, or CS-
grammars) generate the context-sensitive languages (or CS-
languages). These grammars have rules of the form aAf — avf,
where A is a nonterminal and «, 3,7 are strings of terminals and
nonterminals. The strings a and § may be empty, but v must be
nonempty. The rule S — e is allowed if S does not appear in the right-
hand side of any rule. The languages described by these grammars
are exactly all languages that can be recognized by linear bounded
automata.
(2) Type-2 grammars (context-free grammars or CF-gram-
mars) generate the context-free languages (or CF-languages).
These grammars contain rules of the form A — «, where A is a
nonterminal and « is a string of terminals and nonterminals. These
languages are exactly all languages that can be recognized by non-
deterministic pushdown automata. Context-free languages are the
theoretical basis for the syntax of most programming languages.
(3) Type-3 grammars (regular grammars) generate the regular
languages. Such a grammar restricts its rules to a single nonterminal
in the left-hand side and a right-hand side consisting of a single
terminal, possibly followed (or preceded, but not both in the same
grammar) by a single nonterminal. The rule S — e is also allowed
here if S does not appear in the right-hand side of any rule. These are
exactly all languages that can be recognized by finite state automa-
ta. Additionally, this family of formal languages can be obtained by
reqular expressions. Regular languages are commonly used to define
the search patterns and lexical structure of programming languages.
Chomsky normal form — nopmanbaas ¢popma XOMCKOTO.
Choosability — crucodnoe xpoMarndeckoe 9rcjio, BHIOUPAEMOCTb.
The same as List chromatic number.
k-Choosable graph — k-Beibupaemsrit rpad.
1. A graph G is k-choosable if its list chromatic number satisfies
the inequality x,(G) < k.
2. A graph G is k-choosable if, whenever each vertex v is given a
"list” (set) L(v) of k colours, G has a proper colouring in which each
vertex receives a colour from its own list.
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m~Choosable graph with impropriety d — m-Bsibupaemsbrii rpad ¢ He-
KOPPEKTHOCTBIO d.
See L-Coloring with impropriety d.

Chord — xopza.
1. (For a subgraph G; of G) An edge e € E(G) — E(G1) connecting
two vertices of (G; is called a chord.
2. (For a hypergraph) A chord of a hypercycle C is an edge e with
€iNeit1 (mod k) C e for at least three indices i, 1 <i < k.

Chordal graph — xopmasbHbIit rpad.
A graph that does not contain chordless cycles of length greater than
three is called a chordal graph. This is equivalent to saying that the
graph does not contain an induced subgraph isomorphic to C,, (i.e.,
a cycle of length n) for n > 3.
There are many ways to characterize chordal graphs. Although many
of these characterizations are interesting and useful, it suffices to list
only some of them. One of the most important tools is the concept
of a perfect elimination scheme. The other way to define a chordal
graph is to consider it as an intersection graph of a family of subtrees
of a tree.
An important subclass of chordal graphs is the interval graphs.
Other names of a chordal graph are Triangulated graph, Rigid
circuit graph, Perfect elimination graph, Monotone transi-
tive graph.

Chordal bipartite graph — xopganabubIil ABYTOIbHBII Tpad.
A graph G is a chordal bipartite graph if G is bipartite and any
induced cycle in G is of length 4. Note that a chordal bipartite
graph is not a chordal graph.

1-Chordal graph — 1-xopgambHbrit rpad.
A chordal graph is called 1-chordal graph if the maximum number
of vertices common to two distinct cliques is 1.

c-Chordal graph — c-xoppasbablii rpad.
A graph is c-chordal graph if every induced cycle in it is of length
at most c. Triangulated graphs are precisely 3-chordal graphs.

k-Chorded bigraph — k-xopmoBbiit AByTOIBHBII Tpad.
A bigraph is called k-chorded if each of its non-quad cycle has at
least k chords (so, for example, a 4-chorded bigraph has no 6-cycles,
induced or not, and an co-chorded bigraph has no non-quad cycles,
induced or not).
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Chordless cycle — muka 6e3 xop,.

A cycle such that two vertices of a cycle in G are adjacent if and only
if the incident edge is also in the cycle. A c.c. with three vertices is
called a triangle and a chordless cycle with four vertices is called
a square.

Chromatic decomposition of a graph — xpomarudeckoe pazioxkenue
rpada.

Chromatic distance — xpomaTudeckoe pacCTOsSHIE.

See Colored distance.

Chromatic function — xpomarudeckasi GyHKIMS, XPOMATHIECKIH TTOJIH-
HOM.

The same as Chromatic polynomial.

Chromatic index — xpoMaTndecKuii HHIEKC, XPOMATHIECKHUI KJIACC.
This is the least integer k for which the edges of G can be colored
so that adjacent edges have different colores. We denote it by ¢(G).
Clearly, q(G) = x(L(G)). Here L(G) is the line graph of G.

Chromatic number — xpomaTuieckoe 9ucio.

This is the minimal number of colors (denoted by x(G)) for which
there exists a vertexr coloring of a graph G.

Chromatic polynomial — xpomaruyeckuii mojauaoM rpada.

A chromatic polynomial Pg(\) of a graph G is the number of good
A-colorings of G (A =0,1,...). This is a polynomial in A (for a fixed
G) and so, its definition can be extended to all real (or complex)
values of A. Note that two A-colorings differing in the labeling of
colors are considered as different.

Chromatic status — xpomaruyaeckuii craryc.

See Status of a verter.

k-Chromatic graph — k-xpomarudeckunit rpad.

A graph for which the chromatic number is equal to k is called k-
chromatic.

k-Chromatic hypergraph — k-xpomarudeckuii rureprpad.

n-Chromatic number — n-xpomarudueckoe 9ucJo.

Chromatically equivalent graphs — xpomarniecku SKBUBaJIEHTHBIE TP~
oI

Chromatically unique graph — xpomarndeckn eMHCTBEHHBIN Tpad.

Church’s thesis — tesuc Yepua.

See Algorithm.
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Circuit — nux.
1. The same as Cycle.
2. Given a graph G, a circuit is a walk (z1,e1,..., 2k, €, Tr4+1) such
that x1,...,x, are distinct vertices, eq, ..., e, are distinct edges and
21 = xpy1. If the graph is simple, we will denote it by (z1,...,zk).
3. Given a hypergraph, a circuit is a sequence (z1, F1, ..., 2k, Ex),
where x1,...,x) are distinct vertices, F1, ..., E} are distinct edges
andz; € By, i=1,...,k,x;1 € By, i=1,...,k—1, and 2, € Ey.
Here k is the length of this circuit.

Circuit closed graph — opueHTHpPOBAHHO-IIMKJ/IMYECKU 3aMKHYThI rpad,
NUKJITIECKU 3aMKHYTHIH rpad.

Circuit edge connected vertices — nur/ImIecKu-pedEPHO CBI3AHHBIE
BEPIIIHBI.

Circuit isomorfic graph — nukyimuecku nzomop@ubie rpadmi.

Circuit of matroid — mukJ marpona.
See Matroid.

Circuit rank — mukjgoMaTraecKkuii panr, MUKJIOMATHIECCKOE TUCTIO.

Circuitless graph — rpad 6e3 muk0B, JIec.

Circulant graph — nupxynsurabIit rpad.
1. Let p be a positive integer and S be a subset of {1,2,...,p — 1},
such that ¢ € S implies p —i € S. A circulant graph G(p,S) has
vertices 0,1,...,p — 1 and two vertices ¢ and j are adjacent if and
only if ¢ — j € S, where subtraction is carried out modulo p. The
adjacency matrix of a circulant graph is a symmetric circulant.
2. (A circulant graph G(n,d)). The circulant graph G(n,d) with
d > 2 is defined as follows. The vertex set is V = {0,1,2,...,n—1},
and the edge set is F = {(u,v)|3,0 < i < [logy(n)] — 1, such that
u+d =v (modn)}.
3. (A circulant graph G(cd™,d)). The circulant graph G(cd™,d)
has cd™ vertices (0 < ¢ < d). V. = {0,...,cd™ — 1} is the set of
vertices, and E = {(v,w),v,w € V/3i,0 < i < [log, cd™]|—1,v+d =
w  (mod c¢d™)}. An edge between v and w = v + d* will have the
label d'. It is easy to see that G(cd™,d) is a Cauley graph defined on
an abelian group.

Circular-arc graph — rpad ayr okpy:kHOCTH.
A circular-arc graph is the intersection graph of a family of arcs
on a circle; that is, for each vertex v; there is a (closed) arc a; of the
circle such that v; and v; are adjacent if and only if a; N a; # 0.
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Circular chromatic number — 1uk/0BO€ XpOMATHIECKOE UUCJIO.
See Clircular coloring of a graph.

Circular clique number — 1uK/I0BO€ KJIUKOBOE HUUCJIO.
The circular clique number of a graph G, denoted by w.(G), is
defined as the maximum quotient k/d such that the graph G% (k >
2d) admits a homomorphism to G.
The graph G’fl is defined as follows:
V(Gs) = {'Uo,'Ul, ey Uk,1}7
E(GY) = {v;,v; : d < |j —i| <k — d mod k}.

r-Circular colorable graph — r-mupkyJ/isipabIii packpalnuBaemblii rpad.
See Circular coloring of a graph.

Circular coloring of a graph — nuksioBas packpacka rpada.
An r-circular coloring of a graph (r is a real number, r > 2) is
a mapping ¢ : V(G) — [0,7) such that 1 < |¢(u) — p(v)| < r —1,
whenever uv € E(G). A graph G is called r-circular colorable if
it admits an r-circular coloring. The circular chromatic number
of G, denoted by x.(G), is the smallest value for r such that G is
r-circular colorable.
The concept of a circular coloring was first introduced in 1988 by
Vince who first called it a star coloring, and it was given the current
name by Zhu.

Circular perfect graph — muk0Boit coBepinennbit rpad.
A graph G is called circular perfect if w.(H) = x.(H) for each
induced subgraph H of G, where w,. is the circular clique number
and x. is the circular chromatic number.
The concept of a circular perfect graph was introduced by Zhu in
2004.

Circumference of a graph — oxpyxkenne rpada, OKpy>KHOCTB Tpada.
The length of a longest cycle of G (denoted ¢(G)).

Circumstance — okpyxenue (rpada).

Circumstance problem — npobJiema OKpy2KeHUs.

P and NP Classes — knaccer P u NP.
See Complexity theory.

Classification of Binary Trees — kiaccudukarms OMHaAPHBIX IePEBHEB.
The following classes of binary trees are considered:
BT — Binary Search Trees;
BST — Binary Split Trees;
FOBT — Frequency-Ordered Binary Search Trees;
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GBST — Generalized Binary Split Trees;
MST — Median Split Trees;
OBST — Optimal Binary Split Trees;
OBT — Optimal Binary Search Trees;
OGBST — Optimal Generalized Binary Split Trees.
Claw — kJemntHsi.
A claw is a four-vertex star K 3.
Claw-free graph — rpad 6e3 kiernrueit.
A graph G is a claw-free graph if it contains no induced subgraph
isomorphic to K 3.
Clique — xuka.
This is a subgraph G[W] induced by W C V(@) such that every
pair of vertices is adjacent. The clique size of a clique G[W] is the
number of vertices of W. The maximum clique size of a clique in G,
w(G), is called the clique number of G. The clique number Q(G, w)
of a weighted graph is defined as the minimum weight of a clique in
G.
Clique cover — KJIMKOBOE OKPBITHE.
Let F be a family of cliques. By a clique cover we mean a spanning
subgraph of G, each component of which is a member of F. With each
element « of F we associate an indeterminate (or weight) w,, and
with each cover C' of G we assosiate the weight w(C) = [[,cc Wa-
Clique cover number, clique-covering number — 4Yunc/I0 KJIUKOBOTO
MTOKPBITHS.
The number k(G) which is equal to the smallest number of cliques
in the clique covering of V(G) is called clique cover number.
Clique convergent — KJIMKOBasi KOHBEPIEHITHSI.
See Clique graph.
Clique divergent — knKoBast JUBEPTEHITHSI.
See Clique graph.
Clique-good graph — kimmkoBo-xoporuii rpad. See Clique-transversal.
Clique graph — rpad xJuk.
The clique graph k(G) is the intersection graph of the set of all
cliques of G. The iterated clique graphs are defined recursively by
k%(G) = G and k"T1(G) = k(k™(G)). A graph G is said to be clique
divergent (or k-divergent) if

lim |V (k" (G)| = cc.

n—oo
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A graph G is said to be k-convergent if k" (G) = k™ (G) for some
n # m; when m = 0, we say that G is k-invariant. G is k-null
if k™(G) is trivial (one vertex) for some n (clearly, a special case
of a k-covergent graph). It is easy to see that every graph is either
k-convergent or k-divergent.

Clique-independence number — KJIMKOBO-HE3aBUCAMOE UUCJIO.
See Clique-transversal.

Clique-independent set —KJIuKOBO-HE3ABUCHMOE MHOXKECTBO.
See Clique-transversal.

Clique-transversal number — KJINKOBO-TpaHCBEPCAJILHOE YUCIIO.
See Clique-transversal.

Clique matrix — marpuma KJInK.
Let C(G) = {C1,...,Ck} be the maximal cliques of a graph G. The
clique matrix C(G) of G is a (0, 1)-matrix (¢;;) with entry

= 1,ifvi€Cj
777 0, otherwise

Clique model — kuKOBast MOJIEJIb.
See Tree model.

Clique number — KJIUKOBOE THCJIO.
See Clique.

Clique-partition — kiaukoBoe pazbuenue.
A cligue cover ® of G is a clique-partition of G if each vertex of G
belongs to exactly one element of ®.

Clique-perfect graph — kimkoBo-coBepineHHbIH rpad.
See Clique-transversal.

Clique polynomial — KJIMKOBBIil TOJIUHOM.
Let G be a finite, simple graph and let F' be a family of cliques.
By a clique cover of G we mean a spanning subgraph of G, each
component of which is a member of F'. With each element « of F' we
associate an indeterminate (or weight) w, and with each cover C of
G we associate the weight

w(C) = H Wy

aeC

The clique polynomial of G is then:

K(Gyd) = Y w(C),
C
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where the sum is taken over all the covers C of G and & is the
vector of indeterminates w,. If, for all a, we set w, = w, then
the resulting polynomial in the single variable w is called a simple
clique polynomial of G.

Denote by S(n, k) the Stirling numbers of the second kind. Then

K(Ky;w) = Z S,,L,kwk.
k=0

Clique problem — npobsiema KmKHT.
Clique separator — KJIMKOBBIH cemapaTop.

In a connected graph G, S C V is called a clique separator if S is
a separator and (S) is a clique.

Clique size — pa3mep KJIUKH.

See Clique.

Clique-transversal — kjnkoBasi TpaHCBEpPCAJIb.

A clique-transversal of a graph G is a subset of vertices that
meets all the cliques. A clique-independent set is a collection of
pairwise vertex disjoint cliques. The clique-transversal number
and clique-independence number of G, denoted by 7.(G) and
a.(G), are the sizes of a minimum clique-transversal and a maximum
clique-independent set of G, respectively.

It is easy to see that 7.(G) > a.(G) for any graph G. A graph G is
clique-perfect if 7.(H) = a.(H) for every induced subgraph H of
G. If this equality holds for the graph G, we say that G is clique-
good.

Clique tree — KIMKOBOE JIEPEBO.

Suppose G is any graph and T is a tree whose vertices — call them
nodes to help avoid confusing them with the vertices of G — are
precisely the mazcliques of G. For every v € V(G), let T, denote a
subgraph of 7" induced by those nodes that contain v. If every such
T, is connected — in other words, if every T, is a subtree of T —
then call T' a clique tree for G.

Clique-width — kjuKoBast MIUPUHA.

The clique-width of a graph G, denoted cwd(G), is defined as a
minimum number of labels needed to construct G, using four graph
operations: creation of a new vertex v with a label 7 (denoted i(v)),
disjoint union of two labeled graphs G and H (denoted G @ H),
connecting vertices with specified labels i and j (denoted 7; ;) and
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renaming labels (denoted p). Every graph can be defined by an
algebraic expression using the four operations above. For instance, a
graph consisted of 2 isolated vertices  and y can be defined by an
expression 1(x)®1(y), and a graph consisted of two adjacent vertices
z and y can be defined by an expression m1 2(1(x) & 2(y)).
With any graph G and an algebraic expression 7" which defines G we
associate a tree (denoted by tree(T')) whose leaves are the vertices
of G, and the internal nodes correspond to operations @, n and p in
T. Given a node a in tree(T'), we denoted by tree(a,T) the subtree
of tree(T') rooted at a. The label of a vertex v of G at the node a
of tree(T) is defined as the label that v has immediately before the
operation a is applied.

Closed hamiltonian neighbourhood — 3zamkHyTas raMuIbTOHOBA OK-
PECTHOCTb.
See Hamiltonian neighbourhood.

Closed neighbourhood — 3amkHyTast OKPECTHOCTD.
See Neighbourhood.

Closed semiring — 3aMKHyTO€ TTOTYKOJIBIIO.

Closed walk — 3aMKHYTBIIT MapIIPYT.
A closed walk in a mixed graph is a cycle which may visit vertices,
edges and arcs multiple times.

Closure of graph — sambikanue rpada.

k-Closure of a graph — k-3ambikamue rpada.
The k-closure G (G) of a graph G is obtained from G by recursively
joining pairs of non-adjacent vertices whose degree-sum is at least k
until no such pair remains. It is known that if G,,(G) is complete,
then G contains a Hamiltonian cycle. The k-closure of a graph can
be computed in O(n?) time in the worst case.

Cluster — kmactep.
See Graph clustering problem.

Clustered graph — kiiacrepnbiii rpad.
See Hierarchical graph.

Clutter — riarrep.
See Hypergraph.

Coadjoint graphs — kocomnpsizkennbie rpadbl.
See Adjoint graph.

Coadjoint pair — comnpsizkeHHasi mapa.
A pair of operators (A, P) is a coadjoint pair if A is an adjacency
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operator A(G) for a graph G and P = 3_ v () ¢(v)®v is a permuta-
tion on V(@) satisfying

A(G)* = P*A(G)P.

Moreover, the bijection ¢ on V(G) satisfies ¢* = 1, or P? = 1. In
this case, P is called a transposition symmetry. Like this case, if a
graph G has a coadjoint pair (4, S) such that S is a transposition
symmetry, then G is called strongly coadjoint. Needless to say,
undirected graphs are all strongly coadjoint and strongly coadjoint
graphs are all coadjoint.

Coalescing of two rooted graphs — cpacranue 1ByX KOpHEBBIX IpadoOB.
A coalescing of two rooted graphs (G,u) and (H,v), denoted
G.H, is defined by Schwenk as a graph obtained by identifying the
two roots so that u = v becomes a cut-vertex of G.H.

Coarseness — KpPyIHOCTb, 36PHUCTOCTD, IIEPOXOBATOCTD.

Cobase of a matroid — kob6a3a marpousa.
See Dual matroid.

Coboundary of a graph — korpanuna rpada.

Coboundary operator — KOrpaHUYHBII OIIepaTop.

Cochromatic number — gucio KoxpomMaTuaeckoe.

Cocircuit of a graph — xoruki rpada.
See Edge cut.

Cocircuit of a matroid — korukJ Marpouna.
See Dual matroid.

Cocomparability graph — rpad xkocpaBaIMOCTH.
Graph which is the complement of a comparability graph is called a
cocomparability graph.
The class of cocomparability graphs consists of perfect graphs and
contains the property set of all cographs, permutation graphs and
interval graphs.

Cocomparability number — uncio KocpaBHUMOCTH.
The cocomparability number of a graph G, denoted ccp(G), is the
smallest integer k such that G admits a k-CCPO (a k-cocomparability
ordering). Note that ccp(G) = 1 if and only if G (the complement of
@) is a comparability graph.

Cocomparability ordering — KocpaBHIMOE yIIOpsIIOIEHHE.
A graph G has a cocomparability ordering if there exists a linear
order < on the set of its vertices such that for every choice of vertices
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u, v, w the following property holds
u<v<wA (u,w) € E= (u,v) € EV (v,w) € E.

A graph is a cocomparability graph if it admits a cocomparability
ordering.

k-Cocomparability ordering — k-kocpaBHUMOE yIOpsiJloUeHUe.
Let G = (V, E) be a graph and k a positive number. A k-cocompara-
bility ordering (or k-CCPO) of G is an ordering of its vertices such
that for every choice of vertices u, v, w we have the following:

u<v<wAdu,w) <k=du,v) <kVdv,w)<k.

A graph G is called a k-cocomparability graph if it admits a k-
CCPO.

Cocycle — koruki.
Given a graph G = (V, E) and a subset W C V of its vertices, the set
of edges in G linking a vertex of W to a vertex outside W is called a
cocycle.

Cocycle basis — 6a3uc KOIuKJIOB.

Cocyclic matrix — marpura KOIuKkJIos.

Cocycle vector — BEKTOP-KOIHKII.

Cocyclic rank of a graph — komukauwecknit panr rpada, KOIMuKIOMA-
THIECKOE THUCIIO.

Code of a tree — kop jgepesa.

t-Code (in a graph) — t-xox (B rpade).
Aset C CV(G)isat-codein G if d(u,v) > 2t+1 for any two distinct
vertices u,v € C t-codes are known as 2t-packings. In addition, C
is called a t-perfect code if for any u € V(G) there is exactly one
v € C such that d(u,v) < t; 1-perfect codes are also called efficient
dominating sets.
A set C C V(G) is a 1-perfect code if and only if the closed neig-
bourhoods of its elements form a partition of V(G).

Codependent set of a matroid — kKozaBucuMoe MHOXKECTBO MATPOUIA.

Codiameter — koguamerp.
Let u,v € V(G) be any two distinct vertices. We denote by p(u,v) the
length of the longest path connecting v and v. The codiameter of
G, denoted by d*, is defined to be min{p(u,v)| u,v € V(G)}. A graph
G of order n is said to be Hamilton-connected if d*(G) =n — 1,
i.e. every two distinct vertices are joined by a Hamiltonian path.
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Codistance — kopaccrognue (Mex 1y BepimuaaMu rpada).
Let x,y be distinct vertices of a graph GG. We define the codistance
df(z,y) between x and y to be the maximum length of an (z, y)-path
in G.
See also Codiameter.

Cograph — xorpad.
1. G is a cograph if G is the comparability graph of a series-parallel
poset. The class of cographs should not be confused with the class of
series-parallel graphs.
The following recursive definition describes also the cographs:
(1) a one-vertex graph is a cograph;.
(2) if Gy = (V1,E1) and Gy = (Va, E2) are cographs, then G =
(V1 U Vi, E7 U E») is also a cograph;
(3) if G = (V, E) is a cograph, then G = (V, E) is also a cograph;
(4) there are no other cographs.
2. A cograph is a graph without Pj.

Cographic matroid — xorpaduaeckuit MaTpouI.
See Graphic matroid.

Coindependent set of a matroid — KoHe3aBHCHMOE MHOXKECTBO MaTpO-
nIa.

Collapsible graph — pa3s6opssrii rpad, ckiaaHoil rpad
1. A cf-graph G is called a collapsible one if it can be transformed
to a trivial one upon repeated application of transformations 77 and
T5 desribed below.
Let (n,n) be an arc of G. The transformation T} is removal of this
edge.
Let no not be the initial node and have a single predecessor, n;.
The transformation 75 is the replacement of nq, ne and (n1,n2) by
a single node n. The predecessors of n; become the predecessors of
n. The successors of n; or ne become the successors of n. There is
an arc (n,n) if and only if there was formerly an edge (ng,n1) or
(n1,n1).
2. A graph H is called collapsible if for every even subset S C V(H),
there is a subgraph T of H such that H — E(T) is connected and the
set of odd degree vertices of T is S.

Color graph of a group — BerHoii rpad rpymmsi.

Color requirement of a vertex — mseroBoe TpeboBaHne K BEPIIUHE.
See Multi-coloring.
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t-Color-critical — t-nmBero-KpuTnIecKumii.
If x(G) =t and x(H) < t for every proper subgraph H of G, then G
is said to be t-color-critical.
G is t-immersion-critical if x(G) =t and x(H) < ¢t whenever H is
properly immersed in G.

Coloration — packpacka.
The same as Coloring.

Colored distance — packpaliennoe pacCcTosHUIeE.
The colored distance of a colored graph G is introduced as the sum
of distances between all unordered pairs of vertices having different
colors. The chromatic distance of G, denoted by d;nq(G), is the
minimum colored distance of a proper coloring of the vertex set.

Colored graph — packparennbrit rpad.

Colored multigraph — packparueHHbiii MyjbTHIPad.

Coloring, colouring — packpacka.
1. Let G be a graph and S be a set of colors. A coloring of G is a
mapping f : V(G) — S from the vertex set V(G) into S such that no
two adjacent vertices have the same color, i.e., f(z) # f(y) whenever
x and y are adjacent. This C. is called a proper (valid, legitimate,
good) coloring.
f is called k-coloring of G if f is a coloring of G into k colors, i.e.
k= {f(p):pe V(G)}.
It is N P-complete to decide if a given graph G admits a k-coloring
for a given k except for the cases k = 1 and k = 2. Graph coloring
remains N P-complete even on planar graphs of degree at most 4.
2. See Large-block schema.

Coloring number — uucjo packpamuBaHusi.
The coloring number of G, denoted col(G), is defined as the largest
integer k such that G has a subgraph of minimum degree k& — 1.

k-Colorable graph — k-packpamuBaembiii rpad.
This is a graph which has a good k-coloring.

k-Colorable hypergraph — k-packpammuBaemsbrit rureprpad.

k-Colorable map — k-packpammuBaemasi Kapra.

k-Colored graph — k-packpamrenusriit rpad.
Let k be an integer. A k-colored graph is a graph G = (V, E)
together with a vertex coloring which is a mapping f: V — S such
that
(1) each vertex is colored with one of the colors such that no two
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adjacent vertices have the same color (i.e., f(x) # f(y) whenever z
and y are adjacent),
(2) |S| = k and each color is used at least once (i.e., f is surjective).

k-Colored hypergraph — k-uperHoii runeprpad.

k-Coloring — k-packpacka.
See Coloring.

(k,d)-Coloring — (k, d)-packpacka.
Let k and d be positive integers such that & > 2d. A (k, d)-coloring
of a graph G = (V, E) is a mapping ¢ : V — Z;, = {0,1,...,k — 1}
such that, for each edge (u,v) € E, |c(u) — ¢(v)|r > d, where |x|; =
min{|z|, k — |x|}. This generalizes a usual notion of a k-coloring: an
ordinary k-coloring of G is just a (k, 1)-coloring.

L-Coloring with impropriety d — L-packpacka ¢ HEKOPPEKTHOCTBIO d.
A list assignment of G is a function L which assigns a list of colors
L(v) to each vertex v € V(G). An L-coloring with impropriety
d, or simply (L, d)*-coloring, is a mapping A which assigns to each
vertex v € V(G) a color A(v) from L(v) so that v has at most d
neighbours colored with A(v). For m € N, the graph is m-choosable
with impropriety d, or simply (m,d)*-choosable, if there exists
an (L, d)*-coloring for every list assignment L with |L(v)| > m for
each v € V(G). For an improper coloring of a graph G, the number
of neighbours of v € V(G) colored with the same color as itself is
called the impropriety of v and is denoted by im(v). The smallest
m for which G is (m,d)*-choosable is called the d-improper list
chromatic number of G and is denoted by x; (G, d).

Coloured class — nsernoii kJjacc.

Coloured Petri net — packpamennas (uim nusernas) cersb [lerpu.
See High-level Petri nets.

3-Combination problem — 3aja1a 0 TpexXMEpHOM COYETAHUH.

Combinatorial dual graph, combinatorically dual graph — xom06u-
HATOPHO JIBONCTBEHHBIN Tpad.
A graph G is a combinatorial dual graph to a graph G*, if there
exists a one-to-one mapping e : E(G) — E(G*) of the edge set of G
onto the edge set of G* such that C is a circuit of G if and only if
e(C) is a cocircuit of G*.

Combinatorial Laplacian — koMOuHaTOpHBIN JIallIacHaH.
Let G = (V,E) be a locally finite graph without isolated vertices.
Let L?%(G) be the space of all R-valued functions on V(G). The
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combinatorial Laplacian Ag : L*(G) — L?*(G) of G is given
by .
Acf(@) = f(a) = =5 3 W)
y~GT

for any f € L?(G), z € V(G). Here mg(x) is the degree of a vertex
x € V(G) and we write y ~¢ « if the vertices y and z are adjacent in
G. Inasmuch as G is a discrete analogue of a Riemannian manifold,
Ag is a discrete analogue of the ordinary Laplace—Beltrami operator
in Riemannian geometry. This analogy has been widely exploited
both in the development of a harmonic analysis on graphs and within
the spectral geometry of graphs.

Comet — komera.

Common ancestor — obmuii mpeaoK.
See Directed tree.

Common minimal dominating graph — o0muii MuHEMAaIBHBIIT TOME-
HUPYIOIHi rpad.
A common minimal dominating graph of G is defined as the
graph having the same vertex set as G with two vertices adjacent if
there is a minimal dominating set containing both vertices.

Common receiver — o0Iuii TpreMHUK.
See Directed graph.

Common server — o0Iuii cepsep.
See Directed graph.

Compact — KOMIIaKT.
See Separator.

Compact closed class of graphs — koMmakTHO 3aMKHYTBII KJIacc rpa-
dos.
A class C of graphs is said to be compact closed if, whenever a
graph G is such that each of its finite subgraphs is contained in a
finite induced subgraph of G which belongs to the class C, the graph
G itself belongs to C. We will say that a class C of graphs is dually
compact closed if, for every infinite G € C, each finite subgraph of
G is contained in a finite induced subgraph of G which belongs to C.

Comparability graph — rpad cpasaumocTn.
Let G = (V, E) be an undirected graph and let F' be an orientation
of its edges (i.e. (V, F') is the resulting oriented graph). F' is called a
transitive orientation of G if the following properties hold:

FNF'=0and F+ F'=FE and F2CF,
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where F? = {(a,¢)| Jpev(a,b) € F A (b,c) € F}.

A graph G which admits a transitive orientation of its edges is
called a comparability graph.

If graph G is a comparability graph, then this also holds for every
induced subgraph of G.

The other name is a Transitively orientable graph.

Comparable vertices — cpaBHUMbBIE BEPITUHBI.
Competition graph (of a tournament) — rpad kKoukypeHuu.

Let O(z) be the set of vertices that a beats. Given a tournament
T with a vertex set V(T), the competition graph of T, denoted
C(T), is the graph on V(T') with an edge between vertices = and y
if and only if O(z) N O(y) # 0. It is known that the complement of
the competition graph is the domination graph.

For an arbitrary acyclic digraph D, the competition graph of D
has the same set of vertices as D and an edge between vertices u and
v if and only if there is a vertex x in D such that (u,x) and (v, z)
are arcs of D. The competition number of a graph G, denoted by
k(G), is the smallest number k such that G with k isolated vertices
is a competition graph of an acyclic digraph.

The competition-common enemy graph of D has the same set
of vertices as D and an edge between vertices u and v if and only if
there are vertices w and z in D such that (w,u), (w,v), (u,z) and
(v,x) are arcs in D. The double competition number of a graph
G, denoted by dk(G), is the smallest number k such that G with &k
isolated vertices is a competition-common enemy graph of an acyclic
digraph. It is known that dk(G) < k(G) + 1 for any graph G.

Competition number — unc/i0 KOHKypeHIUN.

See Competition graph.

p-Competition graph — rpad p-kKonkypenun.

See Generalized competition graphs.

Competition-common enemy graph — rpad KUBOTHBIX ¢ 00IIEll KOH-

KypeHIIeit.
See Competition graph.

Compilation problem — mpob6iema KOMIHIAIIIN.
Complement of a graph, complementary graph — jonoJsiHeHne rpa-

da.
The complementary graph G = (V, E) of a graph G = (V, E) is
defined by F = {(x,y) : x,y € V and © # y and (x,y) & E}.
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Given a simple digraph G, the simple digraph G is defined by

V(G) =V (G),
E(G) = V(G) x V(G) — E(G).

Complement-reducible graph — mgonosxauTensro cBOgUMBI rpad.
Complement-reducible graph can be characterized as a graph
with no induced paths of length three.

Complete bipartite graph — nosHbIil 1By10/IbHBI Tpad.

A bipartite graph G = (X,Y, E), denoted K,, ,, in which every
vertex of X is adjacent to every vertex of Y. Here m = |X| and
n = |Y|. The treewidth of complete bipartite graph is min(m,n).

Complete coloring — mosnas packpacka.

Complete directed graph — nosnbiit oprpad.

Complete graph — mosssrit rpad.

A graph for which every pair of distinct vertices defines an edge is
called a complete graph. The complete graph with n vertices is
denoted by K.

Complete homomorphism of order n — 1oJiHBI TOpsiKa 72 TOMOMOP-
dusm.

Complete multipartite graph — mosabIl MHOTOIOIBHBIN TPad.

By complete multipartite graph we mean any graph whose comp-
lement is a disjoint union of at least three complete graphs.

Complete k-partite graph — nosisblii k-10/1bHBINH Tpad.

Complete product — moaHoe npousseseHue.

The complete product G; VG, of graphs G; and G5 is the graph
obtained from the union of graphs G; U G2 by joining every vertex
of G1 with every vertex of Gs.

Complete rotation — nomsoe Bpamenne [oprpadal.

Let G = Cay(T',S) be a Cayley digraph with |S| = d. (See also
Associated Cayley digraph).

A complete rotation of G is a group automorphism w of I" such
that for some ordering sg, s1,...,s4—1 of the elements of S, we have
w(s;) = si41 for every t € Z.

Clearly, a rotation is a graph automorphism. A Cayley digraph with
a complete rotation is called a rotational Cayley digraph.

Complete set of graph invariants — mosHbIiT HAOOp UHBAPUAHTOB.

Complete system of equivalent transformations — mosnas cucrema
SKBUBAJIEHTHBIX TTPEOOpPa30BaHMIA.

See Yanov schemata.
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Complete tree — 3aBepiennoe gepeso.
Complete k-uniform hypergraph — mnosnbit k-yaundopMmubiit rumep-

rpad.

NP-complete problem — NP-nosiHas 3ama4a.

See Complezity theory.

Completed Husimi tree — 3aBepménoe nepeso Xycumu.

See Block graph.

Completely triangular graph — mosHOCTBIO TPHAHTYIMPOBAHHDIN I'pad.

See Triangular verter.

Complex windmill — Berpsinnas MejbHUIIA.

See Windmill.

Complexity of RAM — cioxkaocts PAM.
Complexity theory — Teopus cioxmocTm.

The theory of classifying problems based on how difficult they are
to solve. A problem is assigned to the P-problem (polynomial-
time) class if the number of steps needed to solve it is bounded by
some power of the problem’s size. A problem is assigned to the NP-
problem (nondeterministic polynomial-time) class if if it is
solvable in polynomial time by a nondeterministic Turing machine.
A problem is called intractable if it is not a P-problem. The class
of P-problems is a subset of the class of NP-problems, but there also
exist problems which are not NP.

The P versus NP problem is the determination of whether all
NP-problems are actually P-problems. If P#NP, then the solution
of NP-problems requires (in the worst case) an exhaustive search,
while if they are, then asymptotically faster algorithms may exist.
The answer is not currently known, but determination of the status
of this question would have dramatic consequences for the potential
speed with which many difficult and important problems could be
solved.

A problem C' is said to be NP-hard if every problem from NP is
reducible to C in polynomial time. A problem which is both NP and
NP-hard is called an NP-complete problem. Examples of NP-
complete problems include the Hamiltonian cycle, traveling salesman
problems, Hamiltonian path problem, subgraph isomorphism problem,
clique problem, vertex cover problem, independent set problem, domi-
nating set problem, graph coloring problem.

Thus, if some NP-complete problem is a P-problem then P=NP,
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and,vice versa, if some problem from NP-problem class is intractable,
then all NP-complete problems are also intractable.
NP-Complete language —NP-1I0/THBIH A3BIK.
NP-Complete problem —NP-nonHas 3aja4da, NP-mojHast mpobdJiema.
See Complexity theory.
Component design method — meroa mocTpoeHnsT KOMIIOHEHT.
Component index — uHIeKC KOMIIOHEHT.
Component number — Inc/I0 KOMITOHEHT.
See Component of a graph.
Component of a graph — kommnonenTa rpada.
A component H of G is odd (even) if |V(H)| is odd (even). The
component number of G is denoted by ¢(G), and the odd com-
ponent number of G is denoted by o(G).
Composite hammock — cocraBHoil ramax.
See Hammock.
Composition of graphs — rpad-kommosumusi.
Compound dependency graph — rpad cocraBHOI 3aBUCHMOCTH.
Compound graph — cocrasnoit rpad.
Computation — Beraucienue.
See Algorithm.
Concatenation — KoHKaTeHaINs, CIEILICHHE.
1. See String.
2. See Formal language.
Concatenation closure — urepanus (s3bIKa).
See Formal language.
Condensation — konzencanus, rpad lepra.
See Strongly connected component.
Conditional connectivity — ycioBHas cBA3HOCTB.
Cone over a graph — konyc Haj rpadom.
The cone over a graph G is the graph K; VG obtained from G by
adding a vertex adjacent to all vertices of G.
Conflict — koudukT.
See Petri net.
Confluent NCE graph grammar — koudJiyenTaas rpadoBas rpaMma-
tuka Tuna NCE.
An NCE graph grammar G is confluent (C-NCE) if for every graph
G derivable (see Derivation) from the axiom of G, all nonterminal
nodes u,v in G, and all productions (¢(u), H, D), (¢(v),J, F) in G
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we have:

Glu/pH]lv/rJ] = Glv/FJ][u/pH].

In the confluent graph grammar, the order in which the productions
are applied is irrelevant for the resulting graph.

Conformal hypergraph — xoudopmasbablii Tueprpad.
A hypergraph H such that every clique C in a 2-section graph 2EC(H)
is contained in an edge e € H.

Conjunction of graphs — KouboOHKIS rpadoB.
See Product of two graphs.

Connected component — KOMIIOHEHTa CBSI3HOCTH.
A connected component of a graph G is a maximal connected
subgraph of G. Any two connected components of G are vertex-
disjoint and each vertex (and edge) belongs to one of them. Their
number is denoted by ¢(G).

Connected component of a hypergraph — cBsi3nast KomnonenTa rumnep-
rpada.
Let £ = (V,{E1,...,E,}) be a hypergraph. A sequence (E1, ..., Ey)
of distinct hyperedges is a path of length k if for all 4, 1 < i <
m, E; N Eiq # (. Two vertices x € E;, y € Ej are connected
(by the path (Fi,...,E%)), and E; and Ej are also connected. A
set of hyperedges is connected if every pair of hyperedges in the
set is connected. A connected component of a hypergraph is a
maximal connected set of hyperedges.

Connected domination number — 9ucjo cBS3HOr0 JOMUHUPOBAHUSI.
See Dominating set.

Connected dominating set — cBsi3HOe JJOMUHUPYTOITIEE MHOYKECTBO.
See Dominating set.

Connected graph — cBasubrit rpad.
A graph G is a connected graph if for all u,v € V(G), u # v,
there is a chain (v1,...,v;) in G with {vy,v;} = {u, v}, (the chain
connects u and v). Otherwise, the graph is called disconnected.
A graph G = (V, E) is maximum edge-connected (in short, max-
A) if A = [2¢/p], where p = |V|, ¢ = |E| and A = A(G) is edge-
connectivity of G. Note that the set of edges adjacent to a point u
of degree A is certainly a minimum edge-disconneting set. Similarly,
G is maximum point-connected (in short, max-«) if kK = [2¢/p],
where k = £(G) is the point-connectivity of G. Also, the set of points
adjacent to u of degree k is certainly a minimum point-disconnecting
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set. In this context, such an edge or a point set is called trivial.
A graph G is called super edge-connected if G is max-A and
every minimum edge-disconnecting set is trivial. Analogously, G is
super point connected if G is max-x and every minimum point-
disconnecting set is trivial.

Connected hierarchical graph — cBsa3anublit nepapxudeckuii rpad.
See Hierarchical graph.

Connected set of vertices — cBsa3HOE MHOXKECTBO BEPIITHH.

Connected vertices — cBs3HBIE BEPITHHBI.

2-Connected graph — aBycssi3HbIil rpad.
See Articulation point.

k-Connected component — KoMIIoOHEHTa, k-CBI3HOCTH.

k-Connected graph — k-cBsazubiit rpad.
A graph G is k-connected if there exist k internally node-disjoint
chains between every pair of distinct nodes in G. A k-connected graph
G is minimal if for any edge e € E; G—e is not k-connected. Usually,
2-connected graphs are called biconnected graphs and 3-connected
graphs are called triconnected graphs.

k-Connected vertices — k-cBs3HbIE BEPITUHBI.
See Connectivity.

P,-Connected graph — Pj;-cBsizublii rpad.
A graph G = (V, E) is Py-connected graph if for every partition
of V into nonempty disjoint sets V; and V5, some chordless path on
four vertices and three edges (i.e. Py) contains vertices from both V;
and V5.
The concept of Ps-connectedness leads to a structure theorem for
arbitrary graphs in terms of Pj-connected components and suggests,
in a quite natural way, a tree representation unique up to isomorphism.
The leaves of the resulting tree are Pj-connected components and
weak vertices, that is, vertices belonging to no P4-connected compo-
nent. The structure theorem and the corresponding tree representa-
tion provide tools for the study of graphs with a simple P;-structure,
such as Pj-reducible, Pyj-extendible, P,-sparse graphs.

Connected hypergraph — cBsasubiit runeprpad.
A hypergraph such that it is not representable as H; U Hsy, where
‘H1, Hs are vertex-disjoint non-empty hypergraphs is called connec-
ted. Note that if ) € E(H), H is not connected.
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Connected to relation — ornomenue csazuoctu "k, (J0CTUKUMOCTD) B

runeprpade.
The relation connected to, which is denoted by the symbol >, is
defined for a given subset R of nodes and a node y; we say that R is
connected to y and write R > y if and only if a directed hyperpath
exsists in a hypergraph from R to the node y.
It is easy to check that the relation > satisfies the following set of
connectivity axioms:
(1) ye RCV = R > y (reflexivity);
(2) R=yand ZCV = (RUZ) > y (augmentation);
B)R>y, VyeY, andY > z = R > z (transitivity).
H-Connected graphs — H-cBsazubie rpadubl.
See H-distance.
Connective index — uHz€eKC cBsI3HOCTH (BEPIIUHEI).
Connectivity — cBsi3HOCT®S.
The best known and most useful of the measures of how well a graph
is conected is the connectivity, defined to be the minimum number
of vertices in a set whose deletion results in a disconnected or trivial
graph.
Two vertices u and v in a graph G are said to be k-connected if
there are k or more pairwise internally disjoint paths between them.
The (u,v)-connectivity of G, denoted k¢ (u,v), is defined to be the
maximum value of k for which u and v are k-connected.
If the order of G is p, then the average connectivity of G, denoted
k(G), is defined to be

> ke (u, v)'
(3)

(The expression ),  k(u,v) is sometimes referred to as the total
connectivity of G.) In contrast to the connectivity, which gives
the smallest number of vertices whose failure disconnects some pair
of vertieces, the average connectivity gives the expected number of
vertices that must fail in order to disconnect an arbitrary pair of
nonadjacent vertices.
See Edge connectivity, Vertex connectivity.

Connectivity function — gyuknus csizHocTn.

Connectivity matrix — marpuma cMexXHOCTH.

ko =
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Connectivity axioms — akKCHOMBI CBI3HOCTH.
See Connected to relation.

Consecutive adjacent graph — nociemoBaTenbHbIN Tpad CMEKHOCTH.
See Semigraph.

Consecutive labeling — nocieioBarenbuas pa3merka.
A labeling is said to be consecutive if, for every number s, the
weights of all s-sided faces constitute a set of consecutive integers.

Constructible graph — kouctpyupyemsbrit rpad.
Graph G is constructible if it can be built vertex-by-vertex so that a
vertex x can be added to the currently constructed induced subgraph
G, of G if there exists a vertex y of G, which is adjacent in G to x
and to all neighbors of x belonging to G,.
A graph G is said to be constructible if there is a well-order <
on V(G) such that every vertex z which is not the smallest element
of (V(G),<) is dominated by some vertex y # x in the subgraph
of G induced by the set {z € V(G) : z < z}. The well-order < on
V(G), and the enumeration of the vertices of G induced by <, will be
called a constructing order and a constructing enumeration,
respectively.
See also Dismantlable graph.

Constructing enumeration — KOHCTPYKTHUBHAsI HYyMepaIUsl.
See Constructible graph.

Constructing order — KOHCTPYKTHUBHBII TOPSIIOK.
See Constructible graph.

Containment graph — rpad coaep:xumoro.
See Intersection graph.

Context-free grammar — KOHTEKCTHO-CBODOHAST TPAMMATHKA.
See Chomsky hierarchy.

Context-free language — KOHTEKCTHO-CBOOOIHDIN SI3BIK.
See Chomsky hierarchy.

Context-sensitive grammar — KOHTEKCTHO-3aBUCHMasI I'PAMMATUKA, He-
YKOPaUIHBAIOIIAsICS IPAMMAaTHKA.
See Chomsky hierarchy.

Context-sensitive language — KOHTEKCTHO-3aBUCUMBIi SI3BIK.
See Chomsky hierarchy.

Contrabasis — anTu6asa.

Contractable edge — crsiruBaemoe pebpo.
An edge e in a 3-connected graph G is contractable if the contraction
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G/e is still 3-connected.

Contracted visibility graph — crarusaemsrit rpad BuanMocTH.
See Visibility graph.

Contracting edge, contraction of an edge — crarusanue pebpa.
If G is a graph and (u,v) is an edge of G, the graph obtained by
contracting edge (u,v) is the graph obtained from G[V '\ {u,v}] by
adding a new vertex z and adding edges (z,w) for all w € (N(u) U
N@)) \ {u,v}, where N(u) is the neighborhood of u. Contracting
a subgraph means contracting all edges of it (the order in which
the contraction is made is irrelevant). Note that multiple edges may
appear.

Contraction of an even pair — craruBanue JeTHON mapHI.
The contraction of an even pair (u, v) is an operation that consists
in replacing the two vertices u, v by a unique vertex ¢t whose neighbor-
hoodis Ng(u)UNg(v)—{u,v}: the resulting graph is denoted by G,,.
Contracting an even pair preserves the chromatic number and clique
number. Thus, successive contraction of even pairs could possibly be
used to reduce a given graph G to a smaller, simpler graph with the
same parameters Y and w. In the case where the final graph is a
clique, G is called even contractile; whenever this reduction can be
performed not only for the graph G itself, but also for every one of
its induced subgraphs, G is called perfectly contractile.

Contraction of a graph — crarusanue rpadea.

Contrafunctional graph — xouTpadyukiumonaabHbIi Tpad.

Control dependence — 3aBUCHMOCTD TI0 YIIPABJIEHUIO.

Control flow graph — ynpasssitomuii rpad, yrpad, rpad moroka ymupas-
JieHus, rpad MepexoIoB.
A program can be represented as a directed graph (called control
flow graph or cf-graph), in which vertices (or nodes) correspond
to program statements and arcs reflect possible transfers of control
between the corresponding statements. There are initial (or entry)
and terminal (or exit) nodes in the graph that correspond to input
and output statements of the program. If there is an arc (p, ¢), then
p is called a predecessor of ¢ and ¢ is called a successor of p.
It is assumed that a control flow graph G is a proper one, i.e. G has
a single initial node without predecessors and a single terminal node
without successors, and every node of G lies on at least one of the
paths from the initial node to the terminal node.
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k-Convergent — k-KoBepreHIus.
See Clique graph.

Converse digraph — obpatubriit oprpad.
Let D be a digraph. The converse of D, denoted D’, is a digraph
obtained from D by reversing the direction of each arc of D. A
digraph is called self-converse if it is isomorphic to its converse.

Convex bipartite graph — BbITyK/IBIiT ABYIOIBHBIN Tpad.
Let G = (X,Y,E) be a bipartite graph. An ordering of X has the
adjacency property if for each y € Y the neighbors of y in X
are consecutive in the ordering of X. A bipartite graph G is called
convex bipartite if there is an ordering of X or of Y that has the
adjacency property. A bipartite graph G = (X,Y, F) is biconvex if
there is an ordering of X and Y with the adjacency property. Convex
graphs contain the bipartite permutation graphs.

Convex dominating set — BbIyK/I0€ JJOMUHUPYIOIIEE MHOXKECTBO.
A set X C V(G) is convex in G if vertices from all (a — b)-geodesics
belong to X for any two vertices a,b € X. A set X is a convex domi-
nating set if it is convex and dominating. The convex domination
number 7., (G) of a graph G is the minimum cardinality of a convex
dominating set in G.

Convex domination number — 4ncjo BBIIYKJIOro JOMHHUPOBAHUS. See
Conver dominating set.

Convex linear graph — Bbimykiibiil npsiMotnHeHbI Tpad.

Convex set in G — BbIlyKJI0e MHOXKeCTBO B rpade G.
See Conver dominating set.

m~Convex set in G — m-BbIyKji0e MHOXKeCTBO B rpade G.
A path P in G is called m-path if the graph induced by the vertex
set V(P) of P is P. A subset C of V(G) is said to be m-convex
set if, for every pair of vertices x,y € C, the vertex set of every
x —y m-path is contained in C. The cardinality of a maximal proper
m-convex set in G is the m-convexity number of G.

m-Convexity number — 4ncjao m-BbIIyKJIOCTH.
See m-Convex set in G.

Coordinated graph — xoopannaTHbIi Tpad.
A graph G is coordinated if the cardinality of a maximum set of
cliques of H with a common vertex is equal to the cardinality of a
minimum partition of the cliques of H into clique-independent sets,
for every induced subgraph H of G.
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Corank function of a matroid — xKopanroBas GyHKIHNS MaTPOUIA.
FE-Cordial graph — Ej-cepaeunsrit rpad.
Let f be an edge labelling of a graph G = (V, E'), such that

f: B(G)—{0,1,....k—1}

and the induced vertex labelling is given as

f) =Y f(u,v) (mod k),
Yu

where v € V and {u,v} € E. f is called an Ej-cordial labelling of
G, if the following conditions are satisfied for 7,5 = 0,1,...,k — 1,
i F . _ .

1) les(i) —er(I < 1,

2) o (i) = v (I <1,

where ef(i), es(j) denote the number of edges, and v(i), vs(j)
denote the number of vertices labelled with i’s and j’s respectively.
The graph G is called Ey-cordial if it admits an Fy-cordial labelling.
See also Edge-graceful graph.

Core — smpo.
1. Given a graph G, a core of G is a subgraph C' of G such that G
is homomorphic to C, but C fails to be homomorphic to any proper
subgraph of G. This notion of a core is due to Hell and Nesetril
(1992). A graph G is a core if G is a core for itself. It is known,
that in general, the problem of deciding whether G is a core is NP-
complete, but there exists a polinomial time algorithm to decide if G
is a core for the particular case when G has the independence number
a(G) < 2. Finally, it is known that “almost all graphs” are cores.
2. Let (G) denote the family of all maximum stable sets. Then the
core is defined as core(G) = N{S : S € Q(G)}. Thus, the core is
the set of vertices belonging to all maximum stable sets.

Corona — KOpoHa.
1. The corona coro(G) of a graph G is a graph obtained from G by
adding a pendant edge to each vertex of G. See also Crown of graphs.
2. Let Q(G) denote the family of all maximum stable sets of the
graph G. We define corona(G) = U{S : S € Q(G)} as the set of
vertices belonging to some maximum stable sets of G.
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3. G o H is called the corona of graphs, if it is obtained from the
disjoint union of G and n copies of H (where n = |V(G)|) by joining
a vertex z; of G with every vertex from i-th copy of H, for each
i=1,2,...,n.
Let k be a fixed integer, k > 1, k-corona kG o H is a graph obtained
from k copies of G and |V (G)| copies of H with appropriate edges
between each vertex z7 of the copy G’ and all vertices of the copy of
H;.
The 2-corona of a graph H is a graph of order 3|V (H)| obtained
from H by attaching a path of length 2 to each vertex so that the
attached paths are vertex disjoint.

Cospectral graphs — kocnekTpasbHbie rpadbl.

Cotree, co-tree — kozepeso (rpada).
Let T be a spanning tree of G. A cotree of G is a graph induced by
edges that do not belong to T'. Any edge of a cotree is called a chord
of the spanning-tree.

k-Cover of a (hyper)graph — k-nokpoitue (Bepimauoe) rpada (rumep-
rpada).
This is a collection of points such that each edge contains at least
k of them. 1-cover is simply a vertex (point) cover. A k-cover can
also be regarded as a mapping t : V(G) — {0,1,...} such that
> wep t(x) >k for each edge E.

(t,1,j)-Cover — (t,1,j)-IOKpbITHE.
Let G = (V(G), E(G)) be a graph. The set S of vertices is called
a (t,i,j)-cover if every element of S belongs to exactly i balls of
radius ¢ centered at elements of S and every element of V'\ S belongs
to exactly j balls of radius ¢ centered at elements of S.

Covering cycle — mokpsiBaomuit UK.
The same as Dominating cycle.

Covering graph — noxkpsiBatomnuii rpad, HaKpblBaroIuii rpad.

Covering set of vertices — nokpsiBaroIee MHOXKECTBO BEPIIIUH.

Covering vertex set — HaKpPBIBAIOIIEE MHOKECTBO BEPIIUH.

H-Covering, H-Covering set — H-mokpsITHe.
Let H and F' be two hypergraphs on the same vertex set. A subset
C of F is said to be H-covering if every edge in H meets some edge
from C' (in other words, the union of C' is a vertex cover for H).

Countable graph — cuersnsrii rpad.

Counter automation — mokpsIBaoITiee T€PEBO CICTINKOBBII ABTOMAT.
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Coverability tree — nokpsisaioiee nepeso (ceru Ilerpn).

CPM — MeTos KpUTHIECKOTO Iy TH.
The same as Critical path method.

Critical edge — kpurndeckoe pebpo.

Critical graph — kpurnueckuii rpad.
See Edge-critical graph, Point-critical graph.

k — ~v-Critical graph — k — y-kpurudeckuii rpad.
See k — y-Domination critical graph.

Critical pair — kputnueckas mapa.

Critical path — kpurnuecknii myTh.
An important parameter in any PERT digraph is the length of the
longest path from the start to the termination vertex. Such a path
is called a critical path, and its length represents the shortest time
within which the overall task can be completed. For this reason the
analysis is sometimes called CPM (Critical path method).

Critical path method — merox kpurraeckoro myTn.
See Critical path.

Critical kernel-imperfect digraph — xkpurmaeckuit siaepHO-HEI0CTATOY-
HBI oprpad.
See Kernel.

Critical set — kpurnveckoe MHOKECTBO.
See Forcing set.

Critical tournament — kpuruweckuit TypHUp.
Given a tournament T' = (V, A), a subset X of V is an interval of
T provided that for every a,b € X and x € V — X, (a,z) € A if and
only if (b,z) € A. For example, 0, {z} (z € V) and V are intervals,
called trivial intervals. A tournament all intervals of which are
trivial is called indecomposable; otherwise, it is decomposable.
An indecomposable tournament 7' = (V, A) is then said to be critical
if for each © € V, T(V — {z}) is decomposable and if there are
x #y €V such that T(V — {z,y}) is indecomposable.

Critical vertex — kpurnueckas BepinuHa.

p-Critical graph — p-xpurndecknii rpad.
A graph G is p-critical if G is not perfect but every proper induced
subgraph of G is perfect. The celebrated Strong Perfect Graph Con-
jecture (SPGC) of C. Berge states that p-critical graphs are only
C2n+1 and C§n+1, n Z 2.
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Criticality index — uHIeKC KpUTUIHOCTH.
The criticality index of an edge e € E(G) is ci(e) = v(G) —
vt(g + €). Note that ci(e) € {0,1,2}. Let E(G) = {e1,...,em and
S =377, ci(ej). Then the criticality index of G is ci(G) = s/m.

Critically k;-connected graph — kpurudeckuii k-cBsi3HBIN rpad.
A k-connected graph G is said to be critically k-connected if G—v
is not k-connected for any v € V(Q).

Cross — ckpernuBaHue.
Given a bipartite graph B = (U U V, E), two non-adjacent edges
e, e’ € F with e = (u1,v1) and € = (ug,v2) are said to form a cross
if (u1,v2) € E and (us,v1) € E. Two edges are said to be cross-
adjacent if either they are adjacent (i.e. share a common node) or
they form a cross. A cross-free matching in B is a set of edges
E’ C FE with the property that no two edges e,e’ € E’ are cross-
adjacent. A cross-free coloring of B is a coloring of the edge set
E subject to the restriction that no pair of cross-adjacent edges has
the same color.
The cross-chromatic index, x*(B), of B is the minimum number
of colors required to get a cross-free coloring of B. The cross-free
matching number of B, m*(B), is defined as the edge cardinality
of the maximum cross-free matching in B.

Cross arc — nomnepedsas Jyra.
See Basic numberings.

Cross product — nomepednoe Tpou3BeIeHAE.
See Product of two graphs.

Cross-adjacent edges — Kkpocc-cMexkHBIE PEODA.
See Cross.

Cross-chromatic index — xkpocc-xpoMaTuaecKnii WHIEKC.
See Cross.

Cross-free coloring — kpocc-cBobo/iHas pacKpacka.
See Cross.

Cross-free matching — kpocc-cBobo/iHOE Tapocoderanue.
See Cross.

Cross-free matching number — unciio Kpocc-cBoOOIHOTO MapocovyeTa-
HUS.
See Cross.

Crossing number — yucjio ckpenuBaHuii.
The crossing number of a graph is the minimum number of cros-
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sings of edges for the graph drawn on a plane. It is not the same as
its genus. The genus of a graph will not exceed its crossing number.
Genus and crossing number have obvious implications for the manu-
facture of electrical circuits on planar sheets.

Crown — KOpOHaA.
For positive integers k < n, the crown C), ;. is a graph with a vertex
set {ai,...,an,b1,...,b,} and an edge set {a;b; : 1 < i < n,j=
i+1,i+2,...,i+k—1 (modn)}.

Crown of graphs — xopona rpados.
For positive integers k < n, the crown of graphs C,, ;. is a graph
with a vertex set {a1,...,an,b1,...,b,} and an edge set {a;b; : 1 <
1<mn,j=i+1,i+2,...,i+k (mod n)}. For any positive integer
A, let AC,, 1, denote a multiple graph obtained from the crown C,, j
by replacing each edge e by A edges with the same end vertices as
those of e. We call AC,, ;, a multicrown.
See also Corona.

n-Cube graph — xy6 n-MepHbIii.
Consider the set Q™ = {(z1,x2,...,2,)| z; € {0,1}, i = 1,...,n}.
For u,v € Q™ the Hamming distance p(u,v) is defined as the number
of entries where u and v differ. An n-cube graph is a graph on the
vertex set Q", where two vertices u,v are adjacent iff p(u,v) = 1.
The n-cube graph is a regular graph with a degree n — 1.
Other names are Hypercube, n-Dimensial hypercube

Cubic graph — xybuueckuit rpad.
This is a regular graph with a vertex degree 3.
A graph is called almost cubic (or almost 3-regular) if one of its
vertices has degree 3 + e, e > 0, and the others have degree 3.

Cubical graph — ky6oBoit rpad.
A graph G is called a cubical graph if it is embeddable in an n-cube
graph @, i.e. G is a subgraph of some @,,.

Cut of a layout — paspes ykirajxu.
See Layout.

(a,b)-Cut — (a,b)-paspes.
Given a graph G, (a,b)-C. is a set F' of edges representing (covering)
all (a, b)-paths.

Cut-edge — pebpo-paspes.
See Cutset, Bridge.
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Cutpoint — BepmmHa-paspes.
The same as Articulation point.

Cutpoint graph — rpad Towex counenenus.

Cutset — paspes, ceuenue.
A set of points (edges) in a connected graph whose removal results
in a disconnected graph is called a cutset. A cutpoint (cut-edge) is
a point (edge) forming a cutset itself.
Other name is Separating set.

Cutset matrix — marpuna paspesos.

Cutset matroid — marpour paspesos.

Cutting set — ceuenmue.

Cutting vertex — paspesaiommasi BepIINHA, BEPITTHA-PA3PES.
The same as Articulation point.

Cutvertex — paspesarolras BepIIiHa, BEPIITIHHA-PA3PES.
The same as Articulation point.

Cutwidth of a graph — paspezatomas mupusa rpada.
See Layout.

Cutwidth of a layout — paspesaromas mupuHa yKIaIKH.
See Layout.

Cyclability — nukjmmaaoCTS.
A subset S of vertices of a graph G is called cyclable in G if there
is in G some cycle containing all the vertices of S. It is known that
if G is a 3-connected graph of order n and if S is a subset of vertices
such that the degree sum of any four independent vertices of S is at
least n+2a(S, G) —2, then S is cyclable. Here a(S, G) is the number
of vertices of a maximum independent set of G[S].
See also Pancyclable graph.

k-Cyclable graph — k-nmkiosoit rpad.
The graph g is k-cyclable if any k vertices of G lie on a common
cycle. It is easy to see that every k-connected graph is k-cyclable.

Cycle — 3aMKHYTBII MapIIpyT, UK/, KOHTYP.
1. A closed walk, i.e. a walk such that the starting and ending vertices
are the same and all vertices in the walk are distinct is called is a
cycle.
Another name is Circuit.
2. For a directed graph, a closed path, i.e. a path vg,..., vk is a
cycle if k£ > 1 and vy = vg.
3. The inverse cycle of a cycle C' = (v, v1,...,v,-1,v) is the cycle
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C ' = (v,vp_1,...,v1,v). Two cycles C; = (v1,...,v,) and Cy =
(wi,...,wn) are called equivalent if w; = v,y for all j. The inverse
cycle of C' is not equivalent to C. Let [C] be the equivalence class
which contains a cycle C. Let B" be the cycle obtained by going
r times around a cycle B. Such a cycle is called a multiple of B.
A cycle C is primitive if both C and C? have no backtracking (a
backtracking is a subsequence of the form ..., z,y, z,...), and it is not
a multiple of a strictly smaller cycle.

Cycle basis — 6a3a 1ukJOB.
See Independent circuits.

Cycle complementary — nuk/imaeckoe JI0IOJTHEHTE.
A digraph D is cycle complementary if there exist two vertex-
disjoint cycles C' and C” such that V(D) = V(C)U V(C).

Cycle cover problem — 3ajiaga 0 nokpbiTun rpada UKJIaMHA.
Let G = (V, E) be a connected undirected graph. A non-negative cost
or length is associated with each edge. The cycle cover problem
consists in determining a least cost cover of G with simple cycles,
each containing at least three different edges.

Cycle embedding matrix — maTpuiia BJI0KEHHOCTH KOHTYPOB.

Cycle-factor — nukymuckunii dpaxTop.
A cycle-factor of a digraph D is a spanning subdigraph consisting
of disjoint cycles.

Cycle isomorphism — mukanyeckuit nzomopdusm.
A Dbijection f between the vertex sets Vi and V5 of two sigraphs
S7 and Ss, respectively, is called f cycle isomorphism (or weak
isomorphism) between S; and Sy if f preserves both vertex adjacen-
cies and cycle signs of S; and Ss.

Cycle matrix — marpuia nmuKIIoB.

Cycle matroid — marpouns ukIoB.
Let E(G) be the edge-set of a graph G and C be the set of cycles.
The cycles satisfy the circuit postulates. Thus, we obtain a matroid
related to the graph. We denote this matroid by M(G) and call it
the cycle matroid of G. The bases of M (G) are the spanning trees.
The rank of M(G) is less by 1 than the number of vertices.

Cycle space — mpocTpaHCTBO IIUKJIOB.
Given a graph G, let e, ez, ..., e p) be an ordering of its edges.
Then a subset S of E(G) corresponds to a (0,1)-vector (b, ...,bgq)|)
in the usual way with b; = 1 if ¢, € S, and b; = 0 if ¢; &€ S.
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These vectors form an |E(G)|-dimensional vector space, denoted by
(Z2)!F(@I, over the field of integers modulo 2. The vectors in
(Zg)‘E (@I which correspond to the cycles in G generate a subspace
called the cycle space of G denoted by C(G). It is known that

dimC(GQ) = |E(G)| - |[V(G)| +r

where r is the number of connected components.
See also Basis number.

Cycle spectrum — 1ukJ0BOit ceKTp.
For a graph G, we define the cycle spectrum CS(G) of G as the
sequence £1 < --- < £, of lengths of cycles in G.

Cycle vector — BEeKTOP-IIUKII.

Cyclic alternating chain — ugepemyromnuiics: UK.

Cyclic chromatic number — nmukIMIeCKOE XPOMATHIECKOE TUCIIO.

Cyclic edge — opueHTHPOBAHHO-ITUKINIECKOE PEOPO.

Cyclic edge connected vertices — opueHTHPOBAHHO-IIMKJIMIECKU-PeGEP-
HO CBSI3HBIE BEPIIUHDI.

Cyclic graph — nukmaecknit rpad.
The cyclic graph C(n,k) have a point set V' = {0,1,...,n — 1}
and lines {i,74+1} (mod n) and {i,i+k} (modn) (i=1,...,n),
where k is an integer with 2 < k < n — 2. If G(n, k) is a circulant
graph, then C(n, k) ~ G(n,S) with S = {1,..., min{k,n — k}}. The
graphs C(n, k) are point-transitive 3-regular if n = 2k, and 4-regular
otherwise.

Cyclic matroid — nukanIecknit MaTpous.

Cyclic sequence — NMuKINTIECKAH MaPIIPYT.

Cyclic vector of a graph — nukymmmueckuii BeKTop rpada.

k-Cyclic chromatic number — k-nukandeckoe XpoMaTHIeCKOE UUCIIO.
The k-cyclic chromatic number Y (G) of a plane graph is the
smallest number of colours in a vertex colouring of G such that no
face of size at most k has two boundary vertices of the same colour.
It is easy to see that the Four Colour Theorem may be stated in the
form:

x3(G) <4

for every plane graph G.
The number xx(G) was introduced explicitly by Ore and Plummer
(1969).

k-Cyclic coloring — k-uukjimyeckasi pacKpacka.
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a-Cyclic hypergraph — a-mukangeckwnit runeprpad.

Cyclomatic complexity of a program — nukaomMaTuIeckas CJI0KHOCTD
[IPOTPAMMBI.

Cyclomatic matrix — nukjoMaTuIecKkas: MaTPHUIIA.

Cyclomatic number — nuk/jloMaTHIeCcKoe YUCI0, MKJIOMATHIECKII PDAHT.
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D

DAG (Directed Acyclic Graph) — 6eckorTypHbIii oprpad.
A directed acyclic graph, also called a DAG, is a directed graph
without cycles.
The reachability relation in a DAG forms a partial order, and any
finite partial order may be represented by a DAG using reachability.
DAGs may also be used to model expressions and basic blocks.
A DAG presentation for an expression identifies the common sub-
expression of the expression. Like a syntaz tree, an expression dag
has a node for every subexpression of the expression; an interior node
represents an operator and its children represent its operands. The
difference is that a node in a dag representing a common subexpression
has more than one “parent”; in a syntax tree, the common subexpres-
sion would be represented as a duplicated subtree.
DAG is a useful data structure for implementing transformations on
basic blocks. A DAG representation for a basic block gives a picture
of how the value computed by each statement in a basic block is used
in subsequent statements of a block. A dag for a basic block is a
directed acyclic graph with the following labels on nodes.
(1) Leaves are labeled by unique identifiers, either variable names
or constants. From the operator applied to a name, we determine
whether the [-value or r-value of a name is needed; most leaves
represent r-values. The leaves represent the initial values of names,
and we subscript them with 0 to avoid confusion with labels denoting
“current” values of names as in (3) below.
(2) Interior nodes are labeled by an operator symbol.
(3) Nodes are also optionally given a sequence of identifiers for a label.
The intention is that interior nodes represent computed values, and
the identifiers labeling a node are deemed to have that value.
(4) Certain nodes are designated output nodes. These are the nodes
whose variables are live on exit from the block; that is, their values
may be used later, in another block of the flow graph.
It is important not to confuse dags with flow graphs. Each node of a
flow graph can be represented by a dag, since each node of the flow
graph stands for a basic block.

Dag for basic block — jar ayqa.
See DAG.
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Dag of control flow graph — kapkac yrpadea.

A dag of a ¢f-graph G with an initial node p is an acyclic cf-graph D
with the initial node p such that V(G) = V(D), A(D) C A(G) and
for any arc u € A(G)\A(D) the graph D|J{u} has a cycle. That is,
D is a maximal acyclic subflowgraph.

Data dependence — 3aBUCHMOCTD TI0 JTAHHBIM.

In general terms, a statement 7" depends on a statement S, denoted
by SOT, if there exist an instance S’ of S, an instance T" of T, and
a memory location M, such that the following properties hold:

(1) both S’ and T" are references to M, and at least one of those
references is a “write”;

(2) in a serial execution of the program, S’ is executed before T”; and
(3) in the same execution, M is not written between the time S’
finishes and the time T” starts.

The following three types of dependence between the statements .S
and T based upon the types of the two references to M are considered:
(1) T is flow (true) dependent on S, (ST, if S” writes to M and
then T” reads it.

(2) T is anti-dependent on S, (ST, if S” reads M and then T"
writes to it.

(3) T is output dependent on S, (S5§°T), if S” writes to M and
then T" writes to it again.

Data dependence graph — rpad 3aBUCHMOCTH IO JAHHBIM.

By the data dependence graph of the program we mean a digraph,
where the vertices correspond to the (assignment) statements in the
program, and there is an arc from a vertex S to a vertex T iff T
depends on S; i.e. S6T, SOT or S6°T. Each arc may be labeled with
information about the type of dependence and other information.

Data flow analysis frameworks — cxema ¢ pa3meTkoii, cxema CBOWCTB

COCTOSTHUIA.

Data flow analysis problem — 3ajiata anajm3a cBOWCTB COCTOSTHUIA, 3a-

Jla9da IIOTOKOBOT'O aHaJIn3a, 3aJa49a r106aILHOrO AHAJN3a, IOTOKA JaH-
HBIX.

Data set — nadopmarmornHOoe MHOXKECTBO.
Data term — mpoctoe BbIparkeHue, CJI0BO 3HATECHUSI.

See Large-block schema.

De Bruijn graph — rpad ne Bpéitna.

The binary De Bruijn graph D(n) is a directed graph of order 2"
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whose vertices comprise the set Z%. The arcs of D(n) connect each
vertex ax, where o € Z5 and z € Z;L_l, to vertices 20 and x1.
The De Bruijn graph of d symbols is a directed graph B(d,n)
representing overlaps between n-sequences of d symbols. B(d,n) has
d™ vertices from Z7 = {(1,1,...,1,1)(1,1,...,1,2),...,(1,1,...,1,d)
(1,1,...,2,1),...,(d,d,...,d,d)}. The arcs of B(d,n) connect each
vertex (vi,ve,...,Un—1,V,) to a vertex (wi,ws,...,Ww,—1,wy) such
that vo = wy, v3 = wa, ..., Uy = Wp_1.
The De Bruijn undirected graph, denoted UB(d, n), is obtained
from B(d,n) by deleting the orientation of all directed edges and
omitting multiple edges and loops. Clearly, UB(d,1) is a complete
graph of order d.

De Bruijn undirected graph — neopuentuposannbiit rpad me Bpéitna.
See De Bruijn graph

Decay number — uucso pacrnasa.
Given a connected graph G, the decay number ((G) is the smallest
number of components a cotree of G can have. That is

¢(G) = min{c(G — E(T))| T is a spanning tree of G},

where ¢(H) denotes the number of connected components of a graph
H.

Decision problem — 3ajata pacro3naBanus CBOWCTB.
A decision problem is one that asks only for a yes-or-no answer:
Can this graph be 5-colored? Is there a set of 67 independent vertices?
Because of this, it is traditional to define the decision problem equiva-
lently as: the set of inputs for which the problem returns “yes”. These
inputs can be natural numbers, but also other values of some other
kind, such as strings of a formal language. Using some encoding, such
as Godel numbers, the strings can be encoded as natural numbers.
Thus, a decision problem informally phrased in terms of a formal
language is also equivalent to a set of natural numbers. To keep the
formal definition simple, it is phrased in terms of subsets of natural
numbers.
A decision problem A is called decidable or effectively solvable
if A is a recursive set, i.e. if there is an algorithm which terminates
in a finite time and correctly decides whether or not a given number
belongs to the set A.
A problem is called partially decidable, semidecidable, solvable,
or provable if A is a recursively enumerable set, i.e. there is an
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algorithm that, when given an input number, eventually halts if and
only if the input is an element of A.

Partially decidable problems and any other problems that are not
decidable are called undecidable.

Decidable problem — (ajropurMudecku) paspemmuMasi 3a1a4a.

See Decision problem.

Decision problem DIM; — 3ana4da pacrnozuasanus DI M.

See k-Dimensional poset.

Decision tree — nepeBo perenuii.
Decomposable hammock — pazjio:kumMblii Tamak.

See Hammock.

Decomposable graph — paszmoxumerit rpad.

We write G = H1 @ Hs if G is the edge disjoint union of its subgraphs
Hyand Ho. If G = H1®- - -®Hy, where Hy, ..., Hy are all isomorphic
to H, then G can be decomposed into subgraphs isomorphic to H;
we say that G is H-decomposable and that {Hy,..., Hy} is H-
decomposition of G. In particular, G is C),-decomposable if it
can be decomposed into subgraphs isomorphic to an m-cycle.

Decomposable tournament — pasioxxumbiit TypHUD.

See Critical tournament.

Decomposition — pa3zjioxkeHue, 1eKOMIIO3UIIHUSI.

A decomposition of a graph H consists of a set of edge-disjoint
subgraphs of H, which partition the edges of H. If each of the
subgraphs in the decomposition is isomorphic to some graph G, then
the decomposition is called a G-decomposition of H, or a decomposi-
tion of H into copies of G.

Decomposition dimension — gekommosuTHast pa3sMepHOCTb.

A decomposition F = {F},..., F,.} of the edge set of a graph G is
called a resolving r-decomposition, if for any pair of edes e; and es
there exists an index ¢ such that d(ey, F;) # d(ea, F;), where d(e, F)
denotes the distance from e to F. The decomposition dimension
dec(G) of a graph G is the least integer r such that there exists a
resolving r-decomposition. See also Metric dimension.

d-Decomposition — d-pasnoxenne, d-1eKOMITO3HUITASI.

See Mazximal packing.

H-decomposition number — uucyio H-pasjioxkeHus.

For a fixed graph H without isolated vertices, the H-decomposition
number dy(G) of a graph is the minimum number of vertices that
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must be added to G to produce a graph that can be decomposed into
copies of H. (Any number of edges may be added incident with the
new vertices.)

Defect n-extendable graph — nedekrHO n-pacimpsieMblit rpad.
If G is a connected graph and any n independent edges in G are
contained in a near perfect matching of G where n < (|[V(G)| —2)/2,
then G is defect n-extendable.

Deficiency — nedumur.
The deficiency def(A) of a family A of hypergraphs is the minimal
natural number d such that the matching width mw(B) satisfies the
condition

mw(UB) > |B| —d

for every subfamily B of A.

Deficiency of a bipartite graph — gedunur nynosbHOro rpada.
For a vertex v, the deficiency of a bipartite graph D(v) is a set
of pairs defined by D(v) = {(z,y)|v € N(z),v € N(y),z & N(y),z #
y}. So a vertex v is simplicial if D(v) = ().
For an edge (z,y), the deficiency of a bipartite graph is the set
of pairs defined by D(z,y) = {(a,b)|a,b € N(z) U N(y), (a,b) € E}.
So an edge (z,y) is bisimplicial if D(z,y) = 0.
Here N(v) denotes a neighbourhood of v.

Deficiency of a graph — mgedunur rpada.
Let M be a matching in a graph G. A vertex v is saturated by M if
an edge of M is incident with v, otherwise v is said to be unsaturated.
The deficiency def(G) of the graph G is the number of vertices
unsaturated by a maximum matching. Thus, if def(G) = 0, then G
has a perfect matching.

Defining set — ompenensioniee MHOXKECTBO.
See Forcing set.

Degenerate tree — BoiporkjieHHOE (TPUBHAJIBLHOE, IIyCTOE) JEPEBO.
Degenerate tree is a tree with one vertex.
See also Trivial tree.

Degree balanced digraph — crenenno-6asmancupoBanubiil rpad.
A digraph G is called degree balanced if dg = d, for all vertices
v e V(G).

Degree of an edge — crenenn pebpa.
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Degree of a graph — crenens rpada.
This is the largest of the degrees of vertices of a graph G. It is denoted
by A(G).

Degree of a graph group — crenens rpymnmsr rpada.

Degree of a hypergraph edge — crenens pebpa runeprpada.

Degree of a vertex — crenennb BepIINHEI.
1. (For an undirected graph). This is the number of edges (denoted
by deg v) incident to v. A graph G = (V, E) has a bounded degree
B if each vertex v € V has the degree up to B, and G is B-regular
if each vertex v € V has exactly the degree B.
2. (For a directed graph.) The sum of the in-degree and out-degree
of a vertex v, deg v = deg~v + degT v, is called its degree.

Degree pair of a vertex — cremnennas mapa BepITUHBI.
Let G be a digraph and v be a vertex of G.
The ordered pair [outdegree(v),indegree(v)] is called the degree
pair of the vertex v.

Degree sequence — crenensast MoCIeI0BATETHHOCTD.
For a graph G, its degree sequence d; > dy > ... > d, is the
ordered sequence of the degrees of its vertices. A sequence d > dy >
... > d, with n — 1 > d; is a graphic sequence of numbers if
there is a graph having D1, ..., d, as its degree sequence.
See also Havel — Hakimi criterion, Erddés — Gallai criterion.

Dense tree — mwioTHOe JIEPEBO, T'yCTOE IEPEBO.
See r-dense tree.

r-Dense tree — r-miorHoe Jiepeso.
An me-ary tree T is said to be r-dense tree, where r is a natural
number with 1 < r <m — 1, iff the following properties hold:
(1) the root of T is at least binary,
(2) each unsaturated (the number of sons is less than m) node different
from the root has either only saturated brothers and at least one such
brother or at least r saturated brothers,
(3) all leaves have the same depth.
A class of m-ary trees is called dense if it is a class of r-dense m-
ary trees for some r. In particular, we speak of weakly dense m-
ary trees and strongly dense m-ary trees, respectively, if we
have in mind the classes of r-dense and (m — 1)-dense m-ary trees,
respectively.
Observe that there is only one class of dense binary trees. This class
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coincides with the class of brother trees.

Density — mmoTrHOCTD.
Let G be a graph with a vertex set V(G) and an edge set E(G). The
density of G is defined by

G is said to be balanced if for each subgraph H of G we have
d(H) < d(G), where V(H) is assumed to be nonempty. If G is not
balanced, then it contains a subgraph with greater density than that
of G. In particular, we use m(G) to denote the maximum density of
a subgraph of G, i.e.

m(G) = %1323 d(H).
m(G) is called the global density of G.

w-Density — w-10THOCTB.
The w-density of G is defined by

(See Weighted graph.3.) A weighted graph is called w-balanced, if
for each subgraph H of G, we have wd(H) < wd(G), where V(H) is
assumed to be nonempty. If G is not w-balanced, then there exists a
subgraph with greater w-density than that of G. Let wm(G) denote
the maximum w-density of a subgraph of G, i.e.
wm(G) = max wd(H).

wm(G) is called the global w-density of G.

Dependent set of a matroid — 3aBucumMoe MHOXKECTBO MATPOUIA.
See Matroid.

Depth of an arrangement — riiybuna apaHKIUpPOBKH.

Depth of an arrangeable graph — ryouna aparKupyeMoro rpada.
See Arrangeable graph.

Depth of a flow graph — rinybuna ynpasisromero rpada.
Given a depth-first spanning tree for a flow graph, the depth is the
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largest number of retreating edges on any cycle-free path. Here re-
treating edges are those going from a node m to an ancestor of m. It
is interesting and useful fact that if the flow graph is reducible, then
the retreating edges are exactly the back edges of the flow graph,
independent of the order in which successors are visited. For any
flow graph, every back edge is retreating, although, if the graph is
nonreducible, there will be some retreating edges that are not back
edges.

Depth of a numbering — rinybuna nymeparyn.

See Numbering of cf-graph.

Depth of a tree — riybuna jepesa.
Depth-first search (DFS) — nouck B riy0umy.

1. Let G be a directed graph.

It is convenient to formulate DFS as a recursive procedure DFS(v)
with a vertex v as a parameter. In general, we search for unexplored
vertices by traversing an unexplored arc from the most recently
reached vertex which still has unexplored arcs. The set REACH
contains the explored vertices. On these conditions DF'S has the
following main structure

procedure DFS(v : V)
begin
add v to REACH,
for Vw with (v,w) € E do
if w¢g REACH then DFS(w) fi
od
end

The procedure starts with

REACH « 0;
DFS(r);

and marks all vertices reachable from the start vertex r. But DF'S
gives some further information about the digraph G. In particular,
DFS computes the so-called depth-first search tree (or DFS-
tree) with a root r, which consists of all vertices reachable from the
vertex r. If G is a cf-graph with an initial vertex r, then DF S-tree
is a spanning tree of G. DFS can be easily extended in such a way
that for any cf-graph G with an initial vertex r, DFS(r) computes
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in a linear time two correlated basic numberings of G and makes
the corresponding partition of all arcs of G into the four classes of
the tree, forward, backward and cross arcs with respect to the basic
numberings.
2. Let G be an undirected graph.
Suppose that in a depth-first search of an undirected graph we are
currently visiting a vertex v. The general step in the search then
requires that the next visited is a vertex adjacent to v which has not
yet been visited. If no such vertex exists, then the search returns to
the vertex visited just before v and the general step is repeated until
every vertex in that component of the graph becomes visited. Such a
search cannot revisit a vertex except by returning to it via edges that
have been used since the previous visit. Hence, the edges traversed in
a depth-first search form a spanning tree for each separate component
of the graph. This set of trees is called a depth first spanning
forest F'. Thus, DF'S partitions the edges F into two sets, F' and
B = E\ F. The edges in B are called back-edges.
The time complexity of DF'S in a general case is O(n + m)

Depth-first search tree — sepeso noucka B riryouny.
See Depth-first search.

Depth-first spanning forest — riyounnbIit oOcTOBHBI J1ec.
See Depth-first search. 2.

Depth-first spanning tree — rurydbunnoe ocroBHOe HepeBo.
A depth-first spanning tree (or DFS-tree) is a spanning tree
which is found by the depth-first search.

Depth of a DAG — riybuna msra.
See Depth of a vertex.

Depth of a vertex — rirybuna BepiuHbI.
The depth of a vertex v in a directed acyclic graph G is the length
of the longest path in G from an input verter to v, and the depth
of G is the maximum depth of any of its vertices.
The depth of a vertex v in a rooted tree is its distance from the
root, i.e. the number of edges in the path from the root to v.

Derivation — BbiBoz (B rpaMMaTuke).
The concept of derivation is a central concept in the theory of formal
grammars and languages. Let G = (Vy, Vr, R, S) be a grammar and
a, f be two strings over the alphabet V = Vy |J Vr.
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A derivation of 8 from « in G is a finite sequence of words over V
wo, W1y .- - ,wj_l,wj, ceey Wi,

such that m > 0, wy = a, w,, = B and for any j € [1,m], w;j_1 = wj,
i.e. w; immediately derives from w;_;. m is called the length of the
derivation.

Derivations are also written as

Wy = W] = «..,= Wy

Derivation tree — mepeBo BbIBOJA.
Let G be a CF-grammar and = be a sentence form in G.
All equivalent derivations of = can be represented by its derivation
tree that is an ordered rooted tree labeled by elements from V [ J{e},
such that the following properties hold. The root of the tree has a
label S, labels of all leaves enumerated according to their ordering
forms = and for any internal node ¢ of the tree with a list of all

sons qi,qe,--.,qr, ¥ > 0, enumerated according to their ordering,
there is such a production A — ajas...a, of the grammar that
either ajas...a, # e and the nodes q,q1,q2, -...,q- have labels
A,ai,a9,...,a,, respectively, or ajas...a, = e, r = 1, ¢ has a label

A and ¢; has the empty string e as a label.
Other names are Parse tree, Syntax tree.
Derived graph — npousBogssrii rpad.
Given cf-graph G, a derived graph is I-derived graph of G.
Other name is Interval graph 2. See Reducible (control) flow graph.
Derived sequence — mocje0BaTeIbHOCTH CBEICHMSI.
k-Derived graph — k-npousBommbiii rpad.
See Reducible (control) flow graph.
Descendant — nmoromoxk.
See Directed tree.
Descendance graph — rpad moromcrsa.
Descendant of a vertex — oToMoK BEpPIIMHBI.
Deterministic automaton — jperepMuHNPOBaHHBIN KOHEUHBIN aBTOMAT.
See Model of computation.
Deterministic pushdown automaton — nerepMuHEUpOBAHHBIIT aBTOMAT
C Mara3wHHOI ITaMATbIO.
See Model of computation.
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Deterministic Turing machine — merepmunupoBannast mamuaa Thio-
puHra.
See Model of computation.

DFS — nowuck B rirybuny.
See Depth-first search.

Detour — 006xomHO# My Th.
Let Pg(vg,v1,...,vp) be the shortest path from vy to v, in a bicon-
nected graph G. A detour from v; to v,, denoted by Pg_c(vs, vp),
is the shortest path from v; to v, that does not contain the edge
e = (v, Vit1)-

Detour center — 1enTp 06x0714.
The detour center of G is a subgraph induced by the vertices of G
having the detour eccentricity radp(G).

Detour diameter — anamerp o6xoa.
The detour diameter diam p(G) is the maximum detour eccentricity
among the vertices of G.

Detour distance — paccrosinue o6xoma.
Let G be a nontrivial connected graph. For distinct vertices u and
v of G, the detour distance D(u,v) between u and v is the length
of the longest v — v path in G. Thus 1 < D(u,v) < n — 1, where
D(u,v) =1 if and only if uv is a bridge of G and D(u,v) =n — 1 if
and only if G contains a hamiltonian « — v path.

Detour dominating set — o6xoaHOe JOMITHUPYIONTEE MHOXKECTBO.
For a vertex v in G, define

D™ (v) = min{D(u,v) : u € V(G) — {v}}.

A vertex u (# v) is called a detour neighbor of v if D(u,v) =
D~ (v). The detour neighborhood Np(v) of a vertex v is the set
of detour neighbors of v, and its closed detour neighborhood is
Nplv] = Np(v)U{v}. A vertex v is said to detour-dominate a vertex
u if u = v or u is a detour neighbor of v.

Detour eccentricity — skcuenrpucurer 06xoa.
The detour eccentricity ep(v) of a vertex v in G is the maximum
detour distance from v to a vertex of G.

Detour order — nmopsiiox 06x071a.
The detour order of G, denoted 7(G), is the order of the longest
path in G.
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Detour periphery — nepudepus ob6xoza.
The detour periphery of G is a subgraph induced by the vertices
of G having the detur eccentricity diamp(G).

Detour radius — pajuyc o6xoza.
The detour radius radp(G) of G is the minimum detour eccentricity
among the vertices of G.

DFS-tree — nepeBo mnouncka B TiryOoumHy.
See Depth-first search, Depth-first spanning tree.

Diagonal of a block — jguaronasb 6Ji0Ka.

Diameter — muamerp (rpada).
1. See Eccentricity of a vertex.
2. The maximum distance between points of a graph is called its
diameter.

Diameteral chain — nunamerpasibhas 1enb.
See Eccentricity of a verter.

k-Diameter — k-muamerp.
Let Pi(u,v) = {Py, Py, -+, Py} be a family of k vertex disjoint paths
between u and v with lengths |Py| > |Py| > -+ > |Pg|. The k-
distance between u and v is the minimum |P;| among all Py (u,v),
and the k-diameter d,(G) of G is

di(G) = max{di(u,v) : v # v and u,v € V(G).

The concept of k-diameter naturally arises from the study of routing,
reliability, randomized routing, fault tolerance and other communica-
tion protocols in the parallel architecture and distributed computer
networks.

Diamond — amvas3.
This is a graph obtained from K, by deleting any edge.

Difference digraph — pasmocrusbiit rpad.
A digraph G is a difference digraph iff there exists an S € INT
such that G is isomorphic to the digraph DD(S) = (V, A), where
V=Sand A={(i,j):i,jeVANi—jeV}

Difference of graphs — pasaoctb rpados.

Differential of a graph — muddepennman rpada.
Let B(X) be the set of vertices in V' — X that have a neighbor in the
set X. We define the differential of a set X to be 9(X) = |B(X)|—
|X|, and the differential of a graph to equal the max{d(X)} for
any subset X of V.
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Differential of a set — quddbepennman mHOXKECTBA.
See Differential of a graph.

Digraph — oprpad.
The same as Directed graph.

Dijkstra’s algorithm — ajropurm [leiikcrpsbr.

Dimension of a poset — pazmepHOCTH Uy-MHO2KECTBA.
See Linear extension.

d-Dimensional c-ary array — d-MepHBbIif c-apHBIfI MaCCHB.

d-Dimensional c-ary clique — d-mepHnas c-apHas KiIuKa.

n-Dimensional hypercube — n-mepusbrit runepxy6.
The same as n-Cube graph.

d-Dimensional lattice — pemrergarsiit d-mepHbBIi Tpad.

k-Dimensional poset — k-meproe 9y-MHOXKECTBO.
The order dimension dim(P) of a poset P = (V, <) is the smallest
number of linear extensions Li,...,L; of P, L; = (V,<;), whose
intersection is P, i.e. a < biff a <; b for all 4 = 1,...,k. A partial
order P is k-dimensional poset if dim(P) < k. See also n-Mesh.
The decision problem DIM; = {P : dim(P) < k} is NP-complete
already for k = 3, whereas 2-dimensional posets can be recognized
in a polynomial time.

Dinitz’s algorithm — anropurm Jdunura.
This is the algorithm for finding maximum flows in undirected graphs
that repeatedly augments the current flow by a blocking flow in the
graph induced by the residual arcs on shortest paths from s to ¢.
It is known that Dinitz’s algorithm terminates in min(n?/3m!/?)
iterations.

F-Direct arc — F-upsamag jyra.
See Numbering of cf-graph.

Direct product — npsamoe npoussenenne [rpados].
See Product of two graphs.

Direct search — nepebop.
See Exhaustive search.

Directed acyclic graph — opuenTupoBanblit anukjandeckuii rpad, opu-
€HTHUPOBAHHBIN OECKOHTYPHBIN Trpad, J3T.
See DAG.

Directed edge — opuenTupoBanHOe pebpo, Jyra.
The same as Arc.
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Directed graph — opuentupoBanmbiii rpad, oprpad.
A directed graph G, or simply a d-graph, digraph, consists of a
finite set of vertices (or nodes) V, a finite set of arcs (directed edges)
E, and two mappings s and t from F to V x V| assigning to each
arc e its source, positive end and target, negative end nodes,
respectively. The digraph G will be denoted by G = (V, E, s,t) or
simply G = (V, E). Let G = (V, E, s,t) be a digraph; we define the
underlying (undirected) graph of G as Und(G) = (V, E, Ends)
with:
Ve € E, Ends(e) = {s(e),t(e)}.

If s(e) = w and t(e) = v for some e € E, then u is a server of v, and
v is a receiver of u. A vertex w is called a common server of u
and v, if w is a server of v and v. Similarly w is called a common
receiver of u and v, if w is a receiver of v and v.

Directed hypergraph — opuentupoBanHblit runeprpad.
A directed hypergraph H is a pair (N, E), where N is a nonempty
set of nodes or vertices and F is a set of hyperarcs; a hyperarc e is
an ordered pair (T, h), with T C N, T # () and h € N; h and T are
called the head and the tail of the hyperarc e and will be denoted
with Head(e) and Tail(e), respectively.
The size of a directed hypergraph can be defined as a sum of the
cardinalities of its hyperarcs:

size(H) = Z T

ecE

Directed hyperpath — opuenTupoBaHHbIN THIIEPITYTH.

A directed hyperpath Pg; from the root set R (C V) to the sink
t (¢ V) in H is a minimal acyclic sub-hypergraph of H containing
both the nodes of R and node ¢, such that each node, with exception
of the nodes in R, has exactly one entering hyperarc.

The definition of a hyperpath can be extended as follows. A (directed)
hypertree T rooted at R in H is an acyclic sub-hypergraph of H
containing the nodes in R, such that each node, with the exception
of the nodes in R has exactly one entering hyperarc.

The set R is called the root set, while the remaining nodes are
called the non-roots. Any non-root v not contained in the tail of any
hyperarc of Tg is said to be a leaf of the hypertree. By definition,
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for any non-root v there is a unique directed hyperpath in Tz from
R to v.
An undirected hyperpath (hypertree) is a “permutation” of a
hyperpath Pg; (hypertree Tg), i.e. it is obtained by a permutation
of some of the hyperarcs on Pg; (Tr), where the permutation of a
hyperarc e is a hyperarc ¢’ such that T, U h., = T, sup he.

Directed hypertree — opuenTupoBanHOe THIIEPAEPEBO.
See Directed hyperpath.

Directed tree — opuenTUpoBaHHOE JIEPEBO, OP/IEPEBO.
A directed tree T is an acyclic digraph with one distinguished
vertex r called the root, such that there is a simple path of length

greater than 0 from r to any vertex v (r 5 v) for all vertices v, v # r,
and no arcs enter r. In a tree exactly one arc enters every other vertex
as the root. A tree vertex with no existing edges is a leaf. Let (v, w)
be a tree arc, then v is a father of w and w is a son of v. If there
exists a path from v to w, then v is an ancestor of w and w is a
descendant of v.
A tree node z is called a common ancestor of nodes v and w if and
only if there are paths from z to v and from z to w. The vertex z
is the nearest common ancestor of v and w iff there is no other
common ancestor z of v and w with = # 2z and there is a path from
z to x. The hight of a node v in T is the length of a path with the
maximum length from v to a leaf in the subtree of v.
A sink-tree S is a tree in which arcs are directed from a son to its
father or, in other words, there is a path from w to the root r for
eath node w.

F-Direct arc — F-upsamag jyra.
See Numbering of cf-graph.

Directable graph — opuentupyemsrit rpad.

Directed forest — opuenTUpOBaHHBI J1eC.

Directed multigraph — opuenTupoBanubiit MyabTHTPAD.

Directed sequence — opueHTHPOBAHHBII MapIIPYT.

Diregular digraph — jguperymnsipusiit oprpad.
Let p € {1,2,...}. A digraph D is called p-diregular if every vertex
of D has the degree pair (p, p). Hence, if a p-diregular oriented graph
has n vertices, then p < 2=L. Moreover, a digraph is called diregular

2
if it is p-diregular for some p.
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Dirichlet eigenvalue problem — mpobaema JJupuxie o cCOOCTBEHHBIX 3HA~
YEHUSX.
The Dirichlet eigenvalue problem can be introduced by restricting
the eigenfunctions of the graph Laplacian to f such that f(ug) =0
for all boundary vertices ug € V.

Disc — jawuck, okpectHOCTH TIOpsizKa k.
Let v be a vertex of G. A disc centered at v with a radius k is the
set of all vertices whose distance to v is at most k : N*[v] = {u: u €
V and d(u,v) < k}.
See also Neighbourhood.

Disconnected graph — necBs3HbIil Tpad.
See Connected graph.

Discrete matroid — cBobGomHbIIT MaTpOw/I.

Disjunct union of graphs — qu3bOHKTHOE 00beIUHEHNE IPADOB.

Dismantlable graph — paz6opssrii rpad.
A graph G is said to be dismantlable if its vertices can be removed
one after another in such a way that a vertex x can be taken off the
currently remaining subgraph G, of G if there exists a vertex y in
G which is adjacent to = and to all neighbors of z in G.
A graph G is said to be dismantlable if there is a well-order < on
V(G) such that every vertex x which is not the greatest element of
(V(G), =), if such a greatest element exists, is dominated by some
vertex y # x in a subgraph of G induced by the set {z € V(G) :
x = z}. The well-order = on V(G), and the enumeration of the
vertices of GG induced by =, will be called a dismantling order and
a dismantling enumeration, respectively.
See also Constructible graph.

Dismantling enumeration — pasbuparomas HyMepaIus.
See Dismantlable graph.

Dismantling order — pazbuparomuit mopsI0K.
See Dismantlable graph.

Disorientation of an arc — nme3opuenrarus yru.

Dissection — pacceuenue.

Distance — paccrosmmue.
1. The distance between two vertices u,v, denoted d(u,v), is the
length of the shortest path between them. If no path of G connects
u to v, their distance is co.
2. If Hy and Hy are subgraphs of a graph G, the distance between
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H, and H is defined as
min{dg(z,y)| x € V(H1),y € V(H2)}.

3. For a vertex subset S of V(G), the distance of S, denoted by
d(S), is equal to the sum of the distances between all pairs of distinct
vertices of S. In particular, d(V(G)) = d(G).

k-Distance — k-paccrosinue.
See k-Diameter.

Distance-hereditary graph — aucrannmonno-HaceyeMbrit rpad.
A graph is distance-hereditary graph if the distance stays the
same between any of two vertices in every connected induced subgraph
containing both. distance-hereditary graph form a subclass of
perfect graphs. Two well-known classes of graphs, trees and cographs,
both belong to distance-hereditary graph.

Distance-transitive graph — mucranIuoHHO-TPAH3UTUBHLIN rpad.

H-distance — H-paccrostaue.
Let G; and G2 be two graphs of the same order and size such that
V(G1) = V(G2), and let H be a connected graph of order at least 3.
A G1—Gs H-path is a sequence Gy = Fy, F1, ..., Fx, = G of graphs
of the same order and the same size such that F; is H-adjacent to
Fit1fori=0,1,...,k—1. The graphs G; and G2 are H-connected
if there exists a G; — G2 H-path. For H-connected graphs G and G,
the H-distance di(G1,G2) from G; to Go is the minimum number
of H-adjacencies required to transform G, into Gs.

k-Divergent graph — k-guBeprenTHsbiit rpad.
See Clique graph.

Divider — penurens.
See Separator.

Ditree — opaepeso.

Domatic number — momaTndeckoe 4mucIo.
The domatic number d(G) (or dom(G)) of G is the maximum
cardinality of a domatic partition of G. The domatic number is
one of the numerous domination invariants. It was introduced by
Cockayne and Hedetniemi in 1977. Clearly, any graph G satisfies
d(G) <6(G) +1 (6(G) is a minimal degree of G). Graphs for which
d(G) achieves this upper bound 6(G) + 1 are called domatically
full.

Domatically full graph — nomaruteckn moHbIi Tpad.
See Domatic number.
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Domatic partition — mromarndeckoe pazdouenue.
A domatic partition of G is a partition D = {D;,..., D;} of V(G)
into (pairwise) disjoint dominating sets. The domatic number d(G)
of G is the maximum cardinality of a domatic partition of G.
Dominance number — 4wncjio JOMUHUPOBAHUSI.
Dominant set — momuHHpyfomee MHOKECTBO.
See Independent set.
Dominant-covering graph — 1oMuHaHTHO-TIOKPBIBAIONTINH Tpad.
A graph G is called a dominant-covering graph if v(H) = 7(H)
for every isolate-free induced subgraph H of G. Here (G) is the
domination number, and 7(G) is the vertex-coverung number of G.
Dominant-matching graph — gomunnanTHBI rpad mapocodeTaHns.
A graph G is called a dominant-matching graph if v(H) = u(H)
for every isolate-free induced subgraph H of G. Here v(G) is the
domination number, and p(G) is the matching number of G.
Dominating cycle — gomunupyrommuit muki.
1. A cycle C in G is called a dominating cycle if the vertices of
the graph G — C' are independent.
2. A cycle C'in G is called a dominating cycle if V(C) is a dominat-
ing set of G.
3. In some papers, a dominating cycle is defined as a cycle such
that every edge in G is incident with a vertex in C.
Other name is Covering cycle.
f-Dominating cycle — f-aoMuHUPYOIINIA ITUKJI.
Let f be a non-negative integer-valued function defined on V(G).
Then a cycle C is called an f-dominating cycle if dg(C) < f(v)
for every x € V(G). By taking an appropriate function as f, we can
give a unified view to many cycle-related problems. If f is a constant
function taking the value 0 (resp. 1), then an f-dominating cycle is
a Hamiltonian cycle (resp. a dominating cycle) of G.
Dominating function — jpomunupyromast QyHKIHS.
A signed dominating function of G is defined as g : V — {£1}
satisfying g(N[v]) > 1 for all v € V. A signed dominating function g
is minimal if there does not exist a signed dominating function h # g
satisfying h(v) > g(v) for every v € V. The signed domination
number of a graph G is defined as v,(G) = min{g(V')| g is a minimal
signed dominating function of G}.
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A minus dominating function is defined as a function g : V —
{0, £1} such that g(N[v]) > 1 for all v € V. Similarly, we can define
a minimal minus dominating function, the minus domination number
7 (G) of G.
A majority dominating function of a graph G is defined as a
funmction g : V — {£1} such that for at least half the vertices v €
V, g(N[v]) > 1. Similarly, a minimal majority dominating function
and the majority domination number 7,,q;(G) of G are defined.

Dominating graph — nomunupytommii rpad.
A dominating graph D(G) is the graph with V(D(G)) = V(G) U
S(G), where S(G) is the set of all minimal dominating sets of G, and
two vertices u,v € V(D(QG)) are adjacent if u € V(G) and v = D is
a minimal dominating set containing w.

Dominating path — nomMunupytommit myTh.
A path P in G is called dominating if the vertices of the graph
G — P are independent.

Dominating set — qomuHupyIoNIee MHOXKECTBO.
A set S CV is a dominating set of G if for all v € V '\ S there is
a vertex u € S such that (u,v) € E(G). The minimum cardinality of
a dominating set of G is called the domination number of G. It
is well-known that determining the domination number of a graph is
NP-hard.
A dominating set S is called independent if the induced subgraph
(S) is empty; total if (S) has no isolated vertex and connected if
(S) is connected. The minimum cardinality taken over all minimal
independent (total/connected) dominating sets in G is called the
independent (total/connected) domination number of G and is
denoted by 7; (v¢/7e)-
For a vertex v of a graph G = (V, E), the domination number
7, (G) of G relative to v is the minimum cardinality of a dominating
set in G that contains v. The average domination number of G is

Yau (G) = ﬁ Z Y0(G).

veV

The independent domination number i,(G) of G relative to v
is the minimum cardinality of a maximal independent set in G that
contains v. The average independent domination number of
G is
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. 1 ‘
'Lav(G) = m Z h,(G).

A dominating set of a digraph G is a set S of vertices such that
for every vertex v € S there exists some u € S with (u,v) € E(G).
The domination number 7(@) of G is defined as the cardinality
of the smallest dominating set.

The dominating set problem is NP-complete on arbitrary graphs. It
is also NP-complete on several classes of graphs, including planar
graphs, bipartite graphs and chordal graphs. The problem can be
solved in polynomial time on, for example, AT-free graphs, permuta-
tion graphs, interval graphs, and trees.

See also k-restricted total dominating number.

Dominating vertex — momuHUpyOIIas BepIiinHa.
Dominating walk — moMUHUDPYIOIITHIT MaPIIPYT.

A dominating walk W in a graph G is a walk such that for each
v € V(G), either v € V(W) or v is adjacent to a vertex of W.

k-Dominating cycle — n-goMuHEpYyIOIllee MHOXKECTBO.

See Weak k-covering cycle.

n-Dominating set — n-goMuHEpyIOIIEe MHOXKECTBO.

A set D of vertices in a graph G is defined to be an n-dominating
set of G if every vertex of V(G) — D is within distance n from
some vertex of D. The minimum cardinality among all n-dominating
sets of a graph G is called the n-domination number of G and is
denoted by 7, (G), while the maximum cardinality among all minimal
n-dominating sets of a graph G is called the upper n-domination
number of G and is devotedly I',,(G). A set D of vertices in a graph
G is called n-independent if d(u,v) > n for all u,v € D. The
independent n-domination number of a G, denoted by i, (G), is
the minimum cardinality among all maximal n-independent sets of
a graph G, while the n-independence number of GG, denoted by
Bn(G), is the maximum cardinality among all maximal n-independent
sets of a graph G.

Domination graph — rpad momuHupoBaHUsI.

Let D be a digraph with a vertex set V(D) and an arc set A(D).
If (z,y) € A(D), then = dominates y. A vertex is also considered to
dominate itself. The domination graph of D, dom(D), is the graph,
where V(dom(D)) = V(D) and {z,y} € E(dom(D)), whenever x
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and y dominate all other vertices in D.

Domination graph (of a tournament) — rpad gomuHUpOBaHUS.
The vertices z and y dominate a tournament T if for all vertices
z # x,y, either x beats z or y beats z. Let dom(T") be a graph on the
vertices of T" with edges between pairs of vertices that dominate T'.
This graph is called a domination graph. It is known that dom(7T)
is either an odd cycle with possible pendant vertices or a forest of
caterpillars. Also a domination graph is the complement of the
competition graph of the tournament.

Domination number — 4uc/io foMUHUDOBaHMS.
See Dominating set.

Domination number relative to v — uwnciio gomMuHUpOBaHUS OTHOCH-
TEJIbHO BEPIIIHBI V.
See Dominating set.

Domination perfect graph — cosepiuenssblit rpad JTOMUHIPOBAHUSI.
See Hereditary class of graphs.

Domination subdivision number — ngomunrupytomee uncio nogpazdue-
HUS.
The domination subdivision number sd, (G) of a graph G is the
minimum number of edges that must be subdivided (where an edge
can be subdivided at most once) in order to increase the domination
number. It is known that this number is at most 3 for any tree.
See also Independence subdivision number.

~v-Domination critical graph — ~v-momunupyromuit Kpurmaeckuit rpad.
A graph is said to be y-domination critical graph, or just ~-
critical, if v(G) = v u v(G +e) = v — 1 for every edge e in the
complement G of G.

n-Domination number — guncso n-goMuHUPOBAHUS.
See n-Dominating set.

Dominator — o6s13aTeIbHBIN TPEIeCTBeHHUK, JOMUHATOP.
Given a cf-graph G with the initial vertex r and two vertices x and y
in G. The vertex x is a dominator of the vertex y (z dominates y) if
any path P(r,y) contains z; if x # y then x is a proper dominator
of y. We denote as DOM (x) the set of all dominators of the vertex
x. The vertex x is the immediate dominator of y, denoted as
IDOM(y), if x is a proper dominator of y and no vertex z & {z,y}
exists such that € DOM (z) and z € DOM (y).
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Dominator tree — mepeBo TOMUHATOPOB, JOMUHATOPHOE JIEPEBO.

The dominator tree Tp of a dag G is a concise representation of
the dominance relationship, where, for each vertex z in G, the parent
of z in Tp corresponds to DOM (z). Hence, a vertex 2 dominates a
vertex y in G iff z is an ancestor of y in Tp. Given a set U C V,
a vertex d € V is the nearest common dominator of U if the
following two conditions hold: (1) d dominates all vertices of U; (2)
there is no vertex d’ # d that dominates all vertices of U and is
dominated by d.

Domino — gomumno.

1. A graph which consists of two cycles of length 4 with a common
edge is called a domino.

2. A domino is a graph in which every vertex is contained in at most
two maximal cliques. The class of such graphs properly contains the
line graphs of bipartite graphs. Every domino is a line graph of a
multigraph, and hence claw-free. The class of the domino graphs is
hereditary; i.e. if G is a domino, then every induced subgraph of G
is also a domino.

Domsaturation number — qnc/io JOMUHUPYIONIETO HACHIITIEHHUSI.

See Restricted domination number.

Double competition number — 4wncjio J1BOiiHOI KOHKYpPEHIUN.

See Competition graph.

Double dominating set — aBoitnoe JoMEHUpPYIONTEE MHOXKECTBO.

A set S C V(G) is a double dominating set for G if every vertex
in V is dominated by at least two vertices in S. The minimum
cardinality of a double dominating set is a double domination
number, denoted dd(G). Obviously, every double dominating set
is also a dominating set. Note that the concept of double domination
can be extended to multiple domination (h-tuple domination)
by requiring that each vertex in V' be dominated at least h times.
The concept of double domination in graphs was defined by Harary
and Haynes (2002).

A double dominating set is exact if every vertex of G is dominated
exactly twice. The problem of existence of an exact double domina-
ting set is an NP-complete problem.

Double domination number — gBoiiHoe YKMCIO JOMUHUPOBAHUS.

See Double dominating set.
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Double edge dominating set — aBoiiHoe pébepHoe JOMTHUPYIOIEE MHO-
JKECTBO.
A set F C F is a double edge dominating set of G if each edge
in F is adjacent to at least two edges in F. The double edge
domination number dd.(G) of G is the minimum cardinality of
a double edge dominating set of G.

Double edge domination number — aBoitHoe pébepHoe JOMUHUPYIOIIEE
MHOKECTBO.
See Double edge dominating set.

Double rotation — aBoiinoe Bparenue.

Double ray — ngoiinoit sy4.
See Ray.

Double star — gBoitnas 3Be3a.
A double star Sj j is a tree on 2k + 2 vertices consisting of two
adjacent vertices u and v of degree k 4+ 1 and 2k end vertices.

Doubly chordal graph — aBaxkasr xopaaJibHbI rpad.
A vertex v of a graph G is doubly simplicial if v is simplicial
and has a mazimum neighbor. A linear ordering (v1,...,v,) of the
vertices of G is doubly perfect if for all i € {1,...,n} v; is a doubly
simplicial vertex of G; (a subgraph induced by v;,...,v,). A graph
G is doubly chordal if it admits a doubly perfect ordering. It is
known that the powers of a doubly chordal graph are doubly
chordal.

Doubly perfect ordering — nBoiitoit coBepIIeHHBIN TOPSIIOK.
See Doubly perfect graph.

Doubly regular tournament — j1BoitHOI peryssipHbBIi TYpPHUP.
See Tournament.

Doubly simplicial vertex — aBoitHasi cuMIIUITIAIbHAST BEPIITHA.
See Doubly chordal graph.

Dual hypergraph — aBoiicTBennblit rutieprpad.
A dual hypergraph H* has H as its vertex set and {e € H; v €
e} (v e V) as its edges.

Doubly stochastic matrix — 6ucroxacTuueckass MaTpHILA.

Dual graph — aBoiicTBennblit rpad.

Dual hypertree — aBoiicTBennoe rumepaepeso.
See Hypertree.

Dual map — apoiicTBenHas Kapra.
A dual map of a connected planar graph G is the map G* constructed
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as follows. We select a point xp in each of the faces F' of G; these
will be the vertices of G*. Also we select a point p, on each edge e of
G. We connect each point p, to the points xp, zp by Jordan curves
Je, J. interior to F' and F’, respectively, where F, F’ are two faces
adjacent to e. If FF = F’ (i.e. the same face of G bounds e from both
sides), then J., J. should connect p. to zr such that they leave p. on
different sides of e (this happens, if e is a cutting edge. Moreover, let
us choose J,, J. such that the arcs J, connecting X to points p, on
the boundary of F' should have no point in common other than zp.
Set e* = J.UJ. and E(G*) = {e*: e € E(G)}. Then G* is a planar
map and is, essentially, uniquely defined, i.e. if G* is another dual
map of G, then there is a homeomorphism ¢ of the plane onto itself
such that ¢(z) = z for each z € V(G), ¢(e) = e for each e € E(G),
©(V(G*)) = V(G*) and if & is the edge corresponding to e* in G*,
then ¢(e*) = é*. The dual of G* is G. The above construction and
these last assertions involve much from plane topology that we accept
here without proof.

Dual matroid — maTpouns 1BOHCTBEHHBIH

For a matroid M on a set E with a family B of bases, another family
B* defined by

B*={E\B:Be€B}
is shown to be the family of bases of another matroid M™* on the same
set F, which is called the dual matroid. Obviously, (M*)* = M.

A base and a circuit of M* are called a cobase and a cocircuit of
M, respectively.

Dual tournament — napoiicrBeHHBII TYpHHD.

Let T = (V,A) be a finite tournament with n vertices. The dual
of T is the tournament T* = (V, A*), defined by: for all z,y € V,
(y,x) € A* if and only if (z,y) € A.

The tournament 7' is selfdual, when T is isomorphic to T™.

Dually chordal graph — aBoiicTBeHHO-XOpIAJIBHBI rpad.

A vertex u € N[v] (N[v] is a closed neighborhood of v) is a maximum
neighbor of v if for all w € Nv], N[w] C NJu] holds (note that v = v
is not excluded). A linear ordering (vy,...,v,) of V is a maximum
neighborhood ordering of G if for all i € {1,...,n}, there is a
maximum neighbor u; € N;[v;]; i.e.,

for all w € N;[u;], N;[w] C N;[u;] holds.
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The graphs with maximum neighborhood ordering are dual to chordal
graphs and called dually chordal graph.
The k-th power G*, k > 1, of G has the same vertices as G, and
two distinct vertices are joined by an edge in G* if and only if their
distance in G is at most k. It is known that any power of a dually
chordal graph is dually chordal.

Dually compact closed class of graphs — 1BoiicTBEHHO-KOMITAKTHO 32~
MKHYTBIN KJ1acC rpadoB.
See Compact closed class of graphs.

Dudeney set — muoxkectBo [Iptonene.
Dudeney set in K, is a set of Hamilton cycles with the property
that every path of length two (2-path) in K, lies on exactly one of
the cycles. We call the problem of construction a Dudeney set in K,
for all natural numbers ”"Dudeney’s round table problem”.

Dudeney’s round table problem — npob6siema /IproeHe Kpyrosbix Tab-
JINIL,
See Dudeney set.
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E

Eccentric graph — rpad sxcrieHTpucuTeTOB.
A graph G is an eccentric graph if every vertex of G is an eccentric
vertex. If G is self-centered, then G is an eccentric graph.

Eccentric sequence — 10cj1e/10BATEILHOCTD SKCIIEHTPUCUTETOB.
For a graph G, the eccentric sequence of GG is the sequence of
the vertex eccentricities in ascending order. A vertex v is a mode
vertex if the eccentricity of v appears at least as often in the eccentric
sequence as any other eccentricity. The mode of a graph G is the
subgraph induced by its mode vertices.
If u is a farthest vertex from v, then u is an eccentric vertex of v,
and we say that u is an eccentric vertex if it is an eccentric vertex
of at least one vertex of G. In a graph G with a vertex set V(G),
vertices in a set X C V(G) are mutually eccentric if for all pairs
u,v € X, u is eccentric for v and v is eccentric for u.
Another way of describing an eccentric vertex is to say that u is an
eccentric vertex of v if d(u, v) = e(v). If each vertex of G has exactly
one eccentric vertex, then G is unique eccentric point graph. A
simple class of unique eccentric point graphs are the paths P, on an
even number of vertices.

Eccentricity of a vertex — sxcuenTprucuTeT BEPIITHHEI.
Let d(x,y) be the distance in a graph G. Then the eccentricity e(v)
of a vertex v is the maximum over d(v, ), = € V(G). The minimum
over the eccentricities of all vertices of G is the radius rad(G) of G,
whereas the maximum is the diameter diam(G) of G. A pair z,y
of vertices of G is called diametral iff d(z,y) = diam(G). A chain
in G which length is equal to diam(G) is called a diametral chain.
See also Quasi-diameter, Quasi-radius.

Edge — pebpo.

Edge adding — nob6asiienue pebpa.

(a,d)-Edge-antimagic total graph — (a, d)-pé6epro-anTumarundeckuii To-
TaJabHBII Tpad.
See Super (a,d)-edge-antimagic total labeling.

(a,d)-Edge-antimagic total labeling — (a, d)-pébepao-anTrMarnyeckas
TOTajIbHAs PACKPaCKA.
See Super (a,d)-edge-antimagic total labeling.

Edge chromatic number — pebepHO-XpoMATHIECKOE TUCTIO.
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Edge clique cover — nmokpbiTue pébep KJINKaMHU.
An edge clique cover of G is a collection of cliques that covers all
edges of G. The minimum number of cliques in an edge clique cover
is called the edge clique cover number and denoted by 6.(G).

Edge clique cover number — uucjio pé6epHO-KJINKOBOI'O MOKPBITHS.
See Edge clique cover.

Edge colourable graph — pebepHo-packpammBaemblit Tpad.

Edge k-colourable graph — pebepno-k-packparmuBaeMbiii Tpad.

Edge k-colouring — pebepnas k-packpacka.

k-Edge-connected graph — k -pébepHo-cBsi3HbIiN rpad.
A graph G is k-edge-connected graph if there is no edge cut set
of G of cardinality less than k.

Edge connectivity — pebeprasi ¢cBA3HOCTb.
We define the edge-connectivity, K.(G) or K., for the connected
graph G to be the size of the smallest cut-set of G. G is said to be
h-edge-connected for any positive integer h satisfying h < K (G).
We denote the smallest degree of any vertex in a graph by ¢§. Since
the set of edges incident with any vertex forms a cut-set, we have
0 > K.(G).
For any connected graph G:

K,(G) < K.(G) <.

K,(G) is the vertex-connectivity.
The local-edge-connectivity A(u,v) of two vertices u and v in a
graph or digraph D is the maximum number of edge-disjoint u — v-
paths in D, and the edge-connectivity of D is defined as A\(D) =
min{A(u,v)|u,v € V(D)}.
Edge connectivity number — uucso pebepHoii cBsi3HOCTH.
Edge-cordial graph — pébepro-cepaednsiit rpad.
See Edge-cordial labeling.
Edge-cordial labeling — pébepno-cep/ieunast pa3meTka.
Yilmaz and Cahit introduced in 1997 edge-cordial labeling as
a weaker version of edge graceful labeling. Let f be a binary edge
labeling of graph G = (V, E); that is, f : E — {0, 1}. Let the induced
vertex labeling be given by f*(v) = > cp f(uv) (mod 2), where
v € V. The function f is called an edge-cordial labeling of G if the
following two properties hold:
(1) |les(0) —es(1)] <1, and
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(2) Jus (0) — vp(D)] < 1,
where ef(0) and ef(1) denote the number of edges, and v;(0) and
v¢(1) denote the number of vertices labeled with 0 or 1, respectively.
The graph G is called edge-cordial if it admits an edge-cordial
labeling.

Edge core — pebepnoe s1apo.

Edge covering — pebepHoe TOKpBHITHE.

Edge critical graph — pebepuo-kputndeckuit rpad.

Edge cut, edge cut set — pazpes.

A set X of edges of a graph G is called an edge cut if G \ X has
more connected components than G. An edge cut of G minimal
under inclusion is called a cocircuit of G. A vertex star, which is
the set of edges in G incident to that vertex, is associated with each
vertex in G.

Edge-degree — pébepras crerneHsb.

The edge-degree {;(e) of the edge e = (uv) € E(G) is defined by

éa(e) = deg(u) + deg(v) — 2.

Edge density — pébeprast mI0THOCTD.
Given an undirected graph G = (V| F) and a nonempty subset X C
V', the edge density of X is given by

p(X) = [VI[Ex|/IX[IV\ X],

where Ex is the set of all edges with one end in X and the other end
in V\ X.

Edge dominating set — pébeproe JoMuHUPYIONEE MHOXKECTBO.
A set F' of edges in a graph G is an edge dominating set if every
edge in F — F is adjacent to at least one edge in F. The edge
domination number 7! (G) is the minimum cardinality of the edge
dominating set of G.

Edge domination number — pébepHoe HOMUHUPYIOIEE MHOXKECTBO.
See Edge dominating set.

Edge-graceful labeling — pébepro-rparmo3nasi pa3Merka.
Edge-graceful labeling of graphs was introduced by Lo in 1985.
Let G(V, E) be a simple graph with |V| = p and |E| = ¢. Then, G is
said to be edge-graceful if there exits a bijection f : F — {1,2,...,q}
such that the induced mapping f*: V — {0,1,2,...,p—1}, defined
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by
frw)= > f(uw) (mod p)

uwvel
is also a bijection.
Edge graph — pebephblit rpad.
Edge group of a graph — pebepuas rpynma rpada.
Edge incidency matrix — marpura cmexxuoctu pebep.
Edge-independent number — 4ucio pébepHoit HE3aBUCUMOCTH.
The same as Matching number.
Edge isomorphic graphs — pebepro nzomopdnsie rpadsi.
Edge-isoperimetric problem — pébepHo-uzonepumerpudeckas 3a1a4a.
Given a graph G = (V, E,9) having the vertex-set V, edge-set E
and boundary-function 0 : E — 9
vertices incident to each edge, we define

4 ) which identifies the pair of

O(S)={ec E: d(e) ={v,w},v e S&w ¢ S}.

Then, the edge-isoperimetric problem is to minimize |9(S)| over
all S C V such that |S| =k for a given k € Z+.

Edge kernel — pebepnoe spo.

Edge-labeling — pa3smerka pébep.
See Labeling.

Edge list — crimcok pebep.

Edge-magic total graph — pebepro-Marmdyeckuit TOTaabHBIN rpad.
An edge-magic total labeling on G will mean a one-to-one map
A from V(G) U E(G) onto the integers 1,2, ..., v+ e with a property
that for any edge (x,y)

Aax)+ Mz, y) + My) =k

for some constant k. It will be convenient to call A(z) + Az, y) + A(y)
the edge sum of (x,y), and k (constant) a magic sum of G. A graph is
called edge-magic total if it admits any edge-magic total labeling.
It is known that caterpillars and all cycles C,, are edge-magic total.
See also Verter-magic total graph.

Edge-magic total labeling — pebepro-marndeckass ToragbHas pacKpac-
Ka.
See Edge-magic total graph.
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Edge monochromatic class — pebepHbriil BeTHOIT KJacc.
Edge of attachment — coemquusiomniee pedpo.
Edge of a hypergraph — pe6po runeprpada.
See Hypergraph.
Edge-ordering — pébepnoe yropsigoduenue.
See Oscillation of graph.
Edge-pancyclic graph — pébepno-nanmukamdecknii rpad.
See Edge-pancyclicity.
Edge-pancyclicity — pébepHas MaHIMKINIHOCTD.
A graph G is called edge-pancyclic if every edge of G lies on a cycle
of every length from 4 to n.
Edge path cover — mgyrosoe myTeBoe MOKpBHITHE.
Let P ={P,..., P} be aset of paths in a digraph D. P is an edge
path cover of D iff {E(Py),...,E(Pg)} is a partition of E(D).

pne(D) = min{|P| : P is an edge path cover of D}

is the edge path number of D.

Edge path number — ayrosoe myTeBoe mokpbITHE.
See Edge path cover.

Edge ranking number — pébepHo-paHroBoe IuCIIO.
See Edge t-ranking.

Edge reconstructibility — pebepras pekoHCTPYyHUpPyeMOCTb.

Edge regular graph — pebepno-perysspublit rpad.
Let X be a graph and A = Aut(X) be the full automorphism group
of X. Let G be a subgroup of the full automorphism group A of the
graph X. We call X G-edge regular if the action of G on E(X) is
regular. When G = Aut(X), we remove the prefix G— and call X
edge regular.

Edge symmetric graph — pebepro-cuMmMmerpudeckuii rpad.

k-Edge connected graph — k-pebGepHo cBsi3HbIil rpad.
A graph G is k-edge connected if there exist k internally edge-
disjoint chains between every pair of distinct nodes in G.

Edge-cover — pebepHoe TOKpBHITHE.
Given a graph (hypergraph), an edge-cover is a set of edges contai-
ning all vertices.

Edge-critical graph — pebepro-kpurnaeckuit rpad.
A graph G is called edge-critical with respect to a property P if G
has it but, on removing any edge, the resulting graph will not have
the property P. Point-critical is defined analogously.
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Edge-forwarding index — pébepHo-IpoABUTAIONINIT WHIEKC.
See Routing.
Edge-graceful graph — pebepHo-rpanmosssii rpad.
A graph G(V, E) is said to be edge-graceful if there exists a bijection

f: BE—=A{L2... |E|}
such that the induced mapping
ff:v—={01,...,|V|-1}

given by
fH@) = {f(zy)ley € B} (mod |V)

is a bijection.
One of the well known conjectures came from Lee in 1989:
Conjecture (Lee). Every tree with an odd number of vertices is
edge-graceful.
This conjecture has not been proved yet.

Edge-integrity — pebepnasi 11eJIOCTHOCTS.
The edge-integrity of a graph G is

I'(G) = min{|S|+ m(G—-S): S C E},

where m(H) denotes the maximum order of a component of H.

Edge-ranking of a graph — pebepHoe ynopsijgouenue rpada.

Edge t-ranking — pebepHoe t-paHKUpOBaHUE.
Let G = (V,E) be a graph and ¢ be a positive integer. An edge
t-ranking is an edge coloring ¢ : E — {1,...,t} such that for
every pair of edges e and f with ¢/(e) = ¢/(f), there is an edge g on
every path between e and f with ¢/(g) > ¢/(e). The edge ranking
number, x/.(G), is the smallest value of ¢ such that G has an edge
t-ranking.
See also Vertex t-ranking.

Edge space — mpocTpanicTBo pédep.
The edge space £(G) of a simple graph G = (V(G),E(G)) is a
power set of its edges E(G) endowed with the structure of a vector
space over the two-element field F» = {0,1}. Addition in £(G) is a
symmetric difference of sets, and zero is the empty set.
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Edge-superconnectivity — pébepras cymepcBsI3HOCTD.
Superconnectivity is a stronger measure of connectivity. A maximally
edge-connected graph is called super-)\ if every edge cut (C,C) of
cardinality §(G) satisfies either |C| = 1 or |C| = 1. In order to
measure the super edge-connectivity, we use the following parameter:

A1 (G) = min{|(C,C)|, (C,C) is a nontrivial edge cut}.

We define the edge-superconnectivity of a graph G as the value
of )\1 (G) .

Efficient dominating set — 3ddekTUBHO- TOMIHUDYIOIIE MHOXKECTBO.
See t-code (in graph).

Effectively solvable problem — gactuuno paspermumas 3a1a4a.
See Decision problem.

Eigenvalue of a graph — cobcTBennoe 3uadenne rpada.
See Characteristic polinomial of a graph.

1-edge hamiltonian graph — 1-pé6epHO-ramMuILTOHOBBIN T'pad.
See 1-hamiltonian graph.

Element of a graph — siement rpada.
A vertex or an edge (arc) of a graph (digraph).

Elementary homomorphism — siemenTtapubiit romoMOpdu3M.

Elementary Petri net — siiemenrapuas cets [lerpu.

Embedding of a graph — ykianka rpada, Bioxenue rpada.
An embedding of a graph G (into a complement G) is a permutation
o on V(G) such that if an edge zy belongs to E(G), then o(z)o(y)
does not belong to E(G). If there exists an embedding of G, we say
that G is embeddable or that there is a packing of two copies of the
graph G (of order n) into the complete graph K.

Emptiness problem — npob6iema mycToThr.

Empty deadend — mycroit Tynuk.

Empty deadlok — mycroit Tynuk.

Empty graph — nycroit rpad, Briosite HeCBA3HBIH rpad, Pery/asipHbIi cTe-
neru 0 rpad.
This is a graph which has one vertex and no edges.

Empty hypergraph — mycroit runeprpad.
This is a hypergraph which has no points and no edges.

Empty loop — mycroit mukit.

Empty marking problem — npoGiema Hy/eBoil pa3mMeTKu.
The empty marking problem for Petri nets consists in finding
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an algorithm for deciding whether or not the marking (0,...,0) is a
reachable one for a given Petri net.

Empty string — mycras memnouka.
See String.

Empty subgraph — nycroit moarpad.
See Independent set.

Empty symbol — oycroit cumBout.

Empty tree — mycroe mepeBo, BEIPOXKIEHHOE IEPEBO.
See Empty graph, Trivial tree, Degenerate tree.

Enabled transition — paspermennsblii mepexos, mepexoi, rOTOBBIA cpabo-
TaTh.
See Petri net.

Endblock — koHr1eBoii 6J10K, Bucs4nii 6JI0K.
An endblock of G is a block containing exactly one cutvertex of G.

End-edge — kownreBoe pebpo, Bucsdee pedbpo.

Enclosure transition — o6bemtiomnuii mepexos.

Endline graph — xonmnesoit rpad.
Let G = (V, E) be a graph and V(G) = {v1,...,v,}. We added to
G n new vertices and n edges {u;,v;}, (i =1,2,...,n), where u; are
different from any vertex of G and from each other. A new graph G+
with 2n vertices is called the endline graph of G.
See also Middle graph.

Endomorphism — sagomopdusm.
Given a graph (digraph) G, endomorphism is a homomorphism of
G into itself. The set of all endomorphisms of G with composition
as multiplication, forms a semigroup denoted by End(G).

Endpoint, end-vertex — Bucsiuast BepiuHa.
Given a graph G, a vertex with degree 1 is called an endpoint (or
end-vertex).

Endpoints of a path (chain) — xonnessie Bepmunsr myTn (nenm).
For a given path (chain) P, = vy, vy - vy, vertices vy and v,, are
the endpoints of that path (chain).

Energy of graph — sueprua rpadea.
Let G be a graph possessing n vertices and m edges. Let A1, Ao, ..., Ay,
be the eigenvalues of the adjacency matriz of G. The energy of G is
defined as follows

£(G) =Z|Ai|.
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The eigenvalues of the n-vertex complete graph K,, are A\ = n — 1,
A2 = A3 =... =\, = —1. Therefore, the energy £(K,) = 2n — 2.
Graphs with the property £(G) > 2n — 2 are called hyperenergetic
graphs; such graphs exist for all n > 8.

Entire choice number — 4uco nemoro ssibopa.
See Entire colouring.

Entire chromatic number — nesoe xpomaruaeckoe 9uciio.
See Entire colouring.

Entire colouring — mnerasa packpacka.
An entire colouring of a plane multigraph G is a map o : V U
EUF — S, where S is a set of "colours”, such that o(X) # o(Y)
whenever X, Y are incident or adjacent elements, i.e. a pair of adjacent
vertices, a vertex-edge pair with the edge incident on the vertex,
an edge-face pair with the edge on a boundary of the face, etc.; a
face touching either another face or an edge only in a vertex is not
considered as adjacency.
The entire chromatic number, x,.f, is the least size of S admitting
such a coloring. For example, if G consists of two copies of K3 joined
in a single common vertex, then x,c¢r(G) = 6. The entire choice
number, Y.y, is the least integer k such that if L(A) is a set (list)
of size k for each A € VUFUF, then there exists an entire colouring
o of G with o(A) € L(A) for each such A.

Entry — Bxos.

Entry node of a fragment — Bxonnas Bepmuna dpparMenTa.
See Fragment.

Entry vertex — craproBasi BepIlinHa, BXOIHAs BEPIIUHA.

Entry vertex of a subgraph — Bxognast Bepmmaa moarpada.

Environment of a vertex — okpy»keHune BepIuHbI, OKPECTHOCTD BEPIITH-
HBI.

Equally coloured vertices — corBerHbie BEPIINUHBI.

Equiseparable trees — skBucenapabeybHbIE J€PEBbSI.
Let T be a tree and e an arbitrary edge of 7. Then T — e consists
of two components with nq(e) and no(e) vertices. Conventionally,
ni(e) < na(e). If T and T are two trees of the same order n and
if their edges can be labelled so that n(e;) = ni(e; ) holds for all
i1=1,2,...,n—1, then T and T are said to be equiseparable.

Equistable graph — skBuycroituusiit rpad.
A graph G = (V, E) is equistable if there is a non-negative weight
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function w on V such that a set S C V satisfies w(S) = ) cqw(e) =
1 if and only if S is maximal stable. The problem of recognizing
equistable graphs in polynomial time is still open.
A graph G is strongly equistable if for each set ) # T C V such
that T is not maximal stable, and for each constant ¢ < 1, there is
a non-negative weight function w on V such that w(S) =1 for each
maximal stable set S, and w(T') # c.

Equitable partition — cupasegnuBoe pasbuenue.
Let G be a simple graph with a vertex set V(G). A partition 7 =
(C1,...,C) of V(G) is said to be equitable if, for all i and j, the
number ¢;; of edges from a vertex in C; to C; does not depend on the
choice of the vertex in C;. For an equitable partition m, we denote
the quotient graph with respect to m by G/m. The matrix (c;;) is
called the adjacency matrix of the quotient graph G/m.

k-Equitable graph — k-cupaseiuBsriit rpad.
See k-FEquitable labeling.

k-Equitable labeling — k-cupaBenimBas pasmerxka.
Let G = (V, E) be a graph. A labeling of G is a function f: V —
{0,1,...,n} such that for each edge e = (u,v) € E, f(e) = |f(u) —
f(v)]. Such a labeling is said to be k-equitable if it is a labeling of
the vertices with the numbers 0 through k — 1 such that, if % is the
number of vertices labeled 7, and e’ is the number of edges labeled i,
then [v® — 97| <1 and |¢! —e7| < 1 for all 4,5. A graph is said to be
k-equitable if it has k-equitable labeling.

Equivalence of languages problem — npo6JiemMa 5KBUBaJIEHTHOCTH S3bI-
KOB.

Equivalence relation — orHomenne 3KBUBAJIEHTHOCTH.
A relation is an equivalence relation if it is reflexive, symmetric,
and transitive. For an equivalence relation R in a set S, the equiva-
lence class of a with respect to R is the set of all elements b in S such
that aRb. When the relation R is understood, the equivalence class of
a is denoted by [a]. The equivalence classes of an equivalence relation
in S form a partition of S. If an equivalence relation R; is contained
in another equivalence relation Ry (i.e., if aR1b implies aRsb), then
the partition formed by the equivalence classes with respect to R; is
finer than the partition formed by the classes with respect to Rs.

Equivalent cycles — sxkBuBajieHTHBIE IUKJIBI.
See Cycle.
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Equivalent derivations — skBuBasieHTHBIE BBHIBOJIBI.

Equivalent grammars — sxBuBaJIeHTHBIE TPAMMATHKH.
Two grammars are equivalent iff they generate the same language.

Equivalent program schemata — skBuBaJIeHTHBIE CXEMBI IIPOIPAMMEBIL.
See Program schemata.

Equivalent programs — sxBuBajIleHTHBIE TPOTPAMMEBI.
See Program equivalence.

Erdés—Gallai criterion — kpurepuit Dpaérma—Tamnan.
A sequence of integers di,...,d, withn—1>dy > ... > d, is a
graphic sequence of numbers iff
(1) %, d; is even, and
(2)> iy di > r(r—=1) 4> min{r,d;} forr =2,...,n—1.
(the r-th Erdos-Gallai inequality).

Essential arc — cymecrBennas yra.

Essential independent set — cyiecTBeHHOe HE3ABUCUMOE MHOXKECTBO.
An independent set Y in G is called an essential independent set
(or essential set for simplicity), if there is {y1,y2} C Y such that
dist(y1,y2) = 2.

Euler graph — »sitiepos rpad.
The Euler graph is an infinite directed graph such that at level n
there are n+1 vertices labelled from (n,0) through (n,n). The vertex
(n,k) has n + 2 total edges leaving it, with k + 1 edges connecting
it to vertex (n + 1,k) and n — k + 1 edges connecting it to vertex
(n+1,k+1).

Eulerian chain — »sitneposa 1emns.

Eulerian circuit — »ityiepos muk.1.
An Eulerian circuit of a connected graph G is a circuit (cycle) that
traverses each edge of G exactly once, although it may visit a vertex
more than once.

Eulerian cycle — »itjiepoB KOHTYD, 3i11epOB UK.

Eulerian digraph — sitiepos oprpad.

Eulerian graph — sitnepos rpad.
A connected undirected graph such that there exists a traversal of all
its edges using each edge exactly once (i.e. Fulerian circuit) is called
Eulerian. It is well-known that G is Eulerian (unicursal) if and only
if all its vertices have even degree.

Eulerian trail — sitsiepos mapmpyT.
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Eulerian tour — sitsepos obxo.
The same as Eulerian circuit.

Evaluated graph — nepenymepoBanubIit rpad.

Evaluation of a graph — yxkuagka rpada.

Even component — 4érHasi KOMIIOHEHTA.
See Odd component.

Even contractile graph — uérnro craruBaembrit rpad.
See Contraction of even pair.

Even graph — uernsrii rpad.

Even pair — dernas napa.
Two nonadjacent vertices u,v of G form an even pair if no odd
chordless path joining them exists in G.

Event — cobGbiTne.

Event condition — ycioBue coObITHSI.

Event realization — peajmsamust coObITHsI.

Event-condition system — ycsiioBHO-cOOBITHITHASI CHCTEMA.

Exact double dominating set — TouHO ABOITHOE TOMHHHpPYIONIEE MHO-
JKECTBO.
See Double dominating set.

Exact n-step domination graph — rpad ToYHOro n-MIArOBOTO JIOMUHU-
poBaHUsI.
A vertex u in a graph G is said to m-step dominate a vertex v
if d(u,v) = n. If there exists a subset S C V(G) such that each
v € V(G) is n-step dominated by exactly one vertex in S, then G
is an exact n-step domination graph and S is called an exact
n-step dominating set.

Exact n-step dominating set — TouHO n-11aroBoe JOMUHUPYIOIIEE MHO-
JKECTBO.
See Exact n-step dominating graph.

7:(G)-Excellent graph — ~;(G)-npesocxoambrit rpad.
A graph G is called v(G)-excellent graph if every vertex of G
belongs to some total dominating set of minimal cardinality. A family
of v:(G)-excellent trees (trees where every vertex is in some mini-
mum dominating set) is properly contained in the set of i-excellent
trees (trees where every vertex is in some minimum independent
dominating set).
In general, for a graph G, let P denote a property of sets S C V
of vertices. We call a set S with the property P having { minimum,
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maximum } cardinality u(G) a p(G)-set. A vertex is called p-good if
it is contained in some p(G)-set and p-bad otherwise. A graph G is
called p-excellent if every vertex in V' is p-good.

u-Excellent graph — p-nipeBocxossbliit rpad.
See v:(G)-Excellent graph.

Exceptional graph — uckaounrenbusiit rpad.
A finite graph is said to be exceptional if it is connected, has at
least eigenvalue A,,;, > —2 and is not a generalized line graph.

Exclusion operation — onepanus nckio4ueHus.

Execution of large-block schema — Brbito/iHeHHE KPYIHOOJIOUHON CXe-
MBL.
See Value of schema under interpretation

Execution of Petri net — Boimosaenune cetn Iletpn.
See Petri net.

Execution sequence — 110¢/1€0BATEILHOCTH UCIOMHEHNsI (OEPATOPOB),
I[eN0YKa UCIIOJHEHNUs (01IepaTopoB).
See Value of schema under interpretation.

Exhaustive search — mepeb6op.
For discrete problems in which no efficient solution method is known,
it might be necessary to test each possibility sequentially in order to
determine if it is the solution. Such exhaustive examination of all
possibilities is known as exhaustive search, direct search, or the
“brute force” method. Unless it turns out that NP-problems are
equivalent to P-problems, which seems unlikely but has not yet been
proved, NP-problems can only be solved by exhaustive search in the
worst case.

Exit — BbIxXOI.

Exit node of a fragment — Boixoamas Bepimuma pparmMenTa.
See Fragment.

Exponent of a digraph — DkcnonenTa oprpada.
See Primitive directed graph.

Expression dag — J3r BeIpakeHus.
See DAG.

n-Extendable graph — n-pacmmupsiemsrit rpad.
Let G be a graph on v vertices and n be an integer such that 0 <
n < (v —2)/2. Then G is n-extendable if every matching of size
n in G is contained in a perfect matching of G. Every n-extendable
graph is also (n — 1)-extendable and also any 2-extendable graph is
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either 1-extendable bipartite or bicritical.
Extended odd graph — pacmupennbiit HedeTHBIN Tpad.
Extended regular expression — paciinpentoe perysasipHoe BhIparKeHue.
Exterior face — BHemHsisi rpaHb.
See Planar graph.
Exterior of a cycle — BHemHOCTD 1TUKIIA.
External input place — Bmermmee BxoaHOEe MECTO.
External output place — BHernHee BBIXOAHOE MECTO.
External place — croponnee mecTo.
External stability set — BremHe ycroiiinBoe MHOXKECTBO, JJOMUHUDPYIO-
Iee MHOXKECTBO.
External vertex — Bucsgas BepiImHa.
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F

Face — rpanb.
See Planar graph.

(a,d)-Face antimagic graph — (a, d)-rpanesbiit anTumarndeckuii rpad.
A connected plane graph G = (V, E, F) is said to be (a,d)-face
antimagic if there exist positive integers a,b and a bijection

g: E(G)—={1,2,...,|E(@)|}

such that the induced mapping wy : F(G) — W is also a bijection,
where W ={w*(f): f € F(G)} ={a,a+d,...,a+(|F(G)|—1)d}is
the set of weights of a face. If G = (V, B, F) is (a, d)-face antimagic
and g : E(G) — {1,2,...,|E(G)|} is the corresponding bijective
mapping of G, then g is said to be an (a,d)-face antimagic labeling
of G.

The weight w*(f) of a face f € F(G) under an edge labeling

g: E(G) —{1,2,...,|E(G)|}

is the sum of the labels of edges surrounding that face.

Facet — rpaub (11ockoro rpada).

Facial cycle — muks rpanm.
The boundary of a face of a plane graph is called a facial cycle.

Factor-critical graph — dakrop-kpurnueckuii rpad.
A graph G = (V, E) is factor-critical if G—v has a perfect matching
for every vertex v € V(G).

1-Factor — 1-dakrop.
For a given graph, 1-factor is l-regular spanning subgraph. The
1-factor is often referred to as perfect matching. The existence of
perfect matchings in bipartite graphs is a subject of the celebrated
Konig-Hall theorem. See also k-Factor.

k-Factor of a graph — k-daxTop rpada.
A spanning subgraph H of a graph G is a k-factor if all vertices of H
have degree k. A graph G is k-factorable (factorizable) if its edges
can be partitioned into k-factors. A classical result of Petersen (1891)
states that any 2k-regular graph is 2-factorable.
Let g and f be integer-valued functions defined on V(G) such that
0 < g(z) < f(x) for every z € V(G). A (g, f)-factor of G is a
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spanning subgraph F' of G such that g(z) < dp(z) < f(z) for every
x € V(G). If G itself is a (g, f)-factor, then G is called a (g, f)-graph.
A (g, f)-factorization F = {Fy,...,F,} of G is a partition of G
into edge-disjoint (g, f)-factors F1,..., F,,. Let H be a subgraph of
G with m edges, then F is called orthogonal to H if each F; has
exactly one edge in common with H.
<g> f)-Factor - <g> f)_(baKTOp'
See k-Factor of a graph.
k-Factorable graph — k-dbaxkropusyemsrii rpad.
See k-Factor of a graph.
k-Factorizable graph — k-dakropusyemsbrit rpad.
The same as k-Factorable graph.
(g, f)-Factorization — (g, f)-daxkropuszanus.
See k-factor of a graph.
Factor-critical graph — dakrop-kpurnueckuii rpad.
A graph G is called factor-critical if G has no 1-factor but G — x
has 1-factor for each vertex zx.
Factor-cf-graph — ¢daxrop-yrpad.
The same as Factor-control-flow-graph.
Factor-control-flow-graph — dakrop-yrpad.
Let R be a set of alts of a c¢f-graph G such that every node of G
belongs to a single alt from R, i.e. R forms a partition of V(G).
The cf-graph G’ in which V(G’) = R is said to be obtained by
reduction of alts R into nodes (notation G' = R(G)) if the
following properties hold:
(1) for any C1,Cy € R, (C1,Cs) € A(G') if and only if there are
P1 € (7 and P2 € (5 such that (pl,pg) S A(G),
(2) C € R is the initial node of G’ if and only if C' contains the initial
node of G,
(3) C € R is the terminal node of G’ if and only if C contains the
terminal node of G.
The cf-graph G’ is called a factor-control-flow-graph (or factor-
cf-graph) of the cf-graph G with respect to R.
Let R be a set of mutually disjoint alts of a cf-graph G that form
a partitation of some subset Y C V(G). Then R(G) is defined as
ct-graph R'(G), where R’ = RJ{{p} :p e V(G)\ Y}.
Factor-graph — daxrop-rpad, rpad I'epua.
The same as Condensation.
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Factorization — dakropuzarmus.

Factorization of a graph — dakropusamnus rpada.

1-Factorization of Ky, — omun-dgakropusanus rpada Kop,.
A one-factorization of K5, is a partition of the edge-set of K,
into 2n — 1 one-factors. A perfect one-factorization (P1F) is a
one-factorization in which every pair of distinct one-factors forms a
Hamiltonian cycle of K5,,. P1Fs of K5, are known to exist when 2n—1
or n is prime, and for 2n € {16, 28, 36, 40, 50, 126, 170, 244, 344, 730,
1332, 1370, 1850, 2198, 3126, 6860, 12168, 16808, 29792} .
It has been conjectured that a perfect one-factorization of Ko, exists
for all n > 2.

n-Factorization of a graph — n-daxkropuzanusa rpada.

[-Fan — [-Beep.

FAS-problem — npob6Jiema pa3pbIBaOMIUX JIyT.
See Feedback arc set.

Father of a vertex — orer (HeIOCPEICTBEHHDII IPEIOK) BEPIITUHLL.
See Directed tree.

Feedback arc set — paspbiBatormiee MHOXKECTBO IyT.
Given a digraph G = (V, A), an arc set B C A is called a feedback
arc set if the digraph G — B, resulting from G by deleting all the
arcs of B from G, is DAG. FAS-problem is the problem of looking
for a minimum feedback arc set.

Feedback vertex set — paspbiBaroiee MHOXKECTBO BEPIIHH.
Given a digraph G = (V, A), a subset ' C V is called a feedback
vertex set if a digraph G’, induced by the vertex set V'\ F, is DAG.
FVS-problem is the problem of looking for a minimum feedback
vertex set. It is well known that FAS-problem can be reduced to the
FVS-problem and vice versa.

F-Heap — xyua QubonaTdmn.
See Fibonacci heap.

Fibonacci heap — kyua ®@ubona<«u.
A heap-ordered tree is a rooted tree containing a set of items, one
item in each node, with the items arranged in a heap order: If z is
any node, then the key of the item in x is no less than the key of the
item in its parent p(x), provided = has a parent. The fundamental
operation on heap-ordered trees is linking, which combines two item-
disjoint trees into one. Given two trees with roots = and y, we link
them by comparing the keys of the items in = and y. If the item in
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x has the smaller key, we make y a child of x; otherwise, we make x
a child of y.
A Fibonacci heap (F-heap) is a collection of item-disjoint heap-
ordered trees.

Fibre — cioii.

Filter — duabrp.

Final substring — xoneunas mommenodka.
See String.

Finish vertex — xomeunas BepiiuHa.

Finishing node of fragment — dbunumnas sepmuna dparmenta.
See Fragment.

Finite automaton — koneuHbI aBTOMAT.
See Model of computation.

Finite graph — xoneunsrit rpad.
The graph G = (V, E) is said to be finite if both n = |V| and
m = |E| are finite.

Finite tree — xomeunoe mepeso.
The tree T = (Vr, Er) is said to be finite if both n = |Vp| and
m = |ET)|) are finite.

I'-Finite graph — I'-xoneusnsrii rpad.

I'!-Finite graph — I'"'-xkoneunsrii rpad.

Finiteness problem — npobtisiema kKoreaHOCTH.

First Order formula — dopmysra nepsoro nopsaka.
See Logic for expressing graph properties.

Five-color theorem — Teopema o 5 Kpackax.
The following result belongs to Heawood.
Theorem. Every planar map is 5-face-colorable.

Fixed vertex — memoaBukHas BepITHHA.

Flag — ¢mar.
A flag is a graph obtained from C4 by adding a vertex adjacent to
exactly one vertex of Cy.

Flat forest — nsockuii jec.
A. flat forest of a graph G = (V, E) is a forest F = (V, E’) such that
E’ C E and each tree in F' has height at most 1. Any zero-degree
node in G is zero-degree in F, too.

Flow — norok.
Given a network G = (V, A;s,t) with the source s and the sink
t, let each arc e € A have a nonnegative integer number c¢(e), the
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capacity of e, associated with it. A (feasible) flow, of magnitude
(or amount) @, from s to ¢ in G is an integer-valued function f with
the domain A that satisfies the linear equations and inequalities

0.< fe) < cle),
Z flw,v) = Z fv,w),v # s,t.

weV weV

O(f) = flsw) =Y flw,1)

weV weV

The value

is called the magnitude of f. The maximum flow problem is
that of constructing a flow f that maximizes .
Flow augmenting path — nyTs (1ens), yBeaUIUBAIONIIN TOTOK.
For a given flow f(N) of a net N, a flow augmenting path is a
path @ of N such that for each (v;,v;41) € Q:
(a) if (vs,vi41) is a forward-edge, then:
A; = c(vi,vig1) = f(vi,vig1) >0

and
(b) if (v;,vi+1) is reverse-edge, then:

A; = f(/l}i7vi+1) > 0.
If @Q is an augmenting path, then we define A as follows:
A =minA; > 0.

If an augmenting path @ exists, then we can construct a new flow
f'(IN) such that the value of f'(NN) is equal to the value of f(NN) plus
A. We do this by changing the flow for each (v;, v;1+1) of @ as follows:
(a) if (vs,vi41) is a forward-edge, then:

f(uisvigr) — f(vi,vipa) + A

and
(b) if (v;,vi+1) is reverse-edge, then:

JWig1,vi) = f(vig1,vi — A,
If @Q is an augmenting path, then we define A as follows:

A =minA; > 0.
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Flow control — morokoBoe ynpasiienue.

Flow dependence — moTokoBast 3aBUCUMCOTb.
See Data dependence.

Flow-diagram — ynpasJsitomuii rpad, rpad moroka yipasieHus, rpad
[IEPEXOJIOB.
See Large-block schema.

Flow graph — ympasisiomnuit rpad.
Given a program, its flow graph is a directed graph with basic
blocks as vertices; one node is distinguished as initial; it is the block
whose leader is the first statement. There is a directed edge or arc
from a block B; to a block By if By can immediately follow B;
in some execution sequence; that is, if (1) there is a conditional
or unconditional jump from the last statement of By to the first
statement of Ba, or (2) B, immediately follows B in the order of
the program, and B; does not end in an unconditional jump.
We say that B; is a predecessor of Bs, and B; is a successor of
B;.

5-Flow conjecture — rumore3a o 5-moToKe.
The conjecture is that every bridgeless graph has a nowhere-
zero 5-flow. The Petersen graph does not have a nowhere-zero
4-flow, which shows that this conjecture (if true) is best possible.

k-Flow — k-moTox.

Flow-equivalent graphs — noroko-skBuBajenTHbIE TPADHI.
Let F(G, A) be a polynomial in A which gives the number of nowhere-
zero M-flows in G independent of the chosen orientation. Two graphs
R and S are said to be flow-equivalent if F(R,\) = F(S, \).

Flower — mnBeTok.
A flower F' is a connected graph of order 8 which contains a cut-
vertex w such that each component of F'\ w has order at most 3. The
vertex w is called a stamen of flower and the components of flower
are called its petals.

n-Folded Petersen graph — n-ckinagnoit rpad Ilerepcena.

Forbidden subgraph — 3anpemennsiit moarpad.
1. If Hy,...,H (k > 1) are graphs, then a graph G is said to be
Hy, ..., Hg-free if G contains no copy of any of the graphs Hy, ..., Hy
as an induced subgraph; the graphs Hi, ..., H; will be also referred
to in this context as forbidden subgraphs.
2. A ¢f-graph G with the initial node py has a forbidden subgraph
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if there exist distinct nodes p;,p2 and p3 and simple paths Py 1, P 2,
Py 3, Py 3, P32, where P; ; denotes a path from p; to p;, that do not
intersect on internal nodes.

Forcing number — dopcupoBanHOe 9HCIIO TAPOCOYETAHUIA.
Let G be a graph that admits a perfect matching. A forcing set for a
perfect matching M of G is a subset S of M, such that S is contained
in no other perfect matching of G. The cardinality of a forcing set of
M with the smallest size is called the forcing number of M and is
denoted by f(G, M).

Forcing set — dopcupoBanHOE MHOXKECTBO.
See Forcing number.

Ford-Fulkerson’s theorem — rteopema ®opma-Paskepcona, teopema o
MaKCHMAJbHOM MTOTOKE M MUHUMAJBHOM pa3pese.
The same as Max-flow min-cut theorem.

Forest — Jec.
A forest is undirected graph such that it contains no cycle. The
connected components of a forest are trees.

Forest graph — rpad mecos.
Given 1 <w < |V(G)| —1, the forest graph of G denoted by F, (G)
is defined on the set of spanning forests of G with w components; two
vertices are adjacent if and only if the symmetric difference of their
corresponding forests has exactly two edges. See Tree graph, adjacent
forest graph.

Forest-perfect graph — neco-cosepimenuniit rpad.
The class of forest-perfect graphs contains all forests and their
compliments, all tree-cographs, and of course all tree-perfect graphs.
Another subclass of forest-perfect graphs consists of the Py-reducible
graphs. Forest-perfect graphs are weakly triangulated.

H-forming number — ancino H-dopmupoBanmns.
See H-Forming set.

H-forming set — H-dopmupyroriee MHOXKECTBO.
For graphs G and H, a set S C V(G) is an H-forming set of
G if for every v € V(G) — S, there exists a subset R C S, where
|R| = |V (H)|—1, such that the subgraph induced by RU{v} contains
H as a subgraph (not necessarily induced). The minimum cardinality
of an H-forming set of G is the H-forming number ~¢z(G). The
H-forming number of G is a generalization of the domination number

Y(G).
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Formal language — dbopmasbHbIil S3bIK.
Let > be an alphabet and >." be the set of all strings over an
alphabet Y.
Subsets of >." are referred to as formal languages — or, briefly,
languages — over the alphabet .
Regarding languages as sets, we may immediately define the Boolean
operations of union, intersection, complementation, and difference in
a natural way.
The concatenation (or product) of two languages L; and Lo, is
defined by

L1L2 = {Ozﬁ Lo e L1 and /B € LQ}

The notation L’ is extended to apply it to concatenation of languages.
By definition, L° = {e}.

The concatenation closure (Kleene closure or Kleene star) of
the language L, denoted L*, is defined as the union of all powers of

L:
L= Jr
n>0

The e-free concatenation closure of the language L, denoted L™,
is defined as the union of all positive powers of L:

=L

n>0

It is clear that L™ = LL* = L*L and L* = LT U {e} = {e} U L™.
Formal language theory — teopust popMaIbHBIX SI3BIKOB.
Forcing set — BeiHyK1a1011I€€ MHOYKECTBO.
Let G be a graph that admits a perfect matching. A forcing set for a
perfect matching M of G is a subset S of M, such that S is contained
in no other perfect matching of G. This notion originally arose in
chemistry in the study of molecular resonance structures. Similar
concepts have been studied for block designs and graph colorings
under the name defining set and for Latin squares under the name
critical set.
See Global forcing set.
Forward arc — mpsamas ayra, ayra BIepes.
1. See Basic numberings.
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2. See Numbering of cf-graph.
3. See Arrangeable graph.

Foundtion of G-trade — ocuoBanne G-Tpeiija.
See G-trade.

Fractional-coloring — npobuasi packpacka.
A fractional-coloring is a mapping ¢ from the collection S of
independent sets of a graph G to the interval [0, 1], if for every vertex
x of G we have

> {e(S) : S € S such that v € S} = 1.

The value of a fractional-coloring c is

Z e(S).

ses

The fractional-chromatic number x;(G) of G is the infimum of
the values of fractional-colorings of G.

Fractional-chromatic number — 1po6HO-XpOMATHYIECKOE UUCIO.
See Fractional-coloring.

Fractional clique number — gpo6HO-KIMKOBOE IUCIIO.
For a graph G, its fractional clique number is the maximum total
weight ZUGV(G) w(v) that can be assigned to the vertices v of G so
that each independent set X has the total weight » _ w(v) at most
1.

Fractional k-factor —npo6usbrit k-dakrop.
Let g and f be two integer-valued functions defined on V(G). Let
h: E(G) — [0,1] be a function. A function % is called a fractional
(g, f)-factor if g(x) < h(E,) < f(x) holds for any vertex z € V(G),
where h(E;) = > cp h(e) and E, = {e € E(G)le is incident with
xz in E(G)}. A fractional (g, f)-factor is called a fractional [a,b]-
factor if g(x) = a and f(x) = b, where a and b are two integers
such that a < b. A fractional [a, b]-factor is called a fractional k-
factor if « = b = k. In particular, a fractional [0, 1]-factor is also
called a fractional matching and fractional 1-factor is also called
a fractional perfect matching.

Fractional matching — npobroe napocoueranue.
See k-Matching.

Fractional matching number — unco npobHOTrO MAapocodeTaHMSA.
See k-Matching.
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Fragment — dparment.
A subgraph of a control flow graph G is called a fragment.
A fragment A is a subfragment of B, if A C B; it is a proper
subfragment if A # B.
A node p of a fragment A is called initial (respectively, output or
exit) if either p is the initial node of G (respectively, p is the terminal
node of G) or an arc of G not belonging to A enters p ( respectively,
leaves P).
A node p of a fragment A is called its entry if there is a part from
the initial node of G to p that includes no arcs of the fragment A. p
is called a terminal node of a fragment A if p does not belong to A
and is a successor of a node of A.
A node p of a fragment A other than the initial and terminal nodes
of G is called a boundary of A if p is the initial or output node of A.
Let p be a boundary node of a fragment A. It is called starting of
A if A contains no predecessors of p or all successors of p. It is called
finishing of A if A contains all predecessors of p or no successors of
p.

Frame — dpeiim.
See Framing number.

Framing number — dpeiimosoe wucio.
A graph G is homogeneously embedded in a graph H if for every
vertex x of G and every vertex y of H there exists an embedding of
G in H as an induced subgraph with x at y. A graph F' of minimum
order in which G can be homogeneously embedded is called a frame
of G, and the order of F is called the framing number fr(G) of G.
For graphs GG and Gs, the framing number fr(G1, Gs) is defined
as the minimum order of a graph F' such that G; (i = 1,2) can be
homogeneously embedded in F. The graph F' is called a frame of
G1 and Gs. Frames and framing numbers for digraphs were defined
similarly.

Fraternal orientation — Gparckast opuenTarus.
See Fraternally oriented digraph.

Fraternally orientable digraph — 6parcku opuenTupyembIit oprpad.
See Fraternally oriented digraph.

Fraternally oriented digraph — 6parcku opueHTUpPOBaHHBII Tpad.
A digraph D is called a fraternal orientation of Gp if (u,w) €
A(D) and (v,w) € A(D) implies (u,v) € A(D) or (v,u) € A(D). If
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D is a fraternal orientation of G p, we will say that D is a fraternally
oriented digraph, G is fraternally orientable if it admits a fra-
ternal orientation.

e-Free concatenation closure — nosurusHas utepanus (sI3bIKa).
See Formal language.

AT-Free graph — AT-csoGonubrii rpad.
See Asteroidal number.

e-Free grammar — rpammaTuka 6e3 e-TIpaBumiI.

H H D-free graph — H H D-cBobojablii rpad.
A graph which does not contain a hole, a house or a domino as an
induced subgraph is called a HH D-free graph. The class of HH D-
free graphs contains such well-known graph classes as chordal graphs
and distance-hereditary graphs.

Free language — cBOOOTHBIN S3BIK.

Free tree — cBobojiHOE JIEpEBO.

Free Petri net — cBobonnas cers [lerpu.

Free-choice Petri net — cern Ilerpu cBoGomHOrO BHIOOPA.

Frequency-ordered binary search tree — wacrorHO-yIOpSIOTE€HHBIE
OuHApPHBIE JePEeBbsI MONCKA.
Frequency-ordered binary search tree (or FOBT) is a binary
search tree that satisfies the condition that the root of a subtree
must have the highest frequency. In other words, the frequencies of
nodes along any path (from root top leaf) must be decreasing (or
not-increasing). It has been shown that the ratio between the access
cost of a FOBT and the optimal tree may be as high as n/(4logn).

Fully disconnected graph — BrosiHe HecBsi3HBII rpad, peryJsipHbIil cTe-
nenu 0 rpad, mycroit rpad.
A graph that contains only isolated vertices is fully disconnected.

Functional directed graph — dyukmmonatsubiit oprpad.

Functional vertex — dyukmnumonanbHas BepIITHA.

Functionally equivalent program schemata — dyHnkiuonaabao 3KBU-
BaJICHTHBIE CXEMbI [IPOrPAMMBI.
See Program schemata.

Functionally equivalent programs — yHKIMOHAILHO SKBUBAJEHTHBIE
[IPOTPAMMBI.
See Program equivalence.

Fundamental circuit — gpyHmaMeHTANBHBIN UK.
It is easy to see that the addition of a chord to a spanning tree of
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a graph creates precisely one circuit which is called a fundamental
circuit. In a graph the collection of these circuits with respect to a
particular spanning tree is called a set of fundamental circuits.
Any arbitrary circuit of the graph may be expressed as a linear
combination of the fundamental circuits using the operation of ring-
sum. In other words, the fundamental circuits form a basis for the
circuit space.

Fundamental cutset matrix — maTpuna dyHmaMeHTATBHBIX PAa3pe30B.

Fundamental cycle matrix — marpuna dyH/IaMEeHTAIBHBIX ITUKJIOB.

Fundamental set of circuits — dyHmamenTasbHast cucremMa IUKJIOB.
See Fundamental circuit.

Fundamental set of cutsets — dynmamenranbras cucrema pa3pe3osB.
Let T be a spanning tree of a connected graph G. Any edge of T
defines a partition of the vertices of GG, since its removal disconnects
T into two components. There will be a corresponding cut-set of
G producing the same partition of vertices. This cut-set contains
precisely one edge and a number chord of T. This cut-set is called
a fundamental cut-set of G with respect to T. For the graph G
and spanning tree T, a corresponding set of fundamental cut-
sets and some other cut-sets can be expressed as linear ring-sums of
fundamental cut-sets.

FVS-problem — npobiema paspe3aronux BepIuH.

See Feedback vertex set.
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G

Game-chromatic number — urposoe xpomMaTuieckoe IuCO.
In 1991 Bodlaender introduced the game-coloring problem on graphs.
Let G be a graph and let X = {1,...,k} be a set of colors. Consider
a two-person game on G as follows: Players 1 and 2 make alternate
moves with player 1 moving first. Each move consists of choosing
an uncolored vertex and coloring it with a color from X, so that in
the subgraph H of G induced by the colored vertices the adjacent
vertices have distinct colors. The game ends when one of the two
players can no longer execute a move. Player 1 wins if all the vertices
of G are colored, otherwise player 2 wins. A graph G is called k-
game-colorable if player 1 has a winning strategy for | X| = k, and
the game-chromatic number x,(G) of G is the least integer k such
that G is k-game-colorable.

k-Game-colorable graph — k-urposoii packpamuBaembrit rpad.
See Game chromatic number.

Game domination number — urpoBoe 9YHCIO0 JOMUHIPOBAHMSI.
We define a ’domination parameter’ of an undirected graph G as
the domination number of one of its orientations determined by the
following two player game. Players A and D orient the unoriented
edges of the graph G alternately with D playing first, until all edges
are oriented. Player D is trying to minimize the domination number
of the resulting digraph, while player A tries to maximize the domi-
nation number. This game gives a unique number depending only on
G, if we suppose that both A and D play according to their optimal
strategies. We call this number the game domination number of
G and denote it by v4(G).

Gem — [IparoreHHbIit KAMEHb.
A gem is a graph obtained from P, by adding a vertex adjacent to
all four vertices of Py. A complement of a gem is called anti-gem.

General graph — obmuit rpad, rpad obiero Buja.

General phrase-structure grammar — rpamMmMmaTuka ¢ (ppa3oBoit CTPYK-
TYPOI.
See Grammar.
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Generalized de Bruijn graph — o6o6mennsrit rpad me Bpioitna.
The generalized de Bruijn digraph G5(n, d) is defined by congru-
ence equations.
V(Gg(n,d)) ={0,1,2,...,n— 1},
Yy=dr+i (modn),0<i<d}

If n = dP, Gg(n,d) is the de Bruijn digraph B(n, D).
See DeBruijn graph.
Generalized binary split tree — o6o0IenHoe OMHAPHOE PACIIEIIITEMOE
JIEPERO.
A generalized binary split tree (or GBST) is a binary split tree
except that the constraint of decreasing frequency is removed.
Generalized competition graph — 06001eHHbI Tpad KOHKYPEHIIH.
A different type of generalization of competition graphs was given in
1989 by Kim, McKee, McMorris, and Roberts. They defined the p-
competition graph G of a digraph D as the graph with the same
vertex set as D and two vertices adjacent if and only if they compete
in D for at least p distinct species.
The most recent generalization is the ¢-tolerance competition
graph defined in 1995. Here ¢ is a non-negative valued symmetric
function whose two arguments are usually assumed (but not required)
to be non-negative integers. A graph G = (V, E) is a ¢-tolerance
competition graph if each vertex x can be assigned a value (tole-
rance) ¢, such that there exists a collection of at most |V| subsets
of V' having the property that an edge xy is in G if and only if
z and y lie together in at least ¢(t;,t,) subsets. It is known that
any graph can be transformed into a ¢-tolerance competition graph
by adding isolated vertices, and a minimal number of such vertices,
required to accomplish this, is known as the ¢-tolerance compe-
tition number. Of course, this number is 0 if the graph is a ¢-
tolerance competition graph.
A graph G = (V, E) is abdiff-tolerance competition graph if for
each vertex ¢ a non-negative integer t; can be assigned and at most
|V'| subsets S; of V' can be found such that zy € E if and only if
and y lie in at least |t, — t,| sets S;.
Generalized interval order — 06001eHHBII HHTEPBAJIBHBIN TOPSIIOK.
Generalized Kautz digraph — o6o6menusiit oprpad Kayrra.
The generalized Kautz digraph G (n,d) is defined by the fol-
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lowing congruence equations:

{ V(Gk(n,d)) ={0,1,2,...,n— 1},
A(Gk(n,d)) ={(z,y)ly=—dx—i (modn),0<i<d}

If n =d(d—1)P~1, Gg(n,d) is the Kautz digraph K(d — 1, D).
Generalized Petersen graph — 0600ménnsriit rpad Ilerepcena.
See Petersen graph.
Generalized reducible graph — o6061enno cBoauMbIit Tpad.
See Regularizable graph.
Generalized semiorder — 0600IIEHHBII [TOJIYITOPSIIOK.
Generating function — npousBossimas dyHKIMSA.
A generating function of a sequence ag,aq,...,a,,... is the
function

flx)= Z anz™.
n=0

Exponential generating function is the function

o0

o)=Y 2.

n=0

Genus of a graph — pox rpada.
A graph G has genus k if it can be embedded crossing-free in a
surface of genus k. Thus k£ = 0 corresponds to planar graphs and
k =1 corresponds to toroidal graphs.

Geodesically convex set of vertices — reomesndeckn BoIIIyKJI0€ MHOXKE-
CTBO BEpIIHH.
Given a graph G = (V, E), a subset S C V is geodesically convex
if for any two vertices u,v € S all vertices on the shortest paths
between u and v are also contained in S.

Geodetic chain — reomesnveckast 1eIb.

Geodetic graph — reogesuvecknit rpad.
G is a geodetic graph if for every pair of vertices there is a unique
path of minimal length between them. See also Weakly geodetic graph.

[-Geodetic graph — [-reosesunyeckuii rpad.

Geometric dual graph — reomerpudecku nBoficTBeHHBII Tpad.
Plane representations I' and I'* of G and G, respectively, are called
geometric duals if an edge of I' crosses the corresponding edge of
I'* and intersects no other edges of I'*. It follows that the vertices
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of I' and I'* are in a one-to-one correspondence with the faces of I'*
and T', respectively.

Geometric realization of graph — reomerpuueckas peanuzanust rpada.
Let G = (V, E) be an undirected graph with weights 1/c. for each
edge e € E. The geometric realization of G is the metric space G
consisting of V" and arcs of length ¢, glued between v and v for each
edge e = (u,v) € E. The volume p(G) is the Lebesgue measure of

g, ie.
w(G) = Z Ce-
eckE
Girth — obxsar.
The girth ¢g(G) of the graph G is the length of its shortest cycle.
The girth is 1 iff G has a loop and it is 2 iff G has multiple edges.
Global density — ryiobanbHas MIOTHOCTD.
See Density.
Global w-density — ryiobasibHast W-ILIOTHOCTb.
See w-Density.
Global forcing number — ryo6aipHOE BBIHYXKIAIOIIEE IUCIIO.
See Global forcing set.
Global forcing set — riioba/ibHOE BBIHYK/II0IEe MHOZKECTBO.
Any set S C E(G), such that the restriction of f := M(G) —
[0,1]1P(] on S is an injection, is called a global forcing set of
G. A global forcing set of the smallest cardinality is called a minimal
global forcing set, and its cardinality is a global forcing number
of G. For a given graph G, we denoted its global forcing number by
©g(G).
Global irregularity of a digraph — ryiobabHast upperyasspHOCTb Oprpa-
da.
See Irregularity of a digraph.
Global strong alliance number — 4ucso rmo6aaIbLHONO CTPOTOTO ATbIH-
ca.
A global strong defensive alliance in a graph G = (V, E) is a domina-
ting set S of G satisfying the condition that, for every vertex v € S,
the number of neighbors v has in S is at least as large as the number
of neighbors it has in V' — S. The global strong alliance number
is the minimum cardinality of a global strong defensive alliance in G.
s-Gonal tree — s-yrosbHoe iepeso.
See Polygonal tree.
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Gossip graph — rpad pacupocrpanenns: CiyXosB.

(See Gossiping problem). Let us consider a full-duplex model. Let
g9(G) be the time to gossip in a graph G. It is known that for the
complete graph K,, we have:

— g(K,) = [logy(n)] for any even n;

— g(Ky) = [logy(n)] + 1 for any odd n.

Any graph G, such that ¢(G) = g(K,), is called a gossip graph.
We call a minimum gossip graph of order n any gossip graph with
a minimum number of edges. This number is denoted by G(n).

Gossiping problem — 3ajada pacupocTpaHeHusI CJIyXOB.

The gossiping problem is the problem of information dissemination
described in a group of individuals connected by a communication
network. In gossiping, every node knows a piece of information and
needs to transmit it to anyone else. This is achieved by placing
communication calls over the communication lines of the network.
It is assumed that a node can communicate with at most one of
its neighbors at any given time, and a communication between two
nodes takes one unit of time. This model implies that we will deal
with connected graphs without loops and multiple edges to model the
communication network. Note also that, depending on their cases,
we will either consider a half-duplex or a full-duplex model. In the
latter, when communication takes place along a communication line,
the information flows in both directions, while in the former only
one direction is allowed. Hence, in the half-duplex model, we will
deal with directed graphs, while we will consider undirected graphs
in the full-duplex model.

See also Broadcasting problem.

Graceful graph — rpamnmosnsiit rpad.

A graph G = (V, E) is said to be a graceful graph if there is an
injection f (labelling)

f: V(G)—{0,1,...,q}
such that the induced function

71 BE(G)—{1,2,...,q}
defined by

[ (zy) = [f(z) — f(y)| (for all zy € E(G))
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is an injection.
The images of f and f* are called respectively vertex and edge labels.
Graceful labellings were first considered by Rosa in 1966.

(p, ¢)-Graceful signed graph — (p, ¢)-rpanuosssiii 3HaKOBbIH Tpad.
Let S = (G,s) be a sigraph and s be a function which assigns a
positive or a negative sign to each edge of G. Let the sets E+ and
E~ consist of m positive and n negative edges of G, respectively,
where m+n = ¢. Given positive integers k and d, S said to be (k, d)-
graceful if the vertices of G can be labeled with distinct integers
from the set {0,1,...,k+ (¢ — 1)d} such that, when each edge uv of
G is assigned the product of its sign and the absolute difference of the
integers assigned to u and v, the edges in ET and E~ are labeled with
k k+d, k+2d,...,k+(m—1)dand —k, —(k+d), —(k+2d),...,—(k+
(n — 1)d), respectively.

Graft — rpadr.
Let G = (A, B; E) be a bipartite connected graph and T C AU B
be a subset of vertices of even cardinality. The pair (G, T) is called a
bipartite graft. An edge set F C FisaT-joinif T ={ve AUB:
dp(v) is odd}. The minimum size of a T-join is denoted by 7(G,T').
We mention that a bipartite graft (G,T) always contains a T-join.

Grammar — rpaMMaTHKa.
A grammar is a 4-tuple G = (Vy,Vr, R, S), where Vy and Vr are
disjoint alphabets called the nonterminal and terminal alphabet,
respectively, S € Vy is the start (or sentence) symbol, and R is a
finite subset of (V*VyV*)xV*, where V = Viy | Vr is the grammar’s
alphabet. The set R consisting of couples of strings (u,v) is the
essential component of a formal grammar and it is called the set of
productions (or grammar rules).
u — v is a notation for (u,v) € R. The elements Vx and Vp are
referred to as nonterminal and terminal symbols, respectively.
A string y € V* immediately (or directly) derives from a string
w € V* if there exist x,z € V* and the production (u,v) € R such
that w = xuz and y = zvz. The relation just described is usually
denoted by = ¢, that is, w =¢ y iff y immediately derives from w.
The language generated by the grammar G is defined by

LG)={weV}: 5= w}

where =, is the reflexive transitive close of the binary relation =g.
For any x,y € V* the relation x =, y is true iff there is a derivation
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of y from z in G. A string x € V* derivable from S is called a
sentence form. A sentence form that does not contain nonterminals
is called a sentence.
Grammars generate exactly all languages that can be recognized by
Turing machines. These languages are also known as the recursively
enumerable languages.
Other names are Phrase-structure grammar, Unrestricted
grammar, Production grammar, Grammar of type 0, General
phrase-structure grammar.

CF-grammar — KC-rpamMmMaTika, KOHTEKCTHO-CBODOIHASA I'PAMMATHKA.
See Chomsky hierarchy.

CS-Grammar — K3-rpammarnka, KOHTEKCTHO-3aBACAMasT TPAMMATHKA.
See Chomsky hierarchy.

Grammar of type 0 — rpammaruka Tuna 0.
The same as Grammar.

Grammar rule — mpoayKius, TPaBUIO BBIBOIA.
See Grammar.

Graph, undirected graph, nonoriented graph — rpad, meopuerntupo-
BaHHBIN Tpad.
A graph consists of a finite set of vertices or nodes V, a finite set
of edges F, and a mapping Ends from F to V x V assigning to each
edge e two, not necessarily distinct, vertices of V' (the extremities
of e). The graph G will be denoted by G = (V, E, Ends) or simply
G = (V,E). It is easy to see that an edge e = (v, w) corresponds
to an undirected pair (v, w) of vertices. If we consider ordered pairs
of vertices (v, w), we say about a directed graph with the set of arcs
A= {(Ua U))}

Cf-Graph — yrpad, ynpasastomuii rpad, rpad nepexoos, rpad moToKa
YIPaBJICHUSI.
The same as Control flow graph.

Graph automorphism group — rpynmna aBromopdusMoB rpada, rpyIa
rpada, BepluHHas rpymma rpada.

Graph bundle — cBs3ka rpados.
Let B and F be graphs. A graph G is a (cartesian) graph bundle
with fibre F' over the base graph B if there is a mappingp: G — B
which satisfies the following conditions:
(1) it maps adjacent vertices of G to adjacent or identical vertices in
B

)
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(2) the edges are mapped to edges or collapsed to a vertex,
(3) for each vertex v € V(B), p~1(v) & F, and for each edge e €
E(B), p~!(e) = K,OF (O denotes the cartesian product of graphs).
Graph capacity — emkoctb rpada.
Graph circuit space — npocrpancTBo nukJIOB rpada.
Graph Clustering Problem — 3ajaua knacrepusamnuu rpada.
The graph clustering problem (or GCP) is defined as follows:

Input: a sequence (G1,...,Gymn;m1,...,m.), where each G; is an n-
node graph, each m; is a positive integer, and it holds that Z;Zl m; =
m.

Question: is there a partition (C1,...,C.) of {Gy,...,Gp} such
that |C;| = m;, for all j € [1,¢|, and the following properties hold
(1) for any i € [1,¢] and any Gy, G, € C;, the graphs G and G, are
isomorphic;
(2) for any 4, j € [1, ¢ such that i # j, and any Gj, € C; and G; € C},
the graphs Gy and G are not isomorphic.
Each set C}, j € [1,¢], will be called a cluster.

Graph cutset space — npocrpancTBo pa3pe3os rpada.

Graph enumeration — nepetunciienne rpados.

Graph grammar — rpadoBas rpaMMaTHKA.

Graph isomorphism — uzomopdusm rpados.

Graph labeling — pasmerka rpada.

Graph Minor Theorem — Tteopema 0 rpadOBBIX MUHOPAX.
Theorem (Robertson, Seymour). For every minor closed class C of
graphs, there is a finite set F of graphs such that

C={G|VHeF:HAG}

Graph morphism — rpadossiit Mopdusm.
Graph of finite automata — rpad komeumnoro aBromara.
Graph of function — rpad dyuximun.

Let X and Y be arbitrary nonempty sets and a function

f:MCX Y.
By gr(f) we denote the graph of funciton f, i.e.

gr(f) ={(z, f(x))| = € M}
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Graph of a partial order — rpad wacTuaHOrO MOPSIKA.

Graph of a strict partial order — rpad crpororo gacTudHOTO TOPSAIKA.

Graph representation — 3ajganue rpada.

Graph rewriting system (with priorities) — cucrema nepenucoiBanus
rpados (¢ npuopuTeTaMu).
Let C = (Cy,CEg) be a color alphabet. A rewriting rule over C
consists of a connected C-labeled digraph D and a partial labeling
function of D denoted by A. We write r = (D, \). Note that such a
rewriting rule can be more classically viewed as a pair of graphs (the
left-hand-side and the right-hand-side of the rule) given by (D, AD).
A graph rewriting system with priorities is defined by a triple
(C, P, >), where:
(1) C = (Cy,Cg) is the color alphabet,
(2) P is a finite set of rewriting rules over C,
(3) > is a partial order on the rules of P.

Graph of reachable markings — rpad gocTrRUMBIX pazMeTOK.

Graph spectral theory — cuekrpasbaast Teopust rpadoB.
The graph spectral theory studies graph eigenvalues and eigenvec-
tors. See, for instance, the book
D.Cvetcovié, M. Doob, and H. Sachs. Spectra of Graphs — Theory
and Application, Barth, Heidelberg (1995).

Graph symmetry number — gucio cummerpuit rpada.

Graph transformation rule — npasmio npeobpazoBanust rpada.
A graph transformation rule r : L — R is a partial graph
morphism from L, the left-hand side, to R, the right-hand side of
the rule r. A redex of r in a graph G is a total graph morphism
m: L — G from the left-hand side of the rule to G.

Graph union — obbegunenne rpados.
A graph union G; U G» of the graphs G; and G5 is a graph with
vertices in V(G1) UV(G2) and edges in E(G1) U E(Gs).

Graph with boundary — rpad c¢ rpanuneii.
A graph with boundary is a graph G(Vy U 9V, Eq U OF) with
interior vertices Vg, boundary vertices OV and edge set Fy U OF.
Each edge e € Ey (interior edge) joins two interior vertices, each edge
e € OF (boundary edge) connects an interior vertex with a boundary
vertex.
A d-regular tree with boundary is a tree, where all interior edges
have length 1, all boundary edges have length < 1, and where all
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interior vertices have degree d and all boundary vertices degree 1.
The set of interior vertices is not empty, i.e. |V| > 1.

(9, f)-Graph — (g, f)-rpacd.
See k-Factor of a graph.

f-Graph — 6-rpad.

Graphic sequence of numbers — rpaduyeckas oc/ieI0BATEIHHOCTD 9H-
cet.
See Degree sequence.

Graphical (graphic) matroid — rpadwuuecknii MmaTpon.
A matroid which is obtained from a graph G = (V, A) with the vertex
set V and arc set A. Let Z(A) be the family of all the subsets of A
which do not include arcs forming a cycle. A graphical matroid
obtained from the graph G is also isomorphic to the matriz matroid
obtained from the incidence matriz of G and is representable over
any field, i.e. graphical matroid is regular.
Thus, a matroid is called graphic if it can be represented as the
cycle matroid of a graph. A matroid is called cographic if it is
the dual of a graphic matroid. Graphic and cographic matroids are
representable over every field. The reader may wonder if there is a
way of determining whether or not a matroid is graphic. Tutte (1960)
gave a polinomial-time algorithm for determining whether a binary
matroid is graphic. If the binary matrix is graphic, then the algorithm
returns the incidence matrix of a graph, otherwise it concludes that
the matrix is not graphic. Later (1981) Seymour gave an algorithm for
determining whether any matroid, not necessarily a binary matroid,
is graphic.

Graphical partition of a number — rpadudeckoe pazdbuenue gucia.

Graphical sequence of numbers — rpadwudeckasi mociaenOBaTEILHOCTD
qUCeJT.

Graphical trade — rpaduueckuii Tpeiig. See G-trade.

Graphoid — rpadou.

Graphs union — o6beaunenue rpados, coenuaenne rpados.

Greedy algorithm — >xanubrit amropurm.

Grid graph — rpad pemerkn.
A grid graph is a finite node-induced subgraph of the infinite grid
G*°. The node set of G consists of all points of the plane with
integer coordinates. Two nodes are connected iff their Euclidean
distance is equal to 1. A grid graph is completely specified by its
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node set. A grid graph R(m,n) is call rectangular if its node set
V(R(m,n)) ={v: 1 <wvy, <m, 1 < v, <n}, where v, and v, are
the x and y coordinates of v respectively.
The other name is Lattice graph.

Group graph — rpad rpymisi.

Group of a directed graph — rpymmna oprpada.

Growing tree — pacryee aepeso.

Grundy colouring — I'panau packpacka.

Grundy number — uncso I'pann.

Gupta scheme — kox 'anra st 2-3-71epeBbes.
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H

Halin graph — rpad Xanumna.
G is a Halin graph if G is formed by embedding a tree having no
degree-2 vertices in the plane, and connecting its leaves by a cycle
that crosses none of its edges. Halin graphs are 3-connected and
have a Hamiltonian circuit.

Hamiltonian center — raMuIbTOHOB TIEHTD.
A vertex can be called a Hamiltonian center if Hamiltonian chains
come out from it to all other vertices.

Hamiltonian chain — ramMuibToHOBA TIEMD.
For given vertices a and b, a chain containing all vertices of a graph
is called Hamiltonian chain.

Hamiltonian circuit — raMuIbTOHOB IIUKJI.
Given a graph, a circuit containing all its vertices is called Hamilto-
nian circuit.

Hamiltonian connected graph — ramMmipTOHOBO-CBsI3HBII Tpad.
A graph G is Hamiltonian connected if there is a hamiltonian
chain joining every pair of vertices in the graph.

Hamiltonian cycle — ramuibToHOB KOHTYD.
Given a digraph, a cycle containing all its vertices is called Hamilto-
nian cycle.

Hamiltonian decomposable graph — raMuIbTOHOBO PA3IOKUMBI
rpad.
A graph G is Hamiltonian decomposable if either the degree of G
is 2k and the edges of G can be partitioned into k hamiltonian cycles,
or the degree of GG is 2k 4+ 1 and the edges of G can be partitioned
into k£ hamiltonian cycles and a 1-factor. If G is a Hamiltonian
decomposable graph, then G is loopless, connected, and regular.
For a graph G to have a hamiltonian decomposition that the graph
G, it should have a hamiltonian cycle.

Hamiltonian digraph — ramuisronoB oprpad.
A digraph is called Hamiltonian digraph if it has a Hamiltonian
cycle.

Hamiltonian graph — ramunbTonoB rpad.
This is a graph which has a Hamiltonian circuit. A Hamiltonian
graph G of order n is k-ordered, 2 < k < n, if for every sequence
v1,...,v of k distinct vertices of G, there exists a Hamiltonian
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circuit that encounters vy, ..., v; in this order.

Hamiltonian path — ramMuibTOHOB Ty Th.
Given a digraph, a path containing all its vertices is called Hamilto-
nian path.

Hamming distance — paccrosinue XamMunra.
See Hamming graph.

Hamming graph — rpad Xsmmvuara.
Given a graph G = (V| E), G is called Hamming graph if each
vertex € V can be labeled by a word a(x) (of fixed length) over
some symbol set ¥ such that

H(a(z),a(y)) = da(z,y)

for arbitrary x,y € V. Here a(x) is termed the address of z, and
H(a,b) stands for the Hamming distance of the addresses a and
b, that is, the number of positions k such that the k-th symbol in a
differs from the k-th symbol in b. Futher, dg(x,y) denotes the length
of a shortest chain in G between x and y. G is called a binary
Hamming graph if ¥ = {0,1}.

Hammock — ramak.
A hammock is an alt, the set of terminal nodes of which is empty
or consists of one node that is a successor of each output node of the
alt and is not a predecessor of its initial node.
A hammock is called decomposable if it can be presented as a union
of two disjoint hammocks and indecomposable (or prime) otherwise.
A maximal decomposable hammock is called composite.

Hammock presentation — ramadnoe npejcraBienue.
Let G be a cf-graph and I denote the set of all nontrivial prime
and composite hammocks of G. I'¢ -representation of G (i.e. A-
representation of G for A = T') is called a hammock representa-
tion of G.

Handshake’s lemma — jemma 0 pyKOIOXKATHSIX.

NP-Hard language —NP-Tpyanblii si3bIK.

NP-Hard problem — NP-tpyamas 3ajada.
See Complexity theory.

PSPACE-hard problem — PSPACE-TpyHas 3aja4a.

Harmonious chromatic number — rapmMoHnyeckoe XpoMaTHIECKOE TUC-
JI0.

Head of a hyperarc — nagaJo runepayru.
See Directed hypergraph.
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Head place — rosioBHOE MecTO.

Heap — kyua.
A heap is an abstract data structure consisting of a set of items,
each with a real-valued key, subject to the following operations: make
heap, insert(i,h), find min(h), delete min(h). See also Fibonacci heap.

Heap order — kyueBoii mopsiiok.
See Fibonacci heap.

Heap-ordered tree — Ky4eBo-ymnopsiioteHHoe IepeBo.
See Fibonacci heap.

Height of a branch of a tree — BricoTa BeTBU JiepeBa.

Height of a tree — BricoTa nepesa.

Height of a vertex — BbicoTa BepITHHEI.
See Directed tree.

Helly hypergraph — runeprpad Xesmm.
A hypergraph H whose edges satisfy the Helly property; i.e., any
subfamily H' C H of pairwise intersecting edges has a nonempty
intersection.

Hereditary class of graphs — macaeacreenmnrit kimacc rpadoB.
Let I5ub(G) be the set of all induced subgraphs of a graph G. A class
of graphs P is called hereditary class of graphs, if ISub(G) C P
for every G € P. The following hereditary class is associated with any
class Q: Perf(Q) = {G: ISub(G) C Q}. For example, if Q = {G :
i(G) = v(G)}, then Perf(Q) is a well-known class of domination
perfect graphs, which was defined by Sumner and Moore in 1979
and characterized in terms of 17 forbidden induced subgraphs.

Hereditary dually chordal graph — macieicTBeHHO-IBORCTBEHHBII XOP-
JaJbHBIN Tpad.
A dually chordal graph G such that any induced subgraph of G is
dually chordal.

Hereditary property of a graph — nacjencrsenHoe cBoiicTBO rpada.

Hierarchical graph — uepapxuyeckuii rpad.
Let G be a graph of some type, e.g. G can be an undirected graph, a
digraph or a hypergraph, and let F' be a set of its fragments such that
G € F and, for any C1,Cy € F, just one of the following properties
holds: (1) Cl C 027 (2) CQ C Cl, (3) Cl ﬂCQ = J.
H = (G,T), where T = (F,I) is a directed tree with a root G such
that I represents an immediate inclusion relation between fragments
of F, is called a hierarchical graph; G is called the underlying
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graph of H, and T is called the inclusion tree of H.
A hierarchical graph H is called a connected one, if each fragment
from F'is a connected graph, and a simple one, if all fragments from
F are induced subgraphs of G.
A simple hierarchical graph H = (G, T) such that G is an undirected
graph and the leaves of T" are exactly the trivial subgraphs of G is
called a clustered graph.

Hierarchical Petri net — uepapxudeckas cersb IleTpn.
See High-level Petri nets.

Hierarchy of embedded alts — nepapxus BIOKEHHBIX aJIBTOB.
See Alt.

Hierarchy of embedded zones — mepapxus BIOXKEHHBIX 30H.
The same as Nested set of zones.

High-level Petri nets — cetu IleTrpu BbICOKOTO ypOBHSI.
The term of high-level Petri net is used for many formalisms
that extend the basic Petri net formalism; this includes coloured
Petri nets, well-formed Petri nets, hierarchical Petri nets,
prioritised Petri nets, timed Petri nets, stochastic Petri nets,
dualistic Petri nets and all other extensions.

Hilbert’s problem — npo6siema I'ninbepra.

Hole — awipa.
An odd cycle without diagonals Coy41, where 2k +1 > 5. Its comple-
ment is called an antihole. A graph is said to be a Berge graph if
it does not contain hole and antiholes.

Homeomorphical graphs — romeomopdnsie rpadsr.

Homeomorphically irreducible tree — romeomopdno HecBommMoe Jie-
pesBo.

Homogeneously embedded graph — ommoponno Bioxennsiii rpad.
See Framing number.

Homomorphic image of a graph — romomopdHsrii 06pa3 rpada.

Homomorphism of a graph — romomopdusm rpada.
For given graphs G; and G5, a homomorphism from G; to Gs is
a mapping ¢ : V(G1) — V(G2) such that if (z,y) € F(Gy), then
(e(@), 0(y)) € E(G2).

Honest graph — gectunrit rpad.
A graph G is called honest if its edge-integrity is the maximum
possible; that is, equal to the order of the graph. It is known that
every graph of diameter 2 is honest. It is easy to see that only 3-, 4-,
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and 5-cycles are honest 2-regular graphs.
House — gowm.
This is a graph consisting of one cycle of length 3 and one of length
4 having a common edge. A house is the complement of the path on
five vertices.
Hungarian method — Benrepckwmit ajgropurm.
Hyperarc — runepayra.
See Directed hypergraph.
Hyper de Bruijn graph — muoromepssrit rpad ne Bpéiina.
The hyper de Bruijn graph HD(m,n) is Q™ X D,,, where Q™ is
m-cube graph and D, is the binary de Bruijn graph of order 2™.
Hyper Petersen graph — muoromepmusiit rpad Ilerepcena.
The hyper Petersen graph HP, is Q"3 x P, where Q"3 is n—3-
cube graph and P is Petersen graph.
Hypercube — runepky0.
The same as n-Cube graph.
Hypercycle — runepruk.
A sequence C = (e1,...,ex,e1) of edges is a hypercycle if e; N
€i41 (mod k) 7 0 for 1 <i < k. The length of C'is k. A hypergraph
is a-acyclic if it is conformal and contains no chordless hypercycles
of length at least 3.
Hypergraph — runeprpad.
A finite hypergraph H is a family of nonempty subsets (the edges
of H) from some finite underlying set V' (the vertices of H).
Hypertree — runepsepeso.
This is a hypergraph (called arboreal hypergraph) such that there
is a tree T with a vertex set V' such that every edge e € H induces a
subtree in T (T is then called an underlying vertex tree of H). A
hypergraph H is a dual hypertree if there is a tree T" with a vertex
set H such that for all vertices v € V T, = {e € H: v € e} induces
a subtree of T' (T is then called the underlying hyperedge tree
of H).
Observe that H is a hypertree if and only if H* is a dual hypertree.
Hypohamiltonian graph — rumoramMuisTOHOBBIN Tpad.
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Identical group of a graph — ToxxaecTBennas rpyima rpada.

r-Identifying code — r-unenrudurupyomuii Ko,
Consider a connected undirected graph G = (V,E), a subset of
vertices C C V, and an integer r > 1; for any vertex v € V, let
B, (v) denote the ball of radius r centered at v. If for all vertices
v € V, the sets B,.(v) N C are all nonempty and different, then C' is
called an r-identifying code.

Immediate dominator — memocpeCTBEHHDI JOMUHATOD, HEITIOCPEICTBEH-
HBIA 00s13aTeJIbHBIN IIPE/IIIeCTBEHHUK.
See Dominator.

Immediate postdominator — memocpecTBeHHBIN 00sI3aTEIHHBII TPEEM-
HUK, HEIIOCPEJICTBEHHBIN MOCTIOMUHATOP.

Immersion — BjoxKeHMe, MOTPYKEHHE.
A pair of adjacent edges (u,v) and (v,w), with u # v # w, is lifted
by deleting the edges (u,v) and (v,w), and adding the edge (u,w).
A graph H is said to be immersed in a graph G if and only if a
graph isomorphic to H can be obtained from G by lifting pairs of
edges and taking a subgraph.

Immovable vertex — HenoaBMXKHAA BEPIINHA.

d-improper list chromatic number — d-HenpaBuibHOE CIIUCKOBOE XPO-
MaTHYECKOe YUCIIO.
See L-coloring with impropriety d.

Impropriety — nenpaBuIbHOCTB.
See L-Coloring with impropriety d.

Incenter — BHyTpeHHUI HIEHTP.

Incidence function labelling — nmomeuarormast pyHKIUS MHIMIEHTHOCTH.

Incidence graph — rpad wHIIIIEHTHOCTH.
The (bipartite vertex-edge) incidence graph ZG(H) = (V,H, E) of
the hypergraph H is a bipartite graph with a vertex set V UH, where
two vertices v € V and e € H are adjacent if and only if v € e.

Incidence matrix — maTpuia MHIMACHTHOCTH.
1. (For a graph) The (vertex-edge) incidence matrix I(G) of a
graph G = (VE), V = {vy,...,0.}, E = {e1,....,Epn},isnxm
(0, 1)-matrix with entries

i — 1, if v, € ¢
k=0 0, otherwise
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2. (For a directed graph) The incidence matrix of a directed graph
D is a p x ¢ matrix {b; ;} where p and g are the numbers of vertices
and edges respectively, such that b; ; = 1 if the edge x; leaves vertex
v, 1 if it enters vertex v; and 0 otherwise. (Note that many authors
use the opposite sign convention.)

3. (For a hypergraph) let H be a hypergraph, E = {e1,...,em} be
its edge set and V = {v1,...,v,} be its vertex set. The incidence
matrix ZM(H) of the hypergraph H is a matrix whose (i, j) entry
is 1 if v; € e; and O otherwise. Note that the transposed matrix
IM(H)" is the incidence matrix of the dual hypergraph H*. A
totally balanced matrix is incidence matrix of a totally balanced
hypergraph.

Incidence relation — orHomrenue MHIMIEHTHOCTH.

Incidentor — waIMIIEHTOD.

Incidency — uHIUIEHTHOCTD.

Inclusion of languages problem — npobsiema BKIIOUEHUS sI3BIKOB.

Inclusion of schemas — BrramcszEMOCTD CxXEM.

See Large-block schema.

Inclusion tree — jepeBo BIOKEHHOCTH.
See Hierarchical graph.

Incomparable vertices — HecpaBHUMBIE BEPIIMHBL.

Incompatibility graph — rpad mecoBmecTumocTH.

Increment operator — oneparop npubaBIeHnsT €TUHAIIGI.

Indecomposable tournament — Hepas3TOKUMBIN TYPHHUP.

See Critical tournament.

Indegree, in-degree — nosycrenens 3axo/1a BEPIIMHBL.

The indegree of the vertex v in a digraph G is the number of distinct
arcs with the target v and is denoted by in(v, G).

Indegree matrix — maTpuria mogycreneneit 3axoa.

Independence graph of a graph — rpad HezaBucumocTu rpada.
Maximum independent sets in G will be also called a—sets in G. The
independence number «a(G) of a graph G is the cardinality of an a—
set in GG. Let S be the set of a—sets of G. Then the independence
graph Ind(G) of G is the graph with V(Ind(G)) = S, and 51,52 € S
are adjacent whenever S; N Sy = 0.

Independence number — uwncji0 HE3aBUCHMOCTH, YHCJIO BHYTPEHHE
YCTOWYHMBOCTH, HEILJIOTHOCT.

For a graph G, independence number 3(G) is the size of a maxi-
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mum independent set of G. The lower independence number i(G)
is the minimum cardinality of a maximal independent set. (Because
an independent set is maximally independent if and only if it is
dominating, i(G) is also called the independent-domination number
of G.)
The other name is Stability number.
See also Transversal, Local independence number.

Independence polynomial — MHOrOWIEH HE3ABUCUMOCTH.
For a graph G with independence number (3, let i denote the number
of independent sets of vertices of cardinality k¥ in G (k =0,1,...,0).
The independence polynomial of G,

B
i(G,x) = Z ipz®,

k=0

is the generating polinomial for the independence sequence

(i1,92,...,18).

Independence subdivision number — He3zaBucumoe [wnciio nojapazbue-
HUS.
The independence subdivision number sdg(G) of a graph G
is the minimum number of edges that must be subdivided (where
an edge can be subdivided at most once) in order to increase the
independence number. It is known that for any graph G of order
n > 2, either G = K1 ,, and sdg(G) = m, or

1< Sdg(G) < 2.

See also Domination subdivision number.

n-Independence number — 4nc/I0 n-HE3aBUCUMOCTH.
See n-Dominating set.

Independent circuits — He3aBuUCHMBIE UKITBI.
A set C of circuits of G is called independent if for every nonempty
subset A of C the symmetric difference of the circuits in A is not
empty. A maximal independent set of circuits of G is called a cycle
basis of G. It is easy to see that every cycle basis of G has |E(G)| —
[V(G)| + ¢(G) circuits, where ¢(G) is the number of components of
G. See also Cyclomatic number.
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Independent dominating set — HezaBucuMoe JOMITHUPYIONIEE MHOXKECT-
BO.
See Dominating set.

Independent dominating number — wunciio He3aBHUCHUMOro ITOMHHUPO-
BaHUS.
See Dominating set.

Independent domination number relative to v — uncso He3aBucuMO-
IO JJOMUHUPOBAHUS OTHOCUTEIHHO .
See Dominating set.

Independent n-domination number — 4nc0 HE3ABUCUMOIO N-TOMUHM-
poBaHusl.
See n-Dominating set.

Independent edges — nesaBucumbie pebpa.
Given a graph (digraph, hypergraph) G, edges such that no two have
an endpoint in common are called independent.
Another name is Matching.

Independent paths — nesaBucumbIe Ty TH.
Given a graph (digraph), paths having no points in common except,
possibly, their endpoints are called independent.

Independent set — mezaBuCHMOE MHOXKECTBO.
Let G be an undirected graph. V' C V is an independent set or
stable set in G (or empty subgraph) if for all u,v € V' (u,v) € E.
S is a maximal independent set if S is independent and for each
vertex u € V(G) — S the set SU{u} is not independent.
Let G be a directed graph. A set of vertices W C V is called
independent if for every pair of vertices u,v € W neither (u,v)
nor (v,u) is present in the digraph. W C V is absorbent if for each
u € V\ W there exists (u,v) € A(G) with v € W and dominant
if for each v € V' \ W there exists (u,v) € A(G) with u € W. A set
W C V is a kernel of G if W is independent and absorbent and W
is a solution of G if W is independent and dominant.
Independent set Y is called an essential independent set if
there is {y1,y2} C Y such that dist(y1,y2) = 2.

Independent sets of a matroid — mezaBucuMbIe MHOXKECTBA MATPOUIA.
See Matroid.

Independent vertex set of a hypergraph — HezaBucuMoe MHOXKeCTBO
BEPIIMH TUIeprpada.
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Independent F-matching width — mupuna mezasucumoro F-mapocote-
TaHWS.
See F-width.

Independent F-width — nHesaBucumast F-mupuHa.
See F-Width.

Independent matching width — mezaBucumas mupuna mapocodeTanns.
See F-Width.

Independent width — nezaBucumas mmupuna.
See F'-Width.

n-Independent set — n-He3aBUCHMOE MHOXKECTBO.
See n-Dominating set.

Index — unnekc.
1. See Primitive directed graph. 2.
2. See Characteristic polynomial of a graph.

Indirect addressing graph — rpad kocsenHoii ajpecarym.

Indifference digraph — uamuddepentasit oprpad.

Indifference graph — unauddepentunrit rpad.

Induced matching partition number — uncno paszbuenuss wWHIYIHPO-
BAHHOI'O ITAPOCOYETAHUSI.
The induced matching partition number of a graph G, denoted
imp(G), is the minimum integer k& such that V(G) has a k-partition
(V1,..., Vi) such that, for each i, 1 < i < k, G[V;], the subgraph
of G induced by V;, is l-regular graph. It is known that, if G is
a graph which has a perfect matching, then imp(G) < 2A(G) — 1,
where A(G) is the maximum degree of a vertex of G. Furthermore,
imp(G) = 2A(G) — 1 if and only if G is isomorphic to either K5 or
Clyj+2 or the Petersen graph, where C), is the cycle of length n.

Induced path number — unca0 TOPOKAEHHBIX MMy TEIA.
The induced path number p(G) of a graph G is defined as the
minimum number of subsets into which the vertex set V(G) of G can
be partitioned such that each subset induces a path.
If G is a graph such that p(G) = k and p(G —v) = k — 1 for every
v € V(G), then we say that G is k-minus-critical.

Induced (with vertices) subgraph — nopoéunblii (BepiuHaMu) noi-
rpad.
See Subgraph (in a strong sense).

Inductive graph — unaykTuBHBII rpad.

Infinite graph — Geckoneunsrit rpad.
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Inflation — uadirsmnus.
1. The inflation G; of a graph G is the line graph of a subdivision
of G.
2. Let F and G be (simple) graphs such that V(G) = {v1,...,v,}.
We say that F is an inflation if V(F) can be written as a disjoint
union V(F) =V, U---UV, in such a way that if z € V; and y € V,
then zy € E(F) if and only if ¢ = j or v;u; € E(G). (So to inflate a
graph is to replace each vertex by a complete graph.) If |V;| =t for
all ¢, then we write F' = G(;) and call it a uniform inflation of G.
(Another way of looking at G;) is considering it as a lexicographic
product or composition G[K;] of G and K, also called the wreath
product G * Ky).

Information flow — undopmanmonnbit CBA3b.
See Value of schema under interpretation.

Information graph — undopmanmonusiii rpad.

Informationally connected operands — uHdpoOpMAIIMOHHO CBSI3HBIE OITE-
paHIbI.
See Large-block schema.

Informationally incompatible operands — undopmalmoHHO HecoBMe-
CTUMBIE OIEPAHJIBI.
See Large-block schema.

Inheritance graph — rpad naciemoBanus.
An inheritance graph is a directed acyclic multigraph H = (X, E)
with a least element denoted by 0z and a greatest element denoted
by 1g. The transitive closure H* of H induces a partial order. In
the context of object oriented languages, this order is called the
inheritance relation.

Inheritance relation — ormomenne HacjaeT0BAHMSI.
See Inheritance graph.

Inhibitor arc — uaruburopnas ayra.

Inhibitor Petri net — unruburopnas cers Ilerpu.

Initial marking — navanbpHas pasmerka.
See Petri net.

Initial node — mavaabHas BepmUHA.
1. See Control flow graph.
2. See Fragment.

Initial state — maganbHOE cocrosiHue.
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Initial string — magaspHas momIeIOUKA.
See String.

Initial symbol — naganbHbIit CUMBOJI.

(Informationally) incompatible operands — (urdopmaruosHO) HeCOB-
MECTUMBIE OIEPAH/IBI.
See Large-block schema.

(Informationally) connected operands — (undopmainuoHuo) cBs3HbIE
OTIEPAH/IBI.
See Large-block schema.

In-neighborhood — Bxozsimast OKpecTHOCTD.
See Neighborhood of a vertex.

In-neighbour — Bxomammit coces.
See Neighbourhood of a vertex.

Inner vertex — BHyTpeHHsISI BEPIIHUHA.

Inorder traversal — cummeTpudHBIT 06XO.

Input — Bxom.
Given a digraph G, its input is a vertex of in-degree zero.

Input arc — saxomsimas ayra.

Input directed spanning tree — Bxojsrmuii opkapkac.

Input place — BxomHOe MecToO.

Input tree — Bxossiee jgepeso.
See In-tree.

Inradius — BHyTpennmii paanyc.

In-semicomplete digraph — momymosmsiit mo Bxoay oprpad.
See Neighbourhood of a vertex.

Inseparation number — 4wnc/i0 BHyTpeHHErO pa3ie/ieHusl.

Inset — 3axosiiee MHOXKECTBO.
The inset N_(z) of a vertex x is the set of vertices dominating z.
See also Outset.

Integer distance graph — rpad nenouncieHHBIX PACCTOSHUIA.
An integer distance graph is a graph G(D) with the set of all
integers as a vertex set and two vertices u,v € Z are adjacent if and
only if |u — v| € D, where the distance set D is a subset of positive
integers set.

Integral graph — nemounciennsit rpad.
A graph is called integral if all of its eigenvalues are integers. Such
graphs are rare. It is known that there are only 263 non-isomorphic
connected integral graphs with up to 11 vertices.
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Integrity — unesnocraocrs (rpada).
The integrity i(G) of G is defined as

Q) =min{|X|+m(G—-X): X CV},

where m(G — X) stands for the maximum number of vertices among
all components of the graph G — X.
The integrity parameter was proposed by Barefoot et al. (1987) as a
vulnerability measure of a graph.
See also Toughness of a graph.

Internal transition — BuyTpennnii mepexos.

Interpretation — unTepnperamusi.
See Large-block schema, Program schemata.

Intersection graph — rpad nepeceuenmii.
The intersection graph of a set of items is a graph formed by
associating each item with a vertex and adding an edge between two
vertices if the associated items have a nonempty intersection. The
containment graph is formed in a similar fashion, but there is an
edge between two vertices if one of the items contains the other.

Intersection of graphs — mepeceuenne rpados.

Intersection number — wncio mepecedenuii.

(X,Y)-Intersection graphs — rpadsr (X, Y)-nepeceuennii.

Interval — unTepBa.
An interval is such an alt I that its initial node belongs to each
strongly connected subgraph of I. The initial node of interval I is
also called a header node.
An interval I is maximal if there is no such an interval Z that I is
a proper subfragment of Z.
For a given control flow graph G with its initial node ng and a given
node n of G, the maximal interval with the header n, denoted I(n),
can be constructed by the following three rules: (1) n is in I(n); (2)
if all the predecessors of some node m # ng are in I(n), then m is in
I(n); (3) nothing else is in I(n).
The set of all maximal intervals of a cf-graph G form a partition of
the set of its nodes.
A node p is a head of some maximal interval of a cf-graph G if and
only if either p is the initial node of G or p is a terminal node of
another maximal interval of G.
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Interval I(u,v) — nurepsai I(u,v).
The Interval I(u,v) between two vertices v and v in G is the set of
all vertices on shortest paths between v and v.

Interval chromatic number — nHTEepBaJIbLHOE XPOMATUIECKOE UHUCJIO.
See Interval coloring.

Interval coloring — wnaTepBaNBPHAS PACKPACKA.
An interval coloring of a weighted graph (G, w) maps each vertex x
to an open interval I, on a real line, of width w(z), such that adjacent
vertices are mapped to disjoint intervals. The total width of an
interval coloring is defined to be |U, I,;|. The interval chromatic
number X (G, w) is the least total width needed to color the vertices
with intervals.
A graph G is called superperfect if for every non-negative weight
function w, Q(G,w) = x(G,w).

Interval function — unrepBanbHast QyHKIMS.

Interval graph — unTepBasbHBIi rpad.
1. An interval graph is a graph for which one can associate with
each vertex an interval on the real line such that two vertices are
adjacent if and only if their corresponding intervals have a nonempty
intersection.
The following characterization of an interval graph was found by
P.C. Gilmore and A.J. Hoffman in 1964.
Theorem. The following statements are equivalent:
(1) G is an interval graph,
(2) G is chordal and its complement G is a comparability graph,
(3) there is an interval ordering of the maximal cliques of G.
The interval graphs are an important subclass of the chordal graphs.
It is known that a graph G with n vertices and m edges can be tested
for being an interval graph in O(n + m).
2. 1-derived graph of a given cf-graph is called an interval graph.
Another name is Derived graph.

Interval hypergraph — runeprpacd urTepBasos.

Interval of a graph — unrepsan rpada.

Interval of a tournament — waTepBas TYHUpA.
See Crritical tournament.

Interval order — nHTEpBAJIBHBIN TOPSIIOK
1. An ordering (X1,...,X,) of the maximal cliques of a graph G
such that for every vertex the maximal cliques containing it occur
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consecutively in the ordering is called interval order.
2. Let I = (I;)}_; be a finite collection of intervals of the real line and
let (I, L) be a poset such that I;LI; iff I; is completely to the left of
I;. (P, <) is an interval order if there is a collection I of intervals
such that (P, <) is isomorphic to (I,L). It is easy to see that the
comparability graphs of interval orders are exactly the cointerval
graphs.

Intractable problem — Tpynnoperaemas 3amgata.
See Complexity theory.

In-tree — BxomsIIEe opuepeso.
An in-tree is a directed tree in which precisely one vertex has zero
out-degree. The other name is Input tree.

Invariant of a graph — unBapmanT rpadea.

k-invariant graph — k-unBapuanTHbIil rpad.
See Clique graph.

F-Inverse arc — F-obparHas Jyra.
See Numbering of cf-graph.

Inverse arborescence — obpaTHast IpeBECHOCTb.
See Arborescence.

Inverse cycle — obparHBIii TTUKII.
See Cycle.

Inverse relation — obpartHoe orHOIIEHME.
See Binary relation.

Irreducible additive hereditary graph property — cpoiicTBo HECBOMM-
MOt QI TUTUBHON HacJieLyeMocTu rpadoB.
See Additive hereditary graph property.

Irreducible graph — necBogumsbrit rpad.

Irredundance number — 4nc/I0 HECBOINMOCTH.
See Irredundant set.

Irredundance perfect graph — Hen30bITOYHO COBEpIIEHHBII rpad.
A graph G is an irredundance perfect graph, if for every induced
subgraph H of G holds the equality ir(H) = vy(H), where ir(H) is the
irredundance number and v(H) is the domination number. A graph
G is called k-irredundance perfect (k > 1) if ir(H) = v(H) for
every induced subgraph H of G with ir(H) < k.
A graph @ is minimal irredundance imperfect if G is not irredun-
dance perfect and ir(H) = v(H) for every proper induced subgraph
H of G.
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The first sufficient condition, for a graph to be irredundance perfect,
in terms of a family of forbidden induced subgraphs is due to Bollobds
and Cockayne (1979).

k-Irredundance perfect graph — Hen306bITOUHO COBepIIEeHHBIH Ipad.
See Irredundance perfect graph.

k-Irredundance perfect graph — k-Hem30bITOYHO COBEPIIEHHBIN Tpad.

Irredundant Petri net — meusborrounas cers Ilerpm.
See Petri net.

Irredundant set — HeM30OBLITOUHOE MHOMKECTBO (BEPIIHH).
A set I of vertices of G is an irredundant set, if every vertex
x of I that is not isolated in I has at least one external [-private
neighbor (or I-EPN), that is a vertex of V' — I that is adjacent to x
but to no other vertex of I. The minimum cardinality of the maximal
irredundant set is called an irredundance number and denoted
by ir(G). A vertex is an annihilator of a vertex x of an irredundant
set I (z not isolated in T) if it dominates all the I-EPN’s of .

Irreflexive relation — anTupediekcuBHoe oTHOIIEHME.

Irregular digraph — upperyaspubrit oprpad.
A digraph is called irregular if its distinct vertices have distinct
degree pair.

Irregular graph — upperyssipasiii rpad.
See Regular graph.

Irregularity of a digraph — meperymnspraocts oprpada.
An irregularity of a digraph D is defined as (D) = max|d™(x) —
d~(y)| over all vertices x and y of D (possibly © = y). There are
two other measures of regularity, namely, the local irregularity of
a digraph D, which is i;(D) = max |d" (z) — d~ ()| over all vertices
z of D and global irregularity of D, which is i,(D) = max{d™* (z),
d=(z):xz € V(D)} —min{d" (y),d (y);y € V(D)}. Clearly,

iy(D) > i(D) > (D).

Irregularity strength — cremnens upperyssipanocru.
The irregularity strength s(G) of a graph G is defined as the
minimum integer ¢, for which the edges of G can be weighted with
1,2,...,t in such a way that the weighted degrees, i.e. the sum of
weights of the adjacent edges in each vertex, are distinct numbers.
It is known that the irregularity strength of any tree with no
vertices of degree 2 is its number of pendant vertices.
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Isolated vertex — m3onmpoBanHas (rosiasi) BepIIHHA.
Given a graph, a vertex adjacent to no edges is called isolated.

Isolated vertex of a hypergraph — usosiupoBaHHast BEpIINHA I'UIIEPrpa-
da.

Isolated vertex subset — uzosmpoBaHHOE TOAMHOXKECTBO BEPIIUH.
A vertex subset is called isolated if the subset contains a vertex
which has no neigbours in the subset.

Isometric subgraph — m3omerpudeckuit moarpad.
An induced subgraph in G is an isometric subgraph in G if the
distance between any two vertices in the subgraph equals their dis-
tance in the graph. See also Distance-hereditary graph.

Isomorphic decomposition — nzomopduoe pazioxkenue.
See Mazximal packing.

Isomorphic directed graphs — uzomopdmubie oprpadni.

Isomorphic embedding problem — npobiema nzoMopdHOIT BIOKUMO-
CTH.

Isomorphic graphs — nsomopdubnie rpadmbl.
Two graphs G; = (V1,E;) and Gy = (Va, Es) are isomorphic
graphs (denoted G; = Gy or G; ~ (s) if there is a bijective
function f from V; onto Va such that (u,v) € Eq iff (f(u), f(v)) € Es
holds. The function f is called isomorphism between two graphs
G1 and Gs. If G; = Go, then f is an automorphism. The set of
automorphisms of a graph forms a group which is called an automor-
phism group. The isomorphism problem is to determine all
isomorphisms between two given graphs G; and Gs. If G; = Go,
then the isomorphism problem is the automorphism problem.

Isomorphic labeled graphs — uzomopduse nomeueHHbIE TPADHI.
See Labeled graph.

Isomorphic matroids — nsomopdubie MaTPOUIHI.

P,-Isomorphic graphs — P;-uzomopdubie rpadnr.
The graphs G; = (V, E1) and G = (V, E3) with the same vertex set
V are P,-isomorphic graphs if for any set S C V of 4 vertices it
holds that S induces P, in 1 iff S induces Py in Gs.
In 1984, V.Chvatal conjectured that if a graph is Ps-isomorphic to a
perfect graph, then it is perfect. This conjecture is known as Semi-
Strong Perfect Graph Conjecture. In 1987, B.Reed showed that
this conjecture is true.
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Isomorphic posets — wu3oMOpdHbIE IACTHIHO-YIIOPSATOIEHHBIE MHOMKE-
CTBa.
See Partial order relation.

Isomorphism problem — mpobsiema m3omopdusma.
See Isomorphic graphs.

Isoperimetric number — uncj0 n3onEepUMETPUIHOCTH.
See Bisection width of a graph.

Isospectral graphs — n3ocmexkTpasbubie TpadbI.
Graphs with the same spectrum are called isospectral. It is well
known that switching a regular connected graph into another regular
connected graph of the same degree produces an isospectral graph.

Isotropic coloring — m3orponnast packpacka.
The problem of finding a (¢, 4, j)-cover of a graph G is equivalent to
the following vertex-coloring problem of GG. Color the vertices of G in
two colors, black and white, such that black vertices correspond to
the centers of the covering balls. Thus, the t-neighborhood of every
black vertex contains exactly ¢ black vertices and the t-neighborhood
of every white vertex contains exactly j black vertices. A similar
coloring problem was introduced by V. Vizing. He considered a distri-
butive or isotropic coloring of a graph, that is, a coloring in which
the number of vertices of a fixed color in the 1-neighborhood of any
vertex depends only on the color of this vertex.
Let ¢ : V(G) — {0,1} be a coloring of V(G). We call a vertex
u € V(G) black if p(u) =1 and we call a vertex u white if p(u) = 0.
For v € V(G) and k € {0, 1}, let NF(u) be the set of vertices of color
k in the t-neighborhood of wu.
A coloring ¢ of G is (t,1,j)-isotropic if every black vertex has
exactly i black vertices within distance ¢ and every white vertex has
exactly j black vertices within distance t.

Iterated clique graph — urepanuonnbiit rpad KJIUK.
See Clique graph.

k-Iterated line digraph — k-urepanuonusiit pédbepHbiit oprpad.
Setting L°G = G, for any integer k > 1 the k-iterated line digraph,
LF@, is defined recursively by L*G = LL*1G.

n-Iterated line graph — k-urepanuonnsiit pébepubIit oprpad.
See Line graph.

Iteration operation — oneparus urepaiun.
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J

Join of graphs — coenunenne rpados.
The join of the graphs G and H is the graph with a vertex set
V(G)UV(H) and edge set E(G)U E(H) U {(u,v) : u € V(G),v €
The join of digraphs D; and Dy consists of Dy U Dy together with
all bidirectional arcs between any vertex of Dy and any vertex of Ds.

T-Join — T-coenuneHwne.
See Graft.

Join operation — omepanust mpucoeIuHEHNUS.

[-Joinability — [-coemunumocTs.

Joined vertices — cMmexxHbIe BEPITUHBI.

Jump graph — npeiratomuit rpad, rpad CKaIKOB.
Let G be a graph of size ¢, where ¢ > 1, and let F' and H be edge-
induced subgraphs of size £ (1 < k < ¢) in G. We say that H is
obtained from F' by an edge jump if there exist four distinct vertices
v,u,w and z in G such that (u,v) € E(G), (w,z) € E(G) — E(F),
and H = F — (u,v) + (w,z). For any two subgraphs F' and H in
the graph G, we say that F is j-transformed into H if H can
be obtained from F by a sequence of j edge jumps. The minimum
number of edge jumps required to transform F' into H is called the
jump distance d;(F, H) from F to H. The k-jump graph Ji(G)

q

k
subgraphs of size k, that two vertices F' and H of Ji(G) are adjacent
if d;(F,H) =1.If k =1, then we refer to J;(G) = J1(G) as a jump
graph of G and denote this more simply by J(G). It is known that
J(@G) is the complement of the line graph L(G) of G.

Jump distance — paccrosinue cKauKOB.
See Jump graph.

k-Jump graph — rpad k-ckadkos.
See Jump graph.

Justified tree — BeipoBHEHHOE JIEPEBO.
BBIPOBHEHHOE JIEPEBO.

of G is such a graph whose vertices are the edge-induced
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K

Karp-Miller tree — mepeso Kapna-Muinepa.
The same as Coverability tree.

Kautz digraph — oprpad Kayrra.
See Generalized Kautz digraph.

Kernel — ampo.
An independent set S of vertices in a digraph is called a kernel if
for each z € V(G) \ S, there exists y € S such that (x,y) € E(G).
See also Independent set, Semikernel.
When every induced subdigraph of a digraph D has a kernel, D is said
to be kernel-perfect. D is a critical kernel-imperfect digraph
if D does not have a kernel but every proper induced subdigraph of
D has at least one.

(k,k —1)-Kernel — (k, k — 1)-sipo.
A subset J C V(G) is said to be a (k,k — 1)-kernel of G if the
following properties hold:
(1) for each two distinct vertices x,y € J, dg(x,y) > k,
(2) for each ' € V(G) \ J, there exists € J such that Dg(z/,z) <
k—1.
In addition, a subset containing only one vertex is also called a (k, k—
1)-kernel of G.
Note that for £ = 2 the definition reduces to the definition of a kernel
of a graph G.

Kernel-perfect digraph — syipo-cosepiiennsiit rpad.
See Kernel.

Keyed access method — accormaruBHbIil mOUCK.

Kings graph — xoponesckuii rpad.
The kings graph K, is a graph whose vertex set consists of the
squares of n x n chessboard, where two vertices are adjacent if and
only if a king can move from one square to the other in a single move
according to the chess rules. More formally, V(K,) = {(i,7) : 1 <
1,7 < n}, where distinct (4,7) and (¢, ") are adjacent if and only if
i)l <1

Kirchoff matrix — marpuna Kupxroda.
Let us consider the general problem of counting the number of span-
ning trees for an arbitrary multi-graph G. This requires that we
first concentrate on digraphs and counting the number of spanning
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out-trees rooted at a particular vertex. We introduce the so-called
Kirchoff or in-degree matrix K(G). The elements of K are defined

as follows: (o)), i=j
. _(w), i=1j7,
K(’Lm]){ —k’, ’L;é] )

where k is the number of edges from ¢ to j. Thus, the number of
spanning out-trees rooted at r in a finite digraph G is equal to
det(K,.(G).

Kleene closure — zambikanne Kimnn.
See Formal language.

Kleene star — oneparust HaBemmuBanus 383109k KymHM.
See Formal language.

Kndédel graph — rpad Kuéners.
The Knodel graph on n > 2 vertices (n even) and of maximum
degree A > 1 is denoted Wy . The vertices of Wa ,, are the couples
(,5) withi =1,2and 0 < j < 3 — 1. For every j, 0 < j < 3 —1,
there is an edge between vertex (1, ) and every vertex (2,4 4 2% — 1
(mod %), for k=0,...,A—1.

Knot graph — ysmnoBoit rpad.

Ko6nig’s problem — npo6siema Kenura.

Konigsberg’s bridges problem — 3ajava 0 KeHUTCOEPrCKUX MOCTaX.
In 1736 Euler solved a recreational puzzle interesting to the inhabi-
tants of Konigsberg (now Kaliningrad). Kaliningrad sits across the
river Pregel with seven bridges connecting the various banks and
islands of the river as shown. The problem is whether or not it is
possible to follow a circular walk starting and finishing at the same
river bank and crossing each bridge precisely once.
See also Eulerian graph.

Krausz dimension of a graph — Kpaycosa paszmeprocTh rpada.
See Krausz partition of a graph.

Krausz partition of a graph — pas6uenue Kpayca rpada, Kpaycoso pas-
ouenune rpada.
A Krausz partition of G is a partition of the edge set E(G) into
complete subgraphs (that are also called the clusters of the partition).
The number of clusters containing a vertex v is called the order of v
(in the Krausz partition). The order of the partition is the maximum
order over all vertices of G. The Krausz dimension of G is defined
as the minimum partition order over all Krausz partition of G.
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Kronecker product — KpomekepoBO MpPOU3BEICHHE, MPSIMOE MIPOU3BEIe-
HUe.
See Product of two graphs.
Kruskal’s algorithm — asropurm Kpackasa.
The following algorithm due to Kruskal finds a minimum-weight
spanning-tree, MWT, of a weighted undirected graph G = (V, E).
It is known that it operates in polynomial time.
1. Relabel the elements of E so that
if w(e;) > w(e;) then i > j
2. MWT — @
3.for i=1 to |E| do
if MWT U {e;} is acyclic then
MWT — MWT U{e;}
Kuratowski’s criterion — xpurepuit Kypartosckoro.
See Planarity criteria.
Kuratowski’s theorem — reopema Kyparosckoro.
Theorem. A graph G is planar iff it does not contain a subdivision
of K5 and K3 3, i.e. iff it does not contain the minors K5 and Ks 3.
The other name is Pontrjagin-Kuratowski’s theorem.
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Label — meTka.

Labeled graph, labelled graph — nomeuennsriii rpad.

Let C = (Cg,Cy) be a pair of distinct sets of labels; Cy (resp. Cg)
stands for node (resp. edge or arc) labels. A labeled graph over C,
or simply a C-graph, consists of a graph G = (V, E, Ends) and a
labeling function which is a pair of mappings [ = (ly,{g) such that:
ly : 'V — Cy is the node-labeling function,

lg : F — Cg is the edge-labeling function.

Similarly, a labeled directed graph, or simply a C'—d-graph, is defined
as a directed graph with a labeling function ! defined as above.

A labeled graph G = (V, E, ), where X\ is a labeling function, is
isomorphic to a labeled graph G' = (V’, E’, X') if there is a pair
¢ = (¢v, ¢g) of one-to-one mappings ¢y : V. — V' and ¢p: E —
E’ such that ¢p((v,w)) = (¢v(v),dy (w)) for every (v,w) in E(QG)
and )\V/ ] (;Sv = /\V and )\E’ o ¢E = >\E

If a subgraph G of G’ is isomorphic to a labeled graph G”, G is
called an occurrence of G” in G'. Two occurrences O = (Vo, Eo, A)
and O’ = (Vor, Eor, \') are overlapping in G, if the set of vertices
Vo N Vo is not empty.

Labeled Petri net, Labelled Petri net — momeuennas cers Ilerpn.
Let A be an alphabet of action labels. An labelled Petri net is a
pair (N, L), where N is a Petri net and L : T — Al J{e} assigns to
each transition either an action label or the empty string.

Labeled tree, Labelled tree — nomedennoe jiepeBo.

A labeled tree is a tree whose nodes are labeled from a finite
alphabet ¥. An unordered labeled tree is just a rooted labeled
tree. An ordered labeled tree is a rooted labeled tree in which the
children of each node are ordered, i.e., if a node has k children, then
we can specify them as the first child, the second child, ..., and the
kth child.

Labeling — pasmetka.

A labeling (or valuation) of a graph is any map that carries some
set of graph elements to numbers (usually to the positive or non-
negative integers). If the domain is the vertex-set, the edge-set, or the
set V(G) U E(G), labelings are called respectively vertex-labelings,
edge-labelings or total labelings.
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Every vertex-labeling induced a natural labeling of the edges: the
label of an edge wv is the absolute value of the difference of the
labels of v and v.

Labeling of type (a,b,c) — pasmerka tuna (a, b, c).
A labeling of type (a,b,c) assigns labels from the set

{1,2,3,...,alV(G)| + b|E(G)| + c|F(G)|}

to the vertices, edges and faces of G such that each vertex receives
a labels, each edge receives b labels and each face receives ¢ labels
and each number is used exactly once as a label. Labelings of type
(1,0,0), (0,1,0) and (0,0,1) are also called vertex, edge and face
labelings, respectively.

Ladder — necrrua.
The ladder graphs (or ladders), are the graphs P» x P, of order
2n. The n copies of P, that connect the two copies of P,, are called
rungs. Since these graphs are also called (2,n)-meshes, we denote
them by My .

Language — s3bIK.
See Formal language.

CF-Language — KC-a3bIk.
See Chomsky hierarchy.

CS-language — K3-s3bIK.
See Chomsky hierarchy.

P-Language — P-a3bik.

Laplacian matrix — namnacuan.
Let G be a simple graph on n vertices. Let deg; denote the degree
of a vertex v;, i = 1,2,...,n. Let A(G) denote the adjacency matrix
of G and D(G) = diag(degy,...,deg,) be the diagonal matrix of
vertex degrees. The Laplacian matrix of G is then L(G) = D(G) —
A(G). The eigenvalues of L(G), denoted by p1(G), u2(G), - . ., in(G),
labeled so that p1(G) > p2(G), . .., pn(G), are called the Laplacian
eigenvalues of GG. These eigenvalues form the Laplacian spectrum
of G. Because L(G) is a positive semidefinite symmetric matrix, the
Laplacian eigenvalues are non-negative real-valued numbers.
For a weighted graph G on vertices labelled 1,...,n, the Laplacian
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matrix of GG is the n X n matrix L with

—0, if i # j and (4,7) is an edge of G with weight 6,
Li; =< 0, if (i,5) and (¢, ) is not an edge of G,
the sum of weights of edges incident with 4, if i = j

It is well-known that if G is connected, then the nullity of L is 1, and
the null space of L is spanned by the all ones vector, 1,. The second
smallest eigenvalue of L is known as the algebraic connectivity of
G.

Laplacian eigenvalues — jmaniacunanoBo coOCTBEHHOE 3HAYEHUE.
See Laplacian matriz.

Laplacian spectral radius — jamiacnanoB CeKTPaIbHBIN PAJIIYC.
The Laplacian spectral radius is the largest eigenvalue of its
Laplacian matrix.

Laplacian spectrum — jamiacnaHoB CIEKTp.
See Laplacian matriz.

Large-block program — kpynHoO09HasT TpOrpaMMa.
Such a large-block schema « that any two its interpretations are
equal on the set X, where X, denotes the subset of ¥ used in « is
called a large-block program.

Large-block program execution — wucnosiHeHre KpPyITHOOJIOIHON TPO-
rpaMMBI.
This is such a large-block schema « that any two its interpretations
are equal on the set ¥, \ X,,, where %, denotes the subset of ¥ used
in a.

Large-block program schemata — xkpynaOOG/I09HBIE CXEMBI IPOTPAMM.
See Large-block schema.

Large-block schema — kpymHOOI09THAST cXeMA.
Large-block schema is an abstract model of imperative programs
that is based on the notion of a program as a finite set of structured
statements processing a finite set of structured variables. The class
of large-block schemata includes (as proper subslasses) other models
of imperative programs such as Martynyuk schemata and standard
program schemata. It is complete with respect to simulation and
allows the program optimizations affecting both program memory
and control structure to be investigated.
Let ¥ be an alphabet which consists of mutually disjoint sets of
variables (denoted by X), constants, operator symbols, predicate
symbols, access symbols and k-case symbols for any integer k > 1.
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A large-block program schema « is a triple (G, Ra, Qa), where
G, is a flow-diagram, R, is a coloring and (2, is a nonempty set of
interpretations.

A flow-diagram (or control-flow graph) G, is an ordered directed
graph whose nodes are instructions (or statements). It has exactly
one START instruction and a nonempty set of STOP instructions.
An instruction with k outgoing arcs is called a k-recognizer (or
recognizer) if k¥ > 1 and a transformer if & = 1.

Every instruction S has a set of operands (divided into four disjoint
subsets: strong inputs, nonstrong inputs, strong outputs, non-
strong outputs); the set for the START instruction is empty, and
the set for each STOP consists of only nonstrong inputs. There
are two relations on the set of operands: an equivalence relation
which divides the set into subsets of (informationally) connected
operands and a symmetric relation which consists of pairs of so
called (informationally) incompatible operands. It is assumed
that there is no such pairs of operands which are both connected
and incompatible, and the outputs of every instruction are mutually
incompatible.

Let S be a statement of G, distinct from START and STOP. Every
output d of S has a data term & of S; ® is built up using the inputs
of S and the constants, and applying the operation symbols to them.
If d is a nonstrong output of S and has ®, d has also an access
term of the form g(®q,Po,..., D, P,d), where g is an (n + 2)-ary
access symbol and @1, P, ..., P, are data terms of S. .S can have a
predicate term being a predicate symbol applied to data terms of
S, all inputs of which are strong ones. If S is a k-recognizer, S has a
k-case term being a k-case symbol applied to data terms of S.
The colouring R, is such a mapping of the set of all operands on
some subset X, (called the memory of the schema a) of X that
R, (a) = R4 (b) for any two connected operands and R, (a) # Ry (b)
for any two incompatible operands. If d is a strong or nonstrong input
(output, respectively) of a statement S, then © = R,(d) is called a
strong or nonstrong argument (result, respectively) of S.

An interpretaion I € ), consists of

(1) a nonempty set D,, called the domain of I;

(2) an assignment of an element I(c) € Dy to each variable and
constant c;
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(3) an assignment of a function I(f) : D} — Dy to every m-ary
operator symbol f;
(4) an assignment of a predicate I(h) : D} — { true, false} to every
n-ary predicate symbol h;
(5) an assignment of a (access) function I(g) : D} — Dy to every n-
ary access symbols g, such that for any access functions Fi, Fs, ..., Fy,
and for any elements ay, ..., ap 1,03, ...,a3 _1,...,af",...,af' _;,a
from Dy if Fi = Fp, af = af", ... ap_y = a}® _;, then Fi( af,
e a,lcﬁ17 (a2, ..., airl, oy Foa(a™t L aﬁ:ll, Fo(

al's....ap _y,a))...) = Fi(ai, ..., a} _y, Fa(af, ..., 6} _q, ...,
Fa(al™t o, aZi:ll, a) ...));
(6) an assignment of a function I(T) : D} — {1,2,...,k} to every
n-ary k-case symbol T
Inclusion and equivalence of schemata are defined as follows:
(1) o includes (or extends) 5 iff Q, C Qg and for any I € Q,,
val(a, I) = val(B,I) whenever val(a, I) (see Value of schema under
interpretation) is defined;
(2) a and § are (strongly) equivalent iff either of them includes
the other.

Lattice graph — rpad pemérku.
The same as Grid graph.

Lavrov schemata — cxembr JlaBposa.

Layout — ykniajka, Hymepamusi.
A layout (or linear layout, linear arrangement) of a graph G =
(V,E) is an assignment of distinct integers from {1,...,n} to the
elements of V. Equivalently, a layout £ may be thought of as an
ordering £(1), ..., £(n) of V, where |V| = n. A tree layout is a
linear arrangement of a tree. If p is a non-integer point on z-axis,
then the cut of the layout £ at p, denoted cut,(p) is the number
of edges that cross over p, i.e. the number of edges (u,v) € G with
L(u) < p < L(v). The cutwidth of a layout £, denoted cut(L), is
the maximum cut of £ over all possible values; namely,

cut(£L) = max cutzg(p).
1<p<|V|
The cutwidth of a graph G, denoted cut(G), is the minimum
cutwidth of any linear arrangement of G.
The width of a layout £, b(G, £), is the maximum of |L(u) — L(v)]
over all edges (u,v) of G. That is, it is the length of the longest edge
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in the layout. The bandwidth of G, bw(G), is the minimum width
over all layouts. A bandwidth layout for a graph G is a layout
satisfying b(G, £) = bw(G).

See also Bandwidth, Separation-width.

Leaf — nucr.

1. See Directed tree.

2. A leaf is a vertex of degree one.

3. See Directed hyperpath.

4. A leaf is any 2-edge-connected subgraph, trivial or not, maximal
with respect to inclusion. Thus every vertex belongs to a unique leaf
of a graph. The number of leaves of H is denoted by I(H).

Leaf density — sucroBas nioTHOCTB.

The leaf density ((G) of G is defined as
l(G) = s(G)

n

(@) =

Here, [(G) is the number of leaves in G, s(G) is the number of stems
(a vertex that is adjacent to a leaf is called a stem).

Least upper bound — HammeHbINast BEPXHsisi TPAHb.

Lee scheme — konpr Jln.

Left-derivation tree — mepeBo JIeBBIX BHIBOIOB.

Left linear tree — sreBocTOpOHHEe AEPEBO.

Leftmost derivation — JieBblif BbIBOI,.

Left-sided balanced tree — jieBocroponHee 6ajlaHCUPOBAHHOE JIEPEBO.

See Height balanced tree.

Length of an arc — guna ayru.
Length of a chain — gnuna memnn.
Length of a circuit — jyinHa nukia.

See Clircuit.

Length of a cycle — jmna xourtypa.

The length |C| of a cycle C is the number of its vertices.

Length of a hypercycle — mimna runepkonrypa.

See Hypercycle.

Length of a path — jyiuna myTu.

In an unweighted graph, the length of a path is the number of arcs
in the path. In a weighted graph, the length of a path is the sum
of the weights of all edges of the path. The shortest-path distance
between u and v is the minimum length of a path from u to v. The
path of minimum length is called a shortest path between u and v.
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Length of a string — qyuna nenodxn.
See String.

Length of a vertex — jyimHa BepIIMHBI [B MyJIBTHPACKPACKE].
See Multi-coloring.

Letter — Oyxna.
See Alphabet.

Level representation of rooted trees — ypoBHeBbIE KOIBI KOPHEBBIX €~
peBbeB.

Lexicographic order — sekcukorpaduiecknii IOpsIoK.
For 1 < u < m, define a relation <, in R™ by requiring that two
vectors i = (i1, ... im) and j = (j1,...,jm) satisfy

1 <y j iff 4, :j17~-~7iu—1 :ju_l, and Ty < ]u

Let < denote the union of the relations <, for 1 < u < m; it is called
the lexicographic order in R™.

Lexicographic product — smekcukorpadudeckoe mpousBeieHHe, KOMIIO-
3urust rpadoB.
Given graphs G and H, the lexicographic product G[H] has a
vertex set {(g,h) : g € V(G), h € V(H)} and two vertices (g, h),
(¢, ') are adjacent if and only if either (g,¢’) is an edge of G or
g=¢ and (h,}h') is an edge of H.
The other name is Wreath product.

Light edge — nérkoe pebpo.
Let « denote an average degree, and ¢ denote the minimum degree of
a graph. An edge is light if both its endpoints have a degree bounded
by a constant depending only on « and §. A graph is degree-
constrained if a < 24. It is known that every degree-constrained
graph has a light edge.

Light graph — nérkwmit rpad.
A graph H is defined to be light in a family H of graphs if there
exists a finite number w(H, H) such that each G € H, which contains
H as a subgraph, contains also a subgraph K = H such that the sum
of degrees (in G) of the vertices of K (that is, the weight of K in G)
is at most w(H,H). Otherwise, we call the graph heavy.

Limit flow graph — upenesbnbIil rpad.
See Interval graph.Il.

Line — pebpo.

Linear component — jmHeitHas KOMIIOHEHTA.
A linear component of a cf-graph G with the initial node py and the
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terminal node qo is defined as a hammock C' such that the following
properties hold:
(1) the initial and terminal (if it exists) nodes of C belongs to every
path in G from pg to qo,
(2) the initial node of C' is not reachable in G from the terminal node
of C,
(3) there is no proper subfragment A of C such that A is a hammock
and have the first two properties.

Linear-bounded automation — suHeiiHO-OrpaHMYeHHbINT ABTOMAT.
See Model of computation.

Line-chromatic number — pebepHo-xpoMaTudeckoe 9ucio.

Line covering — pebepHoe MOKpBITHE.

Line-covering number — uncio pebepHOT0 MOKPHITHSI.

Line digraph — pebGepmubriit oprpad.
Given a digraph G = (V, A), the digraph LG = (V(LG), A(LG))
where each vertex represents an arc of GG, that is,

V(LG) = {uv|(u,v) € A(G)}

is called a line digraph. A vertex uv is adjacent to a vertex wz if
and only if v = w, that is, whenever the arc (u,v) of G is adjacent
to the arc (w, z). The maximum and minimum out- and in-degrees
of LG are equal to those of G. Therefore, if G is d-regular with the
order n, then LG is d-regular and has the order dn. If G is a strongly
connected digraph different from a directed cycle, then the diameter
of LG is the diameter of G plus one.

Line graph — pebepmubiit rpad.
The line graph L(G) of a graph G is that whose vertices are the
edges of G and two vertices of L(G) are adjacent iff the correspondent
edges of G have an end vertex in common.
The n-iterated line graph L"™(G) of a graph G is defined to be
L(L"1(G)), where L'(G) denotes the line graph L(G) of G, and
L""Y(@G) is assumed to have a nonempty edge set.

Line graph of a hypergraph — peGepssiit rpad runeprpada.
The line graph L(H) = (H, E) of a hypergraph H is the inter-
section graph of H, i.e., e¢’ € F if and only if eNe’ # ().

Line graph of a mixed graph — pé6epusiii rpad cMmemanHoro rpada.
Let G = (V(G), E(G)) be a mized graph without loops. The line
graph of G is defined to be G! = (V(G'), E(G')), where V(G!) =
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E(G). For e;,ej € V(GY), eje; is an unoriented edge in G if e;, e;
are unoriented edges in G' and have a common vertex, or one of e;, e;
is an oriented edge in G and their common vertex is the positive
end of the oriented edge, or both e; and e; are oriented edges in G
and their common vertex is their common positive (or negative) end;
e; — e; is an oriented edge in G', where e and e; are the positive
and negative ends of e; — ¢;, respectively, if e; is an unoriented edge,
e; is an oriented edge in G' and their common vertex is the negative
end of e;, or both e; and e; are oriented edges in G' and their common
vertex is the positive and negative ends of e; and e;, respectively.

Line group of a graph — peGepnast rpymma rpada.

Line incident with a vertex — pebpo, mHIIIEHTHOE BEPIIUHE.

Line-independence number — pebepHoe InCI0 HE3aBUCUMOCTH.

Line-symmetric graph — pebepro-cummerpudeckuii rpad.

F-Line — F-nunus.

Linear k-arboricity of a graph — smneitnast qpeBecHocTb rpada.
The linear k-arboricity of a graph G, denoted by lax(G), is the
least integer m such that G can be edge-partitioned into m linear k-
forests. Clearly, la;(G) is the edge chromatic number, or chromatic
index X'(G) of G.
The linear k-arboricity of a graph was first introduced by M. Habib
and P. Péroche (1982).

Linear arrangement — juneiiHast yKJIaJKa, JIMHEHHOE yIOPSIOUYEHHE.
See Layout.

Linear bounded automaton — juHeitHO OrpaHUYeHHBII aBTOMAT.

Linear component — juHeliHast KOMIIOHEHTA.

Linear extension of a poset — yimHeliHOe pacuiupeHue 4y-MHOKECTBA.
Given a poset P = (X, <), a linear extension of P is a poset
L = (X, <') [note, that ground sets are the same| with the properties
that (a) L is a linear order and (b) for all z,y € X, if z < y,
then = <’ y [extension]. A family R = {Lji,Lo,...,L:} of linear
extensions of P = (X, <) is called a realizer of P provided that, for
all z;y € X, o <y if and only if x <; y for all ¢ = 1,2,...,¢t. The
dimension of a poset P, denoted by dim P, is the smallest size of a
realizer of P.

Linear forest — Jjinneiinbiit jiec.
A linear forest is a disjoint union of paths and isolated vertices.

Linear k-forest — jmmneitnbrit k-tec.
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The linear k-forest is a graph whose components are paths of length
at most k.
Linear hypergraph — nuneitnsit runieprpad.
A hypergraph is linear if no two edges intersect in more than one
vertex.
Linear layout — suneitnas ykiajika.
See Layout.
Linear matroid — nuneiinbpiit MmaTpoun,I.
See Matrixz matroid.
Linear NCE graph grammar — jinHeiinasi rpagoBasi TpaMMaTHKa TUIIA
NCE.
An NCE graph grammar is linear (or L-NCE) if the axiom and
the right hand-side of each production have at most one nonterminal
node.
Linear order — juHeiHbBINA TOPSIOK.
See Partial order relation.
Linear scheme (code, presentation) — sHeiHbIH KO
Linear subgraph of a directed graph — nuneitunrit moarpad oprpada.
Linear subgraph of a graph — Jinneiinbiit noarpad rpada.
Linear tree — juneiinoe gepeso.
Linear vertex arboricity — JjinHeiinas BepInHHasT JPEBECHOCTD.
A subset of V(G) is called an LV-set if it induces a linear forest in
G. A partition of V is called an LV-partition if every subset in the
partition is an LV-set. Linear vertex arboricity of G, denoted by
p'(G), is the smallest number of subsets into which the vertex set V
can be partitioned so that the partition is an LV -partition.
(a,b)-Linear class of graphs — (a, b)-ymueitabiii kiace rpados.
Given a and b € QT, we define the (a,b)-linear class, denoted by
L(a,b), to be the set of all connected graphs such that m = an — b.
The (1,1)-linear coclass coincides with the set of all trees and L(1,0)
characterizes the set of connected graphs with only one cycle.
Liouville property of an operator on graphs — csoiictBo JIuyBuis
omepaTopa Ha rpade.
Given an operator £ on a graph and a class F of solutions of £, by the
Liouville property of the pair (£, F) we mean that the dimension
of the space of all solutions of the operator £ in F is at most one.
List assignment — npunucsiBanue 1BeTOB.
See L-coloring with impropriety d.
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List chromatic number — npeanucannoe XpoMaTudecKoe IUCIIO.
The list chromatic number [x(G) of the graph G is the smallest
k such that whenever each vertex v € V(G) is assigned a list ®(v)
of k admissible colours, there exists such a proper colouring f of
V(G) that each vertex v is coloured by a colour f(v) € ®(v). The
list edge chromatic number lex(G) is defined analogously. We can
also say that lex(QG) is the list chromatic number of the line graph
L(G). Other names are Prescribed chromatic number, Choice
number, Choosability.

List coloring — npeanucannast packpacka.
Let V = {v1,...,v,} be the vertices of G, L; denote the list (= a set
of admissible colors) associated with v;, and IL =L, U---UL,. A
mapping ¢ : V — IL is a list coloring, if ¢ is a proper coloring and
©(v;) € L; holds for all 1 < i < n. See also List chromatic number.

List edge chromatic number — npesnucanoe pébepHoe XpOMAaTHIECKOE
THCIIO.
See List chromatic number.

List edge-coloring problem — 3ajaua npeamucanHoil pacKpacKu pédep.
See List chromatic number, List total coloring problem.

List homomorphism — npemnucansbiii romoMopdusmM.
Given graphs H, G, and lists L(v) C V(G), v € V(H), a list homo-
morphism of H to G, with respect to the lists L, is a homomorphism
f: H — G,such that f(v) € L(v) for allv € V(H). For a fixed graph
@G, the list homomorphism problem L-HOM G asks, whether or
not an input graph H with lists L admits a list homomorphism of H
to G.

List total coloring — npeanucannasi ToTaJgbHas packKpacka.
Suppose that a set L(x) of colors, called a list of z, is assigned to
each element x € V(G)UE(G). Then a total coloring ¢ of G is called
a list total coloring of G for L if p(z) € L(x) for each element
x € V(G)UE(G), where () is the color assigned to = by ¢. The list
total coloring ¢ is simply called an L-total coloring. An ordinary
total coloring is an L-total coloring for which all lists L(x) are same.
Thus an L-total coloring is a generalization of a total coloring. The
list total coloring problem asks whether a graph G has an L-total
coloring for given G and L. The problem is NP-complete in general,
because the ordinary total coloring problem is NP-complete. The
list vertex-coloring problem and list edge-coloring problem
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are similarly defined. The list vertex-coloring problem can be solved
in polynomial time for partial k-trees and hence for series-parallel
graphs.

List total coloring problem — 3amaua npemmucaHHONl TOTAJIBLHON pac-
KPAaCKH.
See List total coloring.

List vertex-coloring problem — 3amava mpeanncaHHOi pacKpackKu Bep-
IITUH.
See List coloring, List total coloring.

Live transition — »kuBoii mepexo.

Liveness problem — mpob6iema KuBOCTH.

Local computation on graphs — jokanpHble Bhranucienus Ha rpadax.

Local-edge-connectivity — sokanbio pébepHast CBSI3HOCTD.
See Edge connectivity.

Local exponent of digraph — jiokayibHast 3kcnionenTa oprpada.
See Primitive directed graph.

Local input place — jokasbHOE BXOIHOE MECTO.

Local irregularity of a digraph — mokanbHas upperyaspHOCTb Oprpa-
da.
See Irregularity of a digraph.

Local isomorphism — jiokayibHbIi n30MOphU3M.
A local isomorphism of a directed graph H is an isomorphism of
a finite induced subgraph of H to a finite induced subgraph of H.

Local independence number — jiokaJibHOE YNCIO HE3ABUCUMOCTH.
The local independence number «;(G) of a graph G at a distance
1 is the maximum number of independent vertices at distance i from
any vertex.

Local output place — nokanbHOE BBIXOIHOE MECTO.

Local place — BuyTpennee mecTo.

Local replacement method — meTos1 sToKaIbHOM 3aMEHDI

Local tree-width — jiokasyibHas japeBecHast MUPUHA.
We define the r-neighborhood N,.(v) of a vertex v € V(G) to be the
set of all vertices w € V(G) of distance at most r from v, and we let
(Ny(v)) denote the subgraph induced by G on N, (v). Then, denoting
the tree-width of a graph H by tw(H), we let

Itw (r) = max{tw((N,(v)))| v € V(G).

Itw¥(r) is called local tree-width.
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Locally k-connected graph — jokanbpHO k-cBst3HBIN Tpad.

Let M and H be two subgraphs of G with V(H)NV (M) = 0. We say
that H is locally k-connected to M in G if G contains k pairwise
disjoint (x,V(M)) paths for every vertex € H. Let now M be a
cycle in G, and let H be a subgraph of G — V(M). We say that M
is locally longest with respect to H in G if we cannot obtain a
cycle longer than M by replacing a segment M[u,v] by a (u,v)-path
of G through H.

Locally countable graph — jokanbHO cueTHbBIH Tpad.

Locally finite graph — yiokajbHO KOHE4YHBIN Tpad.

A graph is called locally finite if every its vertex has a finite degree
(valency). In other words, a graph is locally finite if every vertex
has a finite indegree and outdegree.

A graph is called almost locally finite if only finitely many of its
vertices have infinite degrees.

Locally longest with respect to M cycle — jokanbHO guHHEHTTHI OT-
HOCHUTETbHO M THKIJI.

See Locally k-connected graph.

Locally restricted graph — mokanbHO orpanndeHHbIi Tpad.
A graph G = (V, A) is called locally restricted if it has a bounded
degree, i.e. if there is a constant M > 0 such that deg(v) < M for
any vertex v € V.

Locally semicomplete digraph — sokanpHo mosymostasiit oprpad.
See Neighborhood of a vertex.

Locating-dominating set — pa3mernénnoe JOMIHUPYIONTEE MHOXKECTBO.
Slater (1987) defined a locating-dominating set, denoted by an
LD-set, in a connected graph G to be a dominating set D of G
such that for every two vertices v and v in V(G) — D, N(u) N
D # N(v) N D. The location-domination number 7 (G) is the
minimum cardinality of an LD-set for G.

Locating set — pa3smeriéHHOe MHOXKECTBO.

Let S = {v1,...,v;} be a set of vertices in a connected graph G and
let v € V(G). The k-vector (ordered k-tuple) cs(v) of v with respect
to S is defined by

cs(v) = (d(v,v1), ..., d(v,vE)),

where d(v,v;) is the distance between v and v; (1 < i < k). The set S
is called a locating set if the k-vectors cg(v), v € V(G), are distinct.
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The location number loc(G) of G is the minimum cardinality of a
locating set in G.

Location number — «ncyio pa3mernienus.
See Locating set.

Location-domination number — yucjio pa3mernéHHOro JOMUHUPOBAHUSI.
See Locating-dominating set.

Logic for expressing graph properties — Jjoruka jisi BbIpakKeHHsA
CBOICTB rpada.
Any labelled graph may be defined as a logical structure

(Va, Ec, (laba,c:)accy » (edg,c)vecs)

where Vi is the set of vertices, F¢ is the set of edges, Cy is a set of
vertex labels and Cg is a set of edge labels, moreover, the meaning
of the predicates is the following;:

(1) laby,(v) is true iff the vertex v has a-label in G,

(2) edgp,c(e,v,v) is true iff e is an edge (v,v’) in G and has a b-label
in G.

To define the sets of graphs, one considers formulas built by using
individual variables (vertex variables or edge variables), set variables
(sets of vertices or sets of edges) and binary relation variables (subsets
of Va x Vg or Vg x Eg or Eg X Ec;).

Atomic formulas are the following:

(1) z = 2/, where z, 2’ are two vertices or two edges;

(2) lab,(v), where v is a vertex;

(3) edgy(e,v,v"), where e is an edge and v, v’ are two vertices;

(4) x € X, where X is a set of vertices or a set of edges;

(5) (z,y) € R, where R is a binary relation included in a cartesian
product X x Y with X which is a set of vertices or a set of edges,
the same for Y.

A First Order formula is a formula formed with the above atomic
formulas numbered from (1) to (3) together with boolean connectives
OR, AND, NOT, the individual quantifications Vz, 3z (where z is
a vertex or an edge).

A Monadic Second Order formula is a formula formed with
the above atomic formulas numbered from (1) to (4) together with
boolean connectives OR, AND, NOT, the individual quantifications
Va, 3z (where z is a vertex or an edge) and the set quantifications
VX,3X (where X is a set of vertices or a set of edges).
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A Second Order formula is a formula formed with the above
atomic formulas numbered from (1) to (5) together with boolean
connectives OR, AND, NOT, the individual quantifications Vz, 3x
(where z is a vertex or an edge), the set quantifications VX,3X
(where X is a set of vertices or a set of edges) and the binary relations
quantifications VR, 3R (where R is a binary relation).

Loop — merns, nukit.
An arc of the form (v,v) is called a loop. The other name is self-
loop.

[-Loop — [-muKuI.

Loop of matroid — nukn marpownsa.

Loop region — nukianyeckuit y4acToK.

Lower independence number — HmKHee 91C/I0 HE3ABUCUMOCTH.
See Independence number.
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M

Magic labeling — marmgeckast pasmerka.
Magic labeling is one-to-one map onto the appropriate set of con-
secutive integers starting from 1, satisfying some kind of "constant-
sum” property. A vertex-magic labeling is one in which the sum
of all labels associated with a vertex is a constant independent of
the choice of the vertex. Edge-magic labelings are defined similarly.
Vertex-magic total labeling is a one-to-one mapping

A EUV = {1,2,...,|V]|+ |E|}

with the property that there is a constant k such that at any vertex

Az) + Z Mzy) =k

where the sum is over all vertices y adjacent to x. For any labeling we
call the sum of the appropriate labels at a vertex the weight of the
vertex, denoted wt(x); so for vertex-magic total labelings we require
that the weight of all vertices be the same, namely k and this number
is called the magic constant for the labeling.

Magnet in a graph — maruur B rpade.
A magnet in a graph G = (V| E) is defined as a pair (a, b) of adjacent
vertices with the same weight and such that each vertex in Ng(a) \
N¢(b) is adjacent to each vertex in Ng(b) \ Ng(a). In other words,
the two endpoints of an edge induce a magnet in a graph G if and
only if this edge is not the middle edge of any Py in G.

Magnitude of a flow — MomHOCTL TOTOKA, BEJIMYNHA [TOTOKA.
See Flow.

Main eigenvalue — riraBHOE cOOCTBEHHOE 3HAYECHIUE.
An eigenvalue is main if it has an associated eigenvector the sum of
whose entries is not equal to zero.

Majority dominating function — dyHukIHS MaKOPUTAPHOTO TOMIHUPO-
BaHUA.
See Dominating function.

Majority domination number — 4ucio0 Ma*KOpUTApHOTO TOMUHHPOBA-
HUS.
See Dominating function.

Map — kapra.
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Mark — nomerka.

Marked graph — mapkupoBanubiit rpad.

Marked trap — pasmedenHas JTOBYIIKA.

Marker — mapkep.

Marking — pasmerka, MapKupoBKa.
1. A marking of a sigraph S is an assignment of positive and negative
signs to the vertices of S. That is, a marking is a function from the
vertex set of S to the set {—1,1}.
2. See Petri net.

Marking operation — oneparust pasmerku.

Marriage problem — 3ajaga o cBagpbax.

Martynyuk schemata — cxembr MapToinioka.
Martynuk schemata do not contain any information about a prog-
ram except for a control flow graph. An identity relation can be
introduced between vertices of the control flow graph. Two Martynuk
schemata are regarded as equivalent if they have the same set of
so called chains (i.e. paths in the control flow graph from the entry
to the exit vertices). The problem of recognition of equivalence is
decidable here, since the set of chains of an oriented graph with
specified entry and exit vertices is a regular event.
The class of Martynyuk schemata is a proper subclass of large-block
schemata. It consists of all such large-block schemata « that the
following properties hold:
(1) Xo = {LE},
(2) Q, is the set of all possible interpretations,
(3) every transformer has two operands: strong input and nonstrong
output,
(4) every recognizer has one operand: strong input.

Matching — napocoderanwme.
For a graph G = (V, E), a subset E’ C E such that for all edges
e,el € E' with e # ¢ ene’ = () holds. A maximum-cardinality
matching is a matching which contains a maximum number of edges.
A perfect matching is a matching in which every vertex of the
graph is an end-point of some element of the matching. Not every
graph contains a perfect matching.

Matching equivalent — 3kBUBaIeHTHOCTB 110 TTAPOCOYETAHUSIM.
Two graphs are said to be matching equivalent if they have the
same matching polynomial.
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Matching number — uucso napocogyeranusi.
The matching number v(H) of a hypergraph H is the maximal
size of a matching in H.
Another name is the Edge-independent number.

Matching polynomial — nosmsOM napocoueranmii.
Let p(G, k) be the number of matchings of the graph G with &k edges.
Then the matching polynomial of G is

[n/2]
WG x) = > (=1)*p(G, k)z" 2",

k=0

It is known that x(G, k) has only real roots.

Matching width — mupuna nmapocoueranus.
See F-width.

k-Matching — k-mapocoderanue.
A k-matching in a hypergraph G is a collection of edges of G such
that each point belongs to at most k of them (note that repetition of
edges is allowed). A 1-matching is also called matching. A k-matching
can be considered as a mapping w : E(G) — {0,1,...} such that

> w(E) <k

E>x

for every point x (w(FE) is the multiplicity with which E occurs in the
matching). A perfect k-matching is a k-matching such that each
edge belongs to exactly k members of it (note the difference between
this and a k-factor!). A fractional matching is an assignment of a
non-negative real weight w(E) to each edge E such that

Zw(E) <1

for every point x.
The fractional matching number of G is the supremum of

Y wle)
e€E(G)

over all fractional matchings w.
F-Matching width — mmpuna F-nmapocoderanmns.
See F-width.
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G-Matching function — G-orobpaxkarormas byHKIH.
G-orobpazkaroriast hyHKITHS.

Matrix-tree theorem — marputnast TeopemMa 0 JIEpEBbIX.

Matrix graph — rpad marpuiipi.
For an n X n real symmetric matrix A, the graph G(A) = (V, E) of
A is defined by: V(G) ={1,...,n} and E(G) = {(4,7) : i #j, ai; #
0,4,j=1,...,n}

Matrix matroid — maTpudHbIit MaTPOU/I.
Let M be an m x n matrix over some field K, E(M) the set of all
the column vectors of M, and Z(M) the family of all the linearly
independent sets of column vectors of M, where we assume the
empty set ) € Z(M). Then, M(M) = (E(M),Z(M)) is a matroid.
A matroid obtained in this way is called a matrix matroid (or a
linear matroid) and is called (linearly) representable over the field
K. A matroid representable over the field GF'(2) is said to be binary,
and one representable over any field, regular.

Matroid — maTpon.
A matroid M = (E,Z) is a pair of a finite set E and a family 7 of
elements of F such that
(I0) Z is non-empty;
(M) if I €7 and J C I, then J € T;
and
(I2)if I,J € T and |I| < |J|, then there is an element e € J — I such
that U {e} € Z.
An element of 7 is called an independent set of a matroid M,
and an element in 2%\ 7 is called a dependent set, where 2F is the
set of all the subsets of E.
The system of postulates (I0) -(I2) is equivalent to that of (10), (I1)
and
(I2) for X C E, if I and J are two maximal independent subsets of
X, then |I| = |J|.
A maximal independent set in 7 is called a base of M, and a minimal
dependent set a circuit.
By (I2’), any maximal independent subset of a subset X of E has a
common cardinality, which is called the rank of X and denoted by
p(X), ie.

p(X)=max{|I|: ICX, ]I} (X CE).
p(E) is called the rank of a matroid M. The function p : 2¥ — N
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(where N, is the set of non-negative integers) is called the rank
function of M.

Matroid cocycle space — mpocTpaHCTBO KOIMKJIOB MATPOUIA.

Matroid connectivity — cBst3HOCTH MaTpOUIA.
For X C FE, the connectivity function, ), is defined by

MX)=r(X)+r(E—-X)—r(M).

Observe that A(X) = AE — X). For j > 1, a partition (X,E —
X) of E is called a j-separation if |X| > j, |E — X| > j, and
AMX) <j—1. When AM(X) = j — 1, we call (X,E — X) an exact
j-separation. For k > 2 we say matroid M is k-connected if M
has no j-separation for 7 < k — 1. This definition of connectivity
is refered to as Tutte k-connectivity to distinguish it from other
types of k-connectivity. Tutte connectivity is invariant under duality.
Moreover, from the definition it is clear that matroid connectivity
begins with 2-connectivity. So when we say “connected matroid” we
mean 2-connected matroid. The next two results compare matroid
connectivity with graph connectivity.
Theorem 1. Let G be a graph with at least three vertices and no
isolated vertex. Then M(G) is 2-connected if and only if G is 2-
connected and has no loop.
Theorem 2. Let G be a graph with at least three vertices, no isolated
vertex, and G % Ks. Then M(G) is 3-connected if and only if G is
3-connected and has no loop or parallel edges.

Matroid cycle space — mpocTpaHCTBO ITUKJIOB MaTPOM/IA.

Matthews graph — rpad MeTtbioza.
The Matthews graph is the line graph obtained by subdividing a
perfect mathching in the Petersen graph.

Maxclique — makcuMabHBIN MOTHBIH TOATPADd.
See also Clique.

Max-flow min-cut theorem — teopema o HambGoJbIlIEM IOTOKE U Hau-
MEHBIIIEM pa3pese.
Theorem. For any network, the maximum amount of flow from
source to sink is equal to the minimum capacity of all cuts separating
source and sink.
Another name is Ford-Fulkerson’s theorem.

Maximal complete subgraph — makcumasbHBIH TOTHBIH TOArpad.
See also clique.
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Maximal dominating set — makcumabHOE TOMUHUPYIOIIEE MHOYKECTBO.
See Mazximal domination number.

Maximal domination number — MakcuMabHOE JOMUHUPYIOITEE TUCTIO.
A dominating set D of G is a maximal dominating set of G if
V(G) — D is not a dominating set of G. The maximal domination
number 7,,(G) of G is the minimum cardinality of a maximal do-
minating set of G.

Maximal exclusion graph — makcumanbHBIN Tpad UCKIIOUEHUS.

Maximal flow — HauGosbmmil (MAKCHMAJIBHBIN) HOTOK.

Maximal independence number — 4ncj0 MakcUMaJbHON HE3ABUCHMO-
CTH.
See Independence number.

Maximal packing — makcumasibHAs yIIaKOBKA.
A maximal packing of a digraph D = (V, A) with isomorphic copies
of a digraph d is a set {dy,da,...,d,}, where d; 2 d and V(d;) C
V(D) for all i, A(d;) N A(d;) =0 if i # j, Ul ,d; C D and

[A(D) \ Ui A(ds))|

is minimal.
A maximal packing of D with isomorphic copies of d such that
U_,d; = D is an isomorphic decomposition of D into copies
of d (or a ”d-decomposition of D” for short).
Packings and decompositions of undirected graphs are similarly de-
fined.

Maximal singular graph —makcumaibHBIH CHHTYJISIPHBII rpad.

Maximal strongly singular graph — makcumasbHBII CHIBHO CHHTYIISID-
HBII Tpad.

Maximal subnet — makcumaJjibHasI IOACETD.

Maximal tree — makcumaabHOE JE€PEBO.

Maximally irregular graph — makcuma/ibHO UPpPeryJIsipHbI Tpad.
See Regular graph.

Maximum-cardinality matching — mapocoderanmne makcnmMabHOM MOTII-
HOCTH.
See Matching.

Maximum edge-connected graph — makcuma/ibHBIN PEOEPHO-CBSI3HBIM
rpad.
See Connected graph.

MAXIMUM FLOW problem — mpobirema MAXIMUM FLOW.
See Flow.
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Maximum hyperflow problem — 3a7a1a 0 MakCuMaJbHOM THIEPIOTO-
Ke.
See Hyperflow.

MAXIMUM INDEPENDENT SET problem — 3ama4a 0 HaXoxKje-
HUU HAHOOJIBIIEr0 HE3aBUCHMOI'O MHOXKECTBA.
The MAXIMUM INDEPENDENT SET problem (or MISP)
consists in finding an independent set of the largest cardinality. This
problem is known to be NP-hard, approximable within factor
O(|V|/(log |V])?), and not approximable within factor |[V'|1=¢ for any
e>0.

Maximum matching graph — rpad manbonbmux mapocoderanuii.
The maximum matching graph of a graph G has a vertex for each
maximum matching and an edge for each pair of maximum matchings
which differ by exactly one edge.

Maximum neighbour — makcumasbHBII coce/.
See Dually chordal graph.

Maximum neighbourhood ordering — ynopsigodenne MakCHMaJIBHOTO
COCEJICTBA.
See Dually chordal graph.

Maximum point-connected graph — makcuMaIbHBII TOU€IHO-CBA3HBII
rpad.
See Connected graph.

McGee graph — rpad MaxIl'n.
See (k, g)-Cage.

Mean diameter — cpennunit quamerp.

Median generalized binary split tree — meuantoe 06061IeHHOE OUHAD-
HOE PACIIENIsSIeMOoe JIePEBO.
A median generalized binary split tree is constructed by selecting
the median to be the split values.

Median graph — menuanubiit rpad.
A connected graph G is a median graph if for every triple u, v, w
of its vertices

[T (u,v) N I(u,w)NI(v,w)| =1.

See Interval I(u,v).

Median split tree — meuanHoe pacumiernisieMoe J1epeBo.
Median split tree (MST) selects the median (w.r.t. the lexical or-
dering) of the remaining keys as the split value.

Membership problem — npobisiema npuna ICKHOCTH.
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Memory state — cocrosinme mamMsTH.
See Value of schema under interpretation.

Menger’s theorem — teopema Memnrepa.
1. (An edge-form of the theorem). Let G be an unoriented graph
with two distinguished vertices s and t. The maximum number of
edge-disjoint paths joining s and ¢ is equal to the minimum number
of edges in a cut separating s and .
2. (A vertex-form of the theorem). The minimum number of vertices
separating two nonadjacent nodes s and t is equal to the maximum
number of vertex disjoint s — ¢ paths.

Mergeable heap — ciimBaemoe nepeso.

n-mesh — n-cern.
An n-dimensional mesh (abbreviated n-mesh) is the Cartesian
product of n path graphs P, ,..., P, of orders r; and is denoted by
M(r1,...,7mn). Thus, V(M) = {(a1,...,a,)| (1 < a; <r;)} and for
x,y € V(M), (x,y) € E(M) if and only if

m
Z |lzi —yi| = 1.
i=1

A mesh M(2,b) is called a ladder.
The boundary of a 2-mesh M (a,b) is defined as the outer cycle of
M (a,b), it has length 2a+2b—4 and is the cycle through the vertices
of degree 2 or 3 in M(a,b). A submesh M (c,d) of the mesh M (a,b)
such that ¢ = a or b = d is called a contraction of M(a,b) and
M (a,b) is said to be contracted to M (c,d).
Metric dimension — merpuueckass pa3MepHOCTbD.
Let G be a graph. For a pair of vertices v; and vy of G, let d(v1,v2)
denote the length of a shortest path from v; to vy. A vertex set
S C V(G) is called a metric basis of G if for any pair of vertices
x,y of G, there exists a vertex v € S such that d(z,v) # d(y,v). The
metric dimension ((G) is the cardinality of a smallest metric basis
of G. See also Decomposition dimension.
Metric-locating-dominating set — meTpuvecku pasmeniéHHoe JTOMUHM-
pyolliee MHOYXKECTBO.
The concepts of a locating set and a dominating set merge by defining
the metric-locating-dominating set, denoted by an MLD-set, in
a connected graph G to be a set of vertices of G that is both a
dominating set and a locating set in G. We define the metric-
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location-domination number ~,/(G) of G to be the minimum
cardinality of an MLD-set in G.
See also Locating-dominating set.

Metric-location-domination number — mMeTpudecku pasMmeriéHHOe 10-
MUHHUPYIOIIEE MHOXKECTBO.
See Metric-locating-dominating set.

Middle graph — cepeaumnbiit rpad.
The middle graph of a graph G is the graph obtained from G by
inserting a new vertex into every edge of G and joining by edges
those pairs of these new vertices which lie on adjacent edges of G.
Let us denote the line graph of a graph G by L(G). Then, from the
definition of the endline graph and the middle graph of a graph G,
we have L(GT) = M(G).

MIDS problem — upobsiema MIDS, mpobsieMa MUHUMAaJIBHOTO HE3aBUCH-
MOI'O JIOMHUHUPOBAHUSI.
See Minimal independent dominating set problem.

Minimal connected graph — mMuauManbHO CBS3HBIM Tpad.

Minimal dominating graph — MuHUMAIBHBIN JOMUHUPYIONTHi Tpad.
The minimal dominating graph of G is the intersection graph on
the minimal dominating sets of vertices of G.

Minimal flow — MuHIMAIBLHBIA TOTOK.

Minimal imperfect graph — mMuanMabHBIN HecoBepIeHHBIN TPad.
A graph is called minimal imperfect graph if it is not perfect but
every its proper induced subgraph is. The strong perfect graph
conjecture made by C. Berge states that the only minimal imper-
fect graphs are the chordless odd cycles of length at least five
and their complements. The chordless odd cycles of length five and
their complements are often referred to as the odd holes and odd
antiholes, respectively. Until now, the strong perfect graph conjecture
is unsettled.

Minimal irredundance imperfect graph — MmuruMasIbHBIN HEU3OBITOY-
HBIM HECOBEPIIIEHHBIH rpad.
See Irredundance perfect graph.

Minimal separator — MuHEMAILHBIN CcemmapaTop.
See Separator.

Minimal triangulation — MuHIMAaIbHAS TPUAHTYIIATINS.
Given a graph G of treewidth k, a triangulation of G into a triangu-
lated graph H is such that the following three properties hold:
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(1) the maximal clique size is equal to k + 1,

(2) if a and b are nonadjacent vertices in H, then every minimal
(a,b)-separator of H is also a minimal (a, b)-separator in G,

(3) if S is a minimal separator in H and C is the vertex set of a
connected component of H[V \ S], then C also induces a connected
component in G[V'\ S].

Every graph has a minimal triangulation.

Minimum broadcast graph — MunEMAaIBHBIN T'Pad MTTPOKOBEITAHUSI.

See Broadcast graph.

Minimum cost hyperflow problem — 3ajada o runeproroke MUHIMAJIb-

HOII CTOUMOCTH.
See Hyperflow.

MINIMUM FILL-IN problem — npo6iema MINIMUM FILL-IN.

See Triangulation of a graph.

Minimum gossip graph — mMunuMasnbHbI rpad creren.

See Gossip graph.

MINIMUM GRAPH COLORING problem — 3amada 0 MuHAMAIb-

HOIT packpacke rpada.

The MINIMUM GRAPH COLORING problem (or MGCP)
consists in finding a coloring with the smallest number of colors.
This problem is known to be NP-hard, approximable within factor
O(|V|(loglog|V|)?/(log|V])?) and not approximable within factor
|[V|1=¢ for any € > 0.

Minimum independent dominating set problem — 3amata o MuHHI-

MaJIbHOM HE€3aBHCHUMOM JOMHWHHPYIOIIEM MHOXKECTBE.

Given a graph G = (V, e), the minimum independent dominating
set problem (or MIDS) is the problem of finding the smallest
possible set S C V of vertices such that for all uw € V — S there
is v € S for which (u,v) € E, and such that no two vertices in S
are joined by an edge in E. Variation in which the degree of G is
bounded by a constant B is denoted by MIDS-B.

Minimum separator — MUHMUMAJILHBINA CeapaTop.

See Separator.

Minimum ¢-spanner problem — 3aja7a HaX0KIEHWS MUHAMAJILHOTO t-

CTSTUBATEJIS.
A t-spanner is called a minimum t¢-spanner of a weighted graph G,
if it has the minimum total edge weight among all ¢-spanners of G.
The minimum ¢-spanner problem is formulated as follows.
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Input: A graph G with associated (positive real valued) edge weights
and a positive real value W.
Question: Does G contain a t-spanner with a total edge weight at
most W7

MINIMUM VERTEX COVER problem — 3agaua o0 HanMeHbIIEM
BEPIITMHHOM MOKPBITUH.
The MINIMUM VERTEX COVER problem (or MVCP) con-
sists in finding a cover of the smallest cardinality. This problem is
known to be NP-hard, approximable within factor 2 and not approxi-
mable within factor 1.1666.

Minor of a graph — munop rpada.
A graph H obtained from G by a series of vertex deletions, edge
deletions and contractions of an edge. A class of graphs F is called
minor-closed if for every graph G in F, every minor of G is also a
member of F. For a class of graphs F, a finite obstruction set S is
a finite set of minors such that a graph is a member of F if and only
if it does not contain an element of S as a minor.
The graphs in every minor-closed class of graphs are recognizable in
O(n?) time.

Minor-closed class of graphs — muHOpHO 3aMKHYTHII Kitacc rpadosB.
See Minor of a graph.

Minsky machine — mammuna Mumckoro.

k-Minus-critical graph — k-muayc-kputu<ecknii rpad.
See Induced path number.

Minus dominating function — yHuKIWs MUHYC-TOMIHIDOBAHUSI.
See Dominating function.

Minus domination number — 4ucio MunyC-TOMUHIPOBAHNS.
See Dominating function.

Mixed graph — cmemannbrit rpad.
A mixed graph D consists of a vertex set V(D) and a set of edges
and arcs E(D). A mixed graph without edges is a digraph. A mixed
graph D is connected, if the underlying graph of D is connected.

Mode — 1. meronm, crocob, obpas meitcTBus, popmMa, BUA. 2. MOIA.
See Eccentric sequence.

Mode vertex — mMojHAasT BepIIMHA.
See Eccentric sequence.

Model of computation — Mome/Ib BHIYUCICHUSI.
A model of computation is a formal, abstract definition of a
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computer. Using a model, one can easily analyze the intrinsic execu-
tion time or memory space of an algorithm while ignoring many
implementation issues. There are many models of computations which
differ in computing power (that is, some models can perform compu-
tations impossible for other models) and the cost of various operations.
The best-known example of a model of computation is the Turing
machine. As all our models, a Turing machine also operates in
discrete times. It consists of a finite state machine controller, a read-
write head, and an unbounded sequential tape. Depending on the
current state and symbol read on the current sell of the tape, the
machine can change its state, write a symbol in the current sell and
move the head to the left or right. Unless otherwise specified, a Turing
machine is deterministic, i.e. permits at most one next action at
any step in a computation.

The input-output format of a Turing machine is specified as follows.
The machine begins its computation by scanning the leftmost symbol
of a given input word in a specific initial state. The input is accepted
iff the computation reaches a specific final state. If the machine is
viewed as a translator rather than an acceptor, then the word on the
tape, after machine has reached a final state, constitutes the output
to the given input. Some of the symbols on the tape might thus be
disregarded.

Let T be a nondeterministic Turing machine. When scanning a
specific symbol in a specific state, T may have several possibilities for
its behavior. Otherwise, a nondeterministic Turing machine is defined
as a deterministic one. A word « is accepted iff it gives rise to an
accepting computation, independently of the fact that it might also
give rise to computations leading to failure. Thus, as in connection
with nondeterministic machines in general, all roads to failure are
disregarded if there is one possible road to success.

The tape of a Turing machine can be viewed both as an input
and output channel and as a potentially infinite external memory.
The basic difference between Turing machines and other types of
automata can be briefly described as follows. A finite automaton
has only an internal memory determined by its finite state set; the
input tape is not used as an additional memory. A finite automaton
just reads the input in one sweep from the left to right. In a linear-
bounded automaton, the external memory is bounded from above
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by the size of the input word (or by a linear function of it, which
amounts to the same thing). In a pushdown automaton, the access
to the information in the infinite external memory is very limited and
is based on the principle "first in-last out”; a pushdown automaton
is a finite automaton combined with a potentially infinite pushdown
tape.
Hence, clearly, a Turing machine is more general than the other model
of computation we have considered. It is also a general model: every
algorithm (in the intuitive sense) can be realized as a Turing machine
(Church’s thesis).
Another well-known example of a general model of computation is
a random access machine (or RAM) whose memory consists
of an unbounded sequence of registers, each of which may hold an
integer. In this model, arithmetic operations are allowed to compute
the address of a memory register.
Other names are Abstract machine and Abstract computer.

Module of a graph — moayss rpada.

Monadic Second Order formula — MoHagmYecKast BTOPOTO TMOPSIKA
dopmyia.
See Logic for expressing graph properties.

Monge graph — rpad Monxka.
Monge graph is a complete undirected weighted graph G = (V, E)
whose distance matrix C' = (¢;;) has a property that

Cij +ciy < ¢y + cgy

forall <i<k<n, 1<j<i<ni#j k#l,i#Il k+#j.
V| =n.

Monochromatic class (set) — ogHonBeTHSBIH Kiacc.

Monotone transitive graph — mMonoTOHHO TpaH3UTHBHBI rpad.
See Chordal graph.

Monotonicity property — cBoifcTBO MOHOTOHHOCTH.

Multi-coloring — mynbpTEpackpacka.
For a weighted undirected simple graph G = (V, E) with n vertices,
let the length of a vertex v be a positive integer denoted by z(v)
and called the color requirement of v. A multi-coloring of the
vertices of GG is a mapping into the power set of the positive integers,
U V — 2N such that |¥(v)| = z(v) and adjacent vertices receive
non-intersecting sets of colors. The traditional optimization goal is
to minimize the total numbers of colors assigned to G.
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Multicrown — mysnbruKOpoHa.

See Crown of graphs.

Multidimensional search tree — mHoromMepmHoe 1epeBo COPTUPOBKMU.

Multidimensional search trees (or K — d-trees) are a generali-
zation of the well known binary search trees, that handles records
with keys of K attributes. In what follows and without loss of generali-
ty, we identify a record with its corresponding key as z = (x(l),
=@, ,:E(K)), where each (", 1 < i < K, refers to the value of the
i-th attribute of the key x.

A multidimensional search tree for a set of keys is a binary tree
in which:

1. Each node contains a K-dimensional key and has an associated
discriminant j € {1,2,...,K}.

2. For every node with a key x and discriminant j, any key y in the
left subtree satisfies y) < ) and any key y in the right subtree
satisfies y() > 20,

3. The root node has depth 0 and discriminant 1. All nodes at the
depth d have the discriminant (d (mod K)) + 1.

Note that, if K = 1, then multidimensional search tree is a
binary search tree.

Multidimensional B-tree — muoromepuoe B-nepeso.
Multigraph — mynsrurpad.

A multigraph G = (V,FE) is a graph in which the edges may
occur several times. Edges joining the same pair of vertices are called
multiple edges.

Multigraph of strength s — mysbrurpad momtHOCTH S.

Multientry zone — muoOroBxomoBast 30Ha.
Multiple arcs — kparmbie gyru.
Multiple domination — kparTHoe noMuHUpOBAHUE.
See Double domination set.
Multiple edges — kparHbie pébpa.
See Multigraph.
Multiplicity — kpaTHOCTD.
See Petri net.
Multiplicity of a covering — KpaTHOCTh IIOKPBITHUSI.
Multiplicity of an edge — kparHoCcTh pebpa.
Multiway tree — mHOroOx010BOE HEPEBO.

A multiway tree of order m (m > 2) is a tree such that the
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properties P1, P2, P3 and P4 hold.

(P1) Every node, if it is not a leaf, has at most m sons.

(P2) Every node contains at most m — 1 keys.

Let the generic node contain j keys, 1 < j < m — 1. The structure of
such a node will be represented as:

[p1(k1, o), p2(k2, o2), - -, (kj, 05)pjt1)

where p; is the i-th pointer and the pair (k;, «;) is the i-th key (k;)
with associated information («;). The following properties hold for
every node of a multiway tree:
(P3) ki <ky<... <kj.
(P4) For each p; # 0, letting P(p;) be the node pointed to p;, and
K (p;) be the set of keys contained in the subtree of which P(p;) is a
root, we have:
(a) Vy € K(pi) = y < ki,
(b) Vy € K(pi) = ki1 <y <h;, 2<i<j,
(c) Yy € K(pjy1) =y > k.

Mutual matchings — B3anmmbIe TAPOCOTETAHMSI.

Mutually connected vertices — 6ucBs3uble (B3aUMHO CBSA3HbBIE, CHIILHO
CBSI3HBIE) BEPIITUHBI.

Mutually eccentric vertices — B3anMHO KCIIEHTPUYHBIE BEPIIUHBI.
See Eccentric sequence.

Mutually graceful trees — BzammHO rpannosnbe IepeBbsi.
Let T, and 6,, be two trees with vertices ¢; and u; (1 = 1,2,...,p),
respectively; then a labeling f will be called mutually graceful if
it satisfies the following conditions:

f(tp) :2q+1,f(up) =2¢+2 (2)

and the vertex labels of each of the two trees — with exception of
the highest ones defined by (2) — are at the same time the induced
edge labels of the other tree.

Here the “induced edge labels” are defined as usual:

|f(z) — f(y)| for the edge (z,y).
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Naked vertex — rosras BepinHa.

NCE graph grammar — rpadosas rpammaruka tuna NCE.
An NCE graph grammar (or neighborhood controlled em-
bedding graph grammar) is a system G = (3, A, S, P), where
(1) A and X are alphabets with A C ¥ as the set of terminal node
labels, and ¥ — A as the set of nonterminal node labels, respectively.
(2) S is a graph over X, the axiom of G.
(3) P is a finite set of productions. Each production is a triple
(A, R,C), where A is a nonterminal node label from ¥ — A (the
left-hand side), R is a graph over ¥ (the right-hand side), and C' is
an embedding relation for R.
There are the following types of NCE graph grammars: confluent
(C-NCE), boundary (B-NCE), and linear (L-NCE).

Near perfect matching — nouru coBepierHOE TApOCOUETAHKE.
See Perfect matching.

Nearest common ancestor — Oimkaiimmii oOIHit TPEIOK.
See Directed tree.

Nearest common dominator — 6mKaiiimmii obIuiA JOMUHATOP.
See Dominator tree.

Nearly regular graph — mouru ogHopomusiil rpad.

Neighbour transition — cocen-mepexos.

Neighbourhood matrix — maTpura coceacTsa, MATPUIlA CMEYKHOCTH.
The Adjacency matriz.

Neighbourhood tree — nepeso cocencrsa, H-nepeso.

Neighbourhood of a vertex — okpecTHOCTH BEPIITUHEI.
For each vertex v the set N (v) of vertices which are adjacent to v. The
other name is open neighbourhood. The closed neighbourhood
is N[v] = N(v) U {v}.
For disjoint subsets A and B of V', we define [A4, B] to be the set of
all edges that join a vertex of A and a vertex of B. Furthermore, for
a € A, we define the private neighbourhood pn(a, A, B) of a in B
to be the set of vertices in B that are adjacent to a but to no other
vertex of A; that is, pn(a, A, B) = {b € B|N(b)N A = {a}}.
Given a digraph D, let x,y be distinct vertices in D. If there is an
arc from x to y, then we say that z dominates y and write x — y and
call y (respectively, ) an out-neighbour (out-neighborhood)
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(respectively, an in-neighbour (in-neighborhood)) of x (respec-
tively, y). We let Nt (z), N~ (x) denote the set of out-neighbours,
respectively, the set of in-neighbours of = in D. Define N(z) to be
N(z) = NT(z) UN"(z).
D is an out-semicomplete digraph (in-semicomplete digraph)
if D has no pair of non-adjacent vertices with a common in-neighbour
or a common out-neighbour. D is a locally semicomplete digraph
if D is both out-semicomplete and in-semicomplete.

k-th Neighborhood of a vertex — okpecraocTs BepmuHbl k-T0 MOPSsi/I-
Ka.
The k-th neighborhood of a vertex v of G is the set of all vertices
of distance k to v, i.e.

N¥(w) ={ueV: dg(u,v) = k}.

See also Disc.

Neighbouring vertices — cocejiHue BepIIMHbBI.

Nested set of alts — uepapxusi BJIO2KEHHBIX AJTHTOB.
See Alt.

Nested set of zones — mepapxust BIIOKEHHBIX 30H.
A set of zones A of a cf-graph G forms a nested set of zones of G
if the following two properties hold: S; NSy, = @ or S; N Sy for any
51,52 € A; and for any zone S; of G there is such a zone Sy, € A
that S; € S and the zones S; and Sy have a common initial node.

Net — cers.

Net formula — dopmyna cern.

Network — cersb.

Node — yzen, BepiuHa.
The same as Vertex.

N-node — N-BepmmuHa.
See T-numbering.

Node bisector — BeprunHbIil 6UCEKTOP.

Node listing — ykiauka yrpada.

Noncovered vertex — cBobGo/iHasI BEpIIUHA.

Nondecidable problem — (ajropurMudecku) Hepaspemumas npobsema.
See Decision problem.

Nondeterministic finite automaton — HexerepMUHUPOBAHHBI KOHEY-
HBI aBTOMAaT.
See Model of computation.
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Nondeterministic pushdown automaton — memerepMruHIPOBAHHBIH aB-
TOMAT ¢ MAra3uHHON AMSITHIO.
See Model of computation.
Nondeterministic Turing machine — HexerepMUHUpOBaHHAST MAITUHA
Triopunra.
See Model of computation.
Nonstrong argument — HeoGs13aTe/IbHBINA apryMeHT (0neparopa).
See Large-block schema.
Nonstrong input — HeoGs3aTesbHBIH BXOJ, (O1EpaTopa).
See Large-block schema.
Nonstrong output — neobg3are/bHbI BHIXOH (OIEpaTOpa).
See Large-block schema.
Nonstrong result — neobsi3aTenbHbIil pesysbTar (OlIEpaTOpA).
See Large-block schema.
Nonterminal alphabet — HerepMmunabHBI aadaBuT, aadaBUT HETEp-
MUHAJBHBIX CUMBOJIOB, a/i(paBUT HETEPMUHAJIOB.
See Grammar.
Nonterminal symbol — HeTepMuHaILHBIN CUMBOJT.
See Grammar.
Non-circular grammar — anukjnJyeckass aTpudyTHasi rPaMMATHKA.
Non-edge — Hepebpo, orcyrcrBue pebpa.
This is a pair of nonadjacent vertices.
Non-interpreted schemata — memnTeppeTnpoBanHnas cxema.
Non-separable graph — nepazaenumbrit rpad, HEPa3JI0KUMBIH rpad, He-
centapabesbHbIN Tpad.
Normal approximate (point) spectrum — HOpMAaJBHO AIIPOKCUMUPY-
JOIUH (TOYEYIHO) CIIEKTP.
See Spectrum.
Normally symmetric graph — mopMaabHO cUMMeETpUIHBIH Tpad.
A graph G = (V, A) is called normally symmetric graph if the
number of all common servers d*(u,v) is equal to the number of all
common receivers d~ (u,v) for any u,v € V.
Normed weighted graph — mopMupoBaHHO-B3BENIEHHBIH Tpad.
See Weighted graph.1.
Nowhere-zero k-flow — Hurne #e HyseBoii k-110TOK, Be3Jjie HEHYJIEBOI k-
IIOTOK.
A graph admits a nowhere-zero k-flow (k is an integer > 2) if its
edges can be oriented and labeled by numbers from {£1,...,+(k —
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1)} so that for every vertex the sum of the incoming values equals
the sum of the outcoming ones. A graph without nowhere-zero k-
flow is called k-snark. Note that if a graph is a k-snarks then it is
a k’-snark for any integer 2 < k’ < k. Very famous is the 5-flow
conjecture of W.T.Tutte which says that there are no bridgeless
5-snarks.

Null graph — ayas-rpad.
This is a graph with no vertices.

k-Null graph — k-nyiss rpad.
See Clique graph.

Number of noncongruence of a numbering — uucjio HecoorBercTBUSA
HyMepaIu.
See Numbering of cf-graph.

Numbering — nymepanus (Bepiun rpada).
A bijection f : V — {1,2,...,n} is called a numbering of the
vertices of G. Then f(v) is referred to as the number associated
with the vertex v, or simply the number of v with respect to the
numbering f.

K-Numbering — K-uymeparusi.

L-Numbering — L-uymeparusi.

M-Numbering — M-nymeparus.
See Basic numberings.

N-Numbering — N-mymeparus.
See Basic numberings.

T-Numbering — T-mymeparius.
Given a cf-graph G and its inverse numbering N, a node P is called
a binode (or N-node) if p ¢ N < i > for all i < N(p).
A T-numbering is such a numbering of G that the following two
properties hold:
(1) N<p>=T[T(p), T <p>+|N <p>|—1] for any N-node p,
(2) for any two N-nodes p and ¢, T'(p) < T(q) if and only if T'(p) <
T(q).
A fragment S of G is its strongly connected component if and only
if S= N < p> for an N-node p.
An N-node r is called the cutpoint of G if there is no arc (p, ¢) such
that T'(p) < T'(r) < T(q).
A fragment H of G is its linear component with the initial node
p and the terminal node ¢ if and only if, for some T-numbering of
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G, the nodes p and ¢ are cutnodes, H = T[T (p),T(¢) — 1], and
T[T (p) + 1,T(q) — 1] contains no cutnodes.

Numbering of cf-graph — nymepanus yrpada.
Let G be a cf-graph with a set of nodes X, where n = | X|. A bijection
F: X — [1,n]is called a numbering of G. F(p) is called F-number
of the node p, and F~!(k) denotes the node p having F-number k.
By F'[i,j] we denote a set of nodes {p € X : F(p) € [i,j]} and the
subgraph of G induced by the set.
An arc u = (p, q) is called an F-direct arc (or F-arc) if F(p) < F(q)
and an F-inverse arc if F(p) > F(q).
The depth (or the number of noncongruence) of the numbering
F of the graph G is defined as the greatest number of F-inverse arcs
that belongs to a simple path in G.
If a path P from a node p to a node ¢ does not contain any F-
inverse arcs, then it is called an F-path and the node ¢ is called
F-reachable from p.
Let p be a node of G with F-number ¢, i.e. F(p) =i. A subgraph of
G that consists of all those nodes from which p is reachable in F'[i, n]
is called F-region and denoted by FF' <p > or F < i >.
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Oberwolfach problem — npobiema Obepsosibdaxa.
The problem of determining whether there exists an (my, ma, ..., m;)-
2-factorization of K,, when n is odd, or K,, — F' when n is even, is
the Oberwolfach problem, denoted OP(my, ma,...,my).
The Oberwolfach problem was formulated by Ringle in 1967.

Oblique graph — ckormrennsiit rpad.
A Ek-gon « of a polyhedral graph G = (V, E, F) with the face set F is
of type (by,...,bg) if the vertices incident with « in a cyclic order
have degrees by, ..., bx and (by, ..., bg) is the lexicographic minimum
of all such sequences available for a.. A polyhedral graph G is oblique
if it has no two faces of the same type.
G is superoblique if both G and its dual G* are oblique and they
have no common face type. Let z be any given natural number. A
polyhedral graph G is z-oblique if F(G) contains at most z faces of
the same type for any type of faces. Obviously, a 1-oblique graph is
oblique and vice versa.

z-Oblique graph — z-ckormennniit rpad.
See Oblique graph.

Obstruction set — npengarcrByomniee MHOXKECTBO.
See Minor of a graph.

Occurence (of a graph H in G) — sxoxuenue (rpada H B rpad G).
See Labeled graph.

Occurrence process net — napaJiie/ibHasi CETb-IIPOIIECC.

ODC — oproroHaJibHOE JIBOWHOE IMOKPBLITHE.
See Orthogonal double cover.

Odd component — HeueTHAsT KOMIIOHEHTA.
A component of G is called odd or even according to its order is
odd or even.

Odd component number — 4rCI0 HEYETHBIX KOMIIOHEHT.
See Component of a graph.

0Odd graph — meuérnsiit rpad.

Odd-signable graph — meuérHno-3HaKkoBbII Tpad.
See Signed labeled graph.

Odd-signed graph — HeuérTHO-3HAKOBBI Tpad.
See Signed labeled graph.

One-chromatic number — uucso oauH-XpoMaTHIECKOE.
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One-way infinite path — oxgro-1y4eBoit GeckoHeUHBI Ty Th.
See Ray.

One-way infinite sequence — ogHOCTOPOHHE-OECKOHEUHBII MapIIPYT.

One-way pushdown automaton — oIHOCTOPOHHUII Mara3wHHbBIA aBTO-
MaT.

One-sided balanced tree — ogHOCTOpOHHEE OATAHCHPOBAHHOE JEPEBO.
See Height balanced tree.

Open neighbourhood — orkpbITast OKpecTHOCTH (BEpIINHDL).
See Neighbourhood.

Open sequence — OTKPBITHI MapIIPYT.

Operation — omneparusi.

Operation of a Petri net — dpyuxmmonuposanue ceru Ilerpmn.
See Petri net.

Operation of formation of a set of merged places — oneparus op-
MUPOBAHUS MECT.

Operation of merging of places — oneparust cimusinust MecCT.

Operator — omeparop.

Optimal 1-edge hamiltonian graph — onTtumanbHbit 1-pEGepHbIt ra-
MUJIBTOHOB T'pad.
See 1-hamiltonian graph.

Optimal 1-hamiltonian graph — onrumasbHbIil 1-raMuIETOHOB rpad.
See 1-hamiltonian graph.

Optimal 1-node hamiltonian graph — ontumanbubrit 1-BeprimHHEbIf ra-
MHJIBTOHOB T'pad.
See 1-hamiltonian graph.

Optimal numbering — onTumasibaast Hymeparus.

Optimal ordering for trees — onTumaabHOE yHOpSIOUEHUE IEPEBHEB.

Order of an automorphism group — mnopsimok rpymnmsr rpada, IucIo
cuMMeTpun rpada.

Order of a graph — nopsi10k rpada.
The order of a graph G is the number of vertices in G.

Order of a hypergraph — nopsiok runeprpada.

Order of a tree — mopsimok aepesa.
Given a tree, its order is the number of vertices in the tree.

Order relation — orHoulenue ynopsigodenus (IopsiIKa).

Ordered chromatic number — ynopsijjoueHHOE XPOMATHIECKOE IUCJIO.

Ordered coloring of vertices — ymopsijjoueHHasi pacCKpacKa BepIIuH.
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Ordered edge chromatic number — ynopsmoderntoe pebepHoe Xpoma-
THYECKOe IHCIIO.

Ordered graph — ynopsiiouenuniit rpad.

Ordered labelled tree — ynopsinoueHnHoe IOMeYEHHOE JI€PEBO.
See Labeled tree.

Ordered tree — ynopsioueHHOe AepeBo.
An ordered tree is a rooted tree in which the order of the subtrees
is significant. There is a one-to-one correspondence between ordered
forests with n nodes and binary trees with n nodes.

k-Ordered Hamiltonian graph — k-ynopsigodensiii raMuibTOHOB rpad.
See Hamiltonian graph.

Ordinary Petri net — opaunapnas cers Ilerpm.
See Petri net.

Orientation distance graph — rpad paccrostauii opueHTaIuUi.
The orientation distance graph D,(G) of a graph G = (V, E)
has a vertex set O(G), the collection of pair-wise nonisomorphic
orientations of G. Adjacency is defined between two orientations iff
the reversal of one arc in one orientation generates (an orientation
isomorphic to) the other.

Orientation number — yucjio opuenTanyy.
See Orientation of a graph.

Orientation of a graph — opuenrtamus rpada.
Let G = (V,E) be a finite undirected graph. Then G’ = (V, E’)
is an orientation of a graph G if for all (z,y) € E E’ contains
the arc (z,y) or (y,z). G’ is a transitive orientation of G if E’
is transitive as a binary relation on V. An acyclic orientation of
a digraph G = (V, E) is an acyclic digraph G = (v, E) such that
ECE.
An orientation D of G is strong if any pair of vertices in D are
mutually reachable in D. Given a 2-edge-connected graph, let D(G)
be the set of all strong orientations of G. The orientation number
of G is defined to be d(G) = min{d(D) | D € D(G)}. The problem of
evaluating the orientation number of an arbitrary connected graph
is very difficult.

Oriented edge — opuenTupoBaHHOE PEOPO.
The same as Arc.

Oriented graph — opuenTupoBansslii rpad.
A digraph G is called an oriented graph if G does not contain a
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cycle of two arcs. A complete oriented graph is called a tournament.

Oriented tree — opmeHTHpPOBAHHOE JIEPEBO.
See Oriented Graph, Rooted Tree.

Orthogonal double cover — oproronajibHOe JBOIHOE IOKPBITHE.
An orthogonal double cover of a complete graph K by a graph G
is a set of subgraphs of K each isomorphic to G, such that every edge
of K is contained in exactly two subgraphs and each two subgraphs
have exactly one edge in common.
See also Suborthogonal double covers.

Orthogonal (g, f)-factorization — oproronansnasi (g, f)-bakropusarmusi.
See k-Factor of a graph.

F-Orthogonal subgraph — F-oproronasbHubiit mogarpad.
Let be F = {F},..., F;} is 1-factorization of G. A subgraph H of G
is suborthogonal to F if |[E(H) N E(F;)] < 1for 1 <i <, and
orthogonal if |E(H)N E(F;)| =1for 1 <i<t.

Oscillation of a graph — ocrmuisinus rpada.
An edge-ordering of the finite simple graph G = (V, E) is 1-1
function f from FE to the set of positive integers. The set of all edge-
orderings of G is denoted by F. For f € F, a path with the edge
sequence eq, s, . .., e is called an f — zpath if foreachi=1,...,t—2

f(ei) — f(ei+1) > 0 if and only if f(e;41) — F(e;q2) > 0.

The vibration k(f) of f is the maximum length of an f — zpath and
the oscillation 7(G) of G is defined by

n(G) = mink(f).
Observe that n(G) is the greatest integer ¢ such that G has f — zpath
for each f € F.
Outcenter — BHemHuUi EHTP.
Outcoming arc — ucxojsiiast ayra.
Outdegree, out-degree — noJsrycrenesb ncxo/a BEPIINHEL.
The outdegree of the vertex v in a digraph G is the number of
distinct arcs with the source v and it is denoted by out(v, G).
Outdegree matrix — marpuria mogycreneHeit ncxoa.
Outerplanar graph — BHemHenIaHapHBIA rpad.
A graph G is outerplanar if there is a crossing-free embedding of
G in the plane such that all vertices are on the same face. G is
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outerplanar iff G' contains no subgraph homeomorphic to K4 or K 3
by a homeomorphism that deletes degree-2 vertices but does not add
them.
G is k-outerplanar if for K = 1 G is an outerplanar graph and
for K > 1 G has a planar embedding such that if all vertices on the
exterior face are deleted, the connected components of the remaining
graph are all (k — 1)-outerplanar. See also Halin graph.

k-Outerplanar graph — k-BHemrHenianapubiit rpada.
See Outerplanar graph.

Outerplane graph — BremHemnockuit rpad.
An outerplane graph is a particular embedding of an outerplanar
graph.

Out-neighbour — ucxossmmuit cocer.
See Neighborhood of a vertex.

Out-neighbourhood — ucxojsinasi OKpeCTHOCTb.
See Neighbourhood of a vertex.

Outpath — BoIXOAAINI Ty Th.
An outpath of a vertex z (an arc (z,y), respectively) in a digraph
is a path starting at  ((z,y), respectively) such that z dominates
the endvertex of a path only if the endvertex also dominates z. An
outpath of length k is called a k-outpath.

k-Outpath — Bexomsimuit k-1myTh.
See Qutpath.

Output — BoIXO.
1. See Control flow graph.
2. See Fragment.

Output dependence — BbIXOHASI 32BUCUMOCTb, 3aBUCHUMOCTD 110 BBIXOILY.
See Data dependence.

Output directed spanning tree — BoIxomsmMit OpKapKac.

Output node of fragment — BeixosHast BepuinHa pparMeHTa.
See Fragment.

Output place — BbIxOTHOE MECTO.

Output tree — BBIXOISIIEE TEPEBO.
See Qut-tree.

Output vertex of subgraph — BeixomHast BepimHa noarpada.

Outradius — BHemHUi pajanyc.

Outseparation number — 4ucI0 BHENTHETO pa3aeIcHUs.
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Outset — BBIXOIsIIIEE MHOXKECTBO.
The outset N1 (z) of a vertex z is the set of vertices dominated by
x.

Out-semicomplete digraph — Bbrxojsmuit o rynoJiHbI oprpad.
See Neighborhood of a vertex.

Out-tree — BBIXOISIITIEE OPAEPEBO.
An out-tree is a directed tree in which precisely one vertex has zero
in-degree.
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P

Pack of a graph — koJsiona rpadea.

Packing of graphs — ynakoska rpacdos.
See Embedding of a graph.

2-Packing of a graph — 2-ynakoska rpada.
A subset A of G is called a 2-packing of G if the closed neighborhoods
of any two distinct vertices of A are disjoint. The 2-packing number
of G is the maximum cardinality, p(G), of 2-packing of G.

2-Packing number — 2-ynakoBo4Hoe 4ucJo.
See 2-Packing of a graph.

Pair of connectivities — mapa cBasnocreii.

Paired-domination number — unc/io mapHO-TOMUHUPOBAHHAS.
See Paired-dominating set.

Paired-dominating set — mapHo-1OMUHUPYIOIIIEE MHOXKECTBO.
A paired-dominating set S with a matching M is a dominating
set S = {v1,va,...,v9:_1,v2:} with an independent edge set M =
{e1,...,et}, where each edge e; joins two elements of S, that is,
M is a perfect matching (not necessarily induced) in the subgraph
(S) induced by S. A set S is called a paired-dominating set if
it dominates V' and (S) contains at least one perfect matching. The
paired-domination number v,(G) is the minimum cardinality of
a paired-dominating set S in G.

k-Pan — k-ckoBopoja.
A k-pan is a graph consisting of a cycle C of length k£ and an edge
outside.

Pan-bicentral graph — nan-6unienrpasibabiil rpad.
See Pancentral graph.

Pancentral graph — nanmnentpasabubiit rpad.
A graph G is called pan-unicentral if, given a vertex v in G, there
exists a spanning tree T such that C(T) = {v}, where C(T) is the
center of T. G is called pan-bicentral if, given adjacent vertices u
and v in G, there exists a spanning tree T such that C(T') = {u,v}.
A graph G with both properties is called pancentral.

(a,b)-Panconnected graph — (a, b)-nancssasubiii rpad.
Let a,b be integers and a < i < b. G is called (a,b)-panconnected,
if there exists a path P;[u,v] between each pair of distinct vertices
u,v of G.
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Pancyclic graph — nmanmukanyeckwnit rpad.
A graph G on n vertices is said to be a pancyclic graph if it contains
cycles on every length from 3 to n.
A graph G of order n is said to be [a, b]-pancyclic, if for every integer
i (a < < b) there exists a cycle C; of length ¢ in G. Similarly, G
is said to be [a, b]-vertex-pancyclic (resp. [a, b]-edge-pancyclic),
if for every vertex v (resp. edge e) and every i there is a cycle C;
containing v (resp. e). G is said to be [a,b]-panconnected, if for
every pair of distinct vertices w,v and every i there exists a path
P;lu,v] of i vertices connecting u and v.
Obviously, if G is [a, b]-panconnected, then G is [a, b]-edge-pancyclic;
if G is [a, b]-edge-pancyclic, then G is [a, b]-vertex-pancyclic and if G
is [a, b]-vertex-pancyclic, then G is [a, b]-pancyclic.
See also Uniquely pancyclic graph, Weakly pancyclic graph.

j-Pancyclic graph — j-nannukiandeckuii rpad.

Panpropositionable Hamiltonian graph — nannpomnosurnupyemsbrii ra-
MIJIBTOHOB Tpad.
A Hamiltonian graph G is panpropositionable if for any two diffe-
rent vertices x and y of G and any integer k with dg(z,y) < k <
[V (G)|/2, there exists a Hamiltonian cycle C of G with dg(z,y) = k.

Pan-unicentral graph — nas-ysunenTpaibHbIil rpad.
See Pancentral graph.

Parallel Random Access Machine (PRAM) — napaJutenbHast paBHO-
nocryiHas ajpecHas mammua (ITPAM).
A Parallel Random Access Machine (or PRAM) is an abstract
model of parallel computation which can be used by parallel algo-
rithms designers to estimate the inherent parellelism of a given pro-
blem. PRAM neglects such issues as synchronization and communi-
cation, but provides any (problem size-dependent) number of pro-
Cessors.
An (n,m)-PRAM counsists of n processors running synchronously
and m memory locations, where each processor is a random-access
machine. All processors share the memory, and hence are commutative
via it. During a given cycle each processor may read an element
from the shared memory into its local memory, write an element
from its local memory to the shared memory, or perform any RAM
operation on the data which it already has in its local memory. It is a
synchronous model, that is no processor will proceed with instruction
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i + 1 until all have finished instruction 1.

The read /write conflicts in accessing the same shared memory location
simultaneously can be resolved by different strategies. There is a
family of PRAM models, each of which differs in its characteristics
on this point. The members of the family are:

(1) the Exclusive Read Exclusive Write PRAM (or EREW
PRAM), where every memory location can be read or written to by
only one processor at a time,

(2) the Concurrent Read Exclusive Write PRAM (or CREW
PRAM), where multiple processors may read a particular memory
location, but at most one processor may write to a particular memory
location at a time,

(3) the Concurrent Read Concurrent Write PRAM (or CRCW
PRAM), where multiple processors may read or write to any memory
location.

The Exclusive Read Concurrent Write PRAMs are not considered,
since a machine with enough power to support concurrent writes
should be able to support concurrent reads.

The read causes no discrepancies while the concurrent write is further
defined as follows:

(1) the Common CRCW PRAM, where all values written concur-
rently must be identical,

(2) the Arbitrary CRCW PRAM, where the processor that suc-
ceeds in its concurrent write is chosen arbitrary from the writing
processors,

(3)the Priority CRCW PRAM, where the processor that succeeds
in its concurrent write is the processor with the highest priority, e.g.,
the smallest processor index,

(4) the Combining CRCW PRAM, where the value written is
a linear combination of all values which where concurrently written,
e.g. a sum of the values. The values may be combined with any
associative and commutative operation which is computable in cons-
tant time on a RAM.

Parikh mapping — orobpazkenne ITapuka.
Parse tree — cunTakcuUeckoe JIepeBo.

The same as Derivation tree.

Partial edge — wactuunoe pebpo.

A partial edge of a hypergraph H is any nonempty subset of some
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edge of H. If (u,v) is a partial edge of H, then the vertices u and v
are said to be adjacent in H.
A partial edge of H which is a separator is called a partial-edge
separator of H.

Partial-edge separator — yacTuuHO-pEOGEPHBIIT cemapaTop.
See Partial edge.

Partial graph morphism — wactuansrit Mmopdusm rpados.
Given two graphs G and H with colors in L, a pair of partial mappings
h = (hy : Gy — Hy,hg : Gg — Hpg) is called partial graph
morphism if
(1) whenever hg is defined for e € Gg, hy is defined for sg(e) and
ta(e), and hy o sg(e) = sy o hg(e) and hy otg(e) =ty o hg(e);
(2) whenever hy, respectively hg, is defined for o, vig(0) = vlgy o
hy (0), respectively elg (o) = el o hg(o).
Here two mappings s,t : E — V provide the source and target
vertices for each edge, and two mappings vl : V' — Ly, respectively
el : E — Lg, attach a color to every vertex, respectively edge.

Partial hypergraph — gactuwunsiit runeprpad.
For a given hypergraph H, a hypergraph H’ with V(H') C V(H),
E(H') C E(H).
See also Hypergraph, Subhypergraph.

Partial order relation — ornomenue 9acTUIHOrO yropsigodenus (Hopsiji-
Ka).
The binary relation R is a partial order relation (or simply a
partial order) on V, if R is a reflexive, transitive and antisymmetric
relation. Partial orders are often denoted by < instead of R:

z <yif (z,y) € R, and x < y and x # y.

P = (V,<) is then called a poset (partially ordered set). A poset
(V, <) is finite if V' is finite.
A poset P = (V,<) is a linear order if for all u,v € V u < v or
v < v holds.
Two posets (V1,<1), (V2,<3) are isomorphic (denoted (V;,<;) =
(Va, <)) if there is a bijective function f from V; onto V4 such that
u <y v iff f(u) <2 f(v).

Partial signed domination number — wacTuHO 3HAKOBOE YUCIIO JTOMHU-
HUPOBAHUSI.
Let G = (V,E) be a simple graph. For any real valued function
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f:V —=Rand S CV,let f(S) = ,cqf(v). Let c,d be positive
integers such that ged(c,d) = 1 and 0 < § < 1. A §-dominating
function (partial signed dominating function) is a function
f:V — {=1,1} such that f(N[v]) > 1 for at least § of the vertices
v € V. The §-domination number (partial signed domination
number) of G is

v (G) = min{f(V)|f is a g—dominating function on G}.

Partial k-tree — wactuumoe k-mepeso.
A partial k-tree is a subgraph of a k-tree. The class of partial k-
trees is exactly the class of graphs with a treewidth at most k. Note
that, for each constant k, the class of partial k-trees is minor-closed.

Partially decidable problem — wactuuno paspemumast 3aa49a.
See Decision problem.

Partially ordered set — qacTuaHO ymopsoueHHOE MHOXKECTBO.
See Partial order relation.

Partially square graph — yactuuno KBajpaTHbliit rpad.
Given a graph G, its partially square graph G* is the graph
obtained by adding an edge (u,v) for each pair of vertices of G at
distance 2, whenever the vertices u and v have a common neighbor
x satisfying the condition

Ng(:(’) - Ng[u] U N(;[’U}

where N(x) is an open neighborhood and N|x] is a closed neighborhood
of a vertex z. In the case where G is a claw-free graph, G* is equal
to G2.

k-Partite graph — k-monanubrit rpad.

Partition of a graph — paz6uenue rpada.

Partition of a set — pasbuenue MmHOKeCTBA.
A partition of a nonempty set S is a collection of pairwise disjoint
nonempty subsets, whose union is S. If two partitions {4;} and {B;}
of the same set are such that each A; is a subset of some B;, then we
say that the partition {A;} is finer than the partition B;, and that
{B;} is coarser than {A4,}.

Partitioning problem — 3ajaua o pa3buenun.

Passive state of compound transition — naccusroe cocrositue cocras-
HOTO TIepexojia.
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Path — oyTs.
1. Given a digraph G = (V, A), a path is a sequence of vertices
(vo, ..., vk) such that (v;,v;41) € Afori =0,...,k—1; its length is
k. The path is simple if all its vertices are pairwise distinct. A path
(vo,...,vs) is a cycle if s > 1 and vy = v, and a simple cycle if in
addition vy, ...,vs_1 are pairwise distinct.
2. Given a hypergraph H, a path from a vertex u to a vertex v is a
sequence of edges (eq,...,er), k > 1, such that u € e1, v € e; and ,
if k>1, ey Nepyp1 # emptyset for h =1,...,k — 1; furthermore, we
say that this path passes through a subset X of V(H), if ey, Nepy1
is a subset of X for some h < k.

F-Path — F-myTn.
See Numbering of cf-grahp.

H-path — H-niyTn.
See H -distance.

Path coloring — myreBas packpacka.
A coloring such that a subset V; induces a subgraph whose connected
components are paths is called a path coloring.

Path covering — myTeBoe mokpbITHE.

Path-decomposition — myreBast jilekoMIIo3uIyst, pa3sdueHe Ha [y TH.
This is a tree-decomposition (S, T) such that T is a path.

Path-Hamiltonian edge — ramuibroHOBO-ITyTEBOE PEOPO.
An edge e in G is called path-Hamiltonian if there is a Hamiltonian
path in G that contains e.

k-Path graph — rpad k-mymeit.
The k-path graph Py (H) of a graph H has all length-k paths of H
as vertices; two such vertices are adjacent in the new graph if their
union forms a path or cycle of length k£ + 1 in H and if the edge-
intersection of both paths forms a path of length & — 1. It is known
that, given a graph G = (V, E), there is an O(|V|*)-time algorithm
that decides whether there is some graph H of minimum degree at
least k + 1 with G = Px(H).

Path layer matrix — marpura nyTeBbIx C/I0EB.
The path layer matrix was introduced for simple graphs with the
standard metric. Denote by p(G) the order of a graph G (the number
of vertices). The path layer matrix of a graph G is the matrix

7(G) =[r5], 1 =1,2,...,p(G), j=1,2,...,p(G) — 1,

where 7;; is the number of paths with the initial vertex v; that have
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the length j. By ordering the rows of 7(G), first by decreasing the
length (the number of the last nonzero element) and then with rows
of the same length arranged lexicographically, one obtains a canonical
form for 7(G).

Let G be a weighted graph and let [y, ...,[, be the possible lengths
of paths in G. The path layer matrix of a weighted graph G is
the matrix Tw(G) = [twy;], i =1,2,...,p(G), j =1,2,...,n, where
Tw;; is the number of paths with the initial vertex v; that have the
length [;.

Path pile — nyreBas xyua.

A set of nontrivial paths in a graph G is called a path pile of G,
if every edge is on exactly one path and the paths are internally
disjoint.

The least number which is the cardinality of a path pile of G is called
the path pile number n(G) of G.

Path pile number — wucsio nyreBoit Ky«u.

See Path pile.

Pathwidth of a graph — nyresas mupuna rpada.

The minimum value k for which the graph is a partial k-path. The
pathwidth of a graph G equals the minimum width over all path-
decompositions of G.

Pebbling number — dwurmeanoe qucio.

The pebbling number of a graph G, f(G), is the least m such that,
however m are placed on the vertices of GG, we can move a pebble to
any vertex by a sequence of moves, each move taking two pebbles off
one vertex and placing one on an adjacent vertex.

We say a graph satisfies the 2-pebbling property, if two pebbles
can be moved to any specified vertex, when the total starting number
of pebbles is 2f(G) — ¢ + 1, where ¢ is the number of vertices with
at least one pebble.

A graph G without the 2-pebbling property is called a Lemke graph.

2-Pebbling property — cBoiictos 2-cdurieanocru.

See Pebbling number.

Pendant edge — Bucstee pebpo.
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Pendant vertex — Bucavas BeprmHa.
A pendant vertex is a vertex with degree 1 (in an unoriented graph)
or with in-degree 1 and out-degree 0 (in a directed graph).
Peninsula — nosyocrpos.
t-Perfect code — t-coBepieHHbIil KOII.
See t-Code (in a graph).
Perfect elimination graph — rpad cosepriennoro uckiodenus.
See Chordal graph, Perfect elimination scheme.
Perfect elimination scheme — coBepiennasi cxema yaajeHus.
Let G = (V, E) be a graph. A simplicial vertex of G is a vertex of
which the neighborhood induces a clique. An ordering of the vertices
o= (v1,...,v,) is called a perfect elimination scheme if for every
1 < i < n,v; is a simplicial vertex in G[v;, ..., v,].
A graph G is a perfect elimination graph (or chordal graph) if
and only if there exists a perfect elimination scheme for G.
Perfect fractional matching — cosepiiernoe npobHOe mapocovueTanme.
Let us associate a variable z;; with each edge (i,7) of a graph G =
(V,E). A perfect fractional matching of G is a vector & € RIZ!,
where R is the set of real numbers, such that:

S =l forali= 1V
JEN (i)

x;; > 0, for all (4,7) € E.

It is not difficult to see that G admits a perfect fractional matching
if and only if G can be covered by pairwise disjoint edges and odd
cycles.
Perfect graph — cosepmennsiii rpad.

A graph G = (V,E) is called a perfect graph if the following
two conditions are both satisfied: first, the clique number and the
chromatic number must be equal for all induced subgraphs, (i.e.
w(G[A]) = x(G[A4]) for all A C V), and second, the stability number
must equal the clique cover mumber for all induced subgraphs of
G (ie., a(G[A4]) = k(G[A]) for all A C V). Notice that the two
conditions are dual in the sense that a graph satisfies the first condi-
tion if and only if its complement satisfies the second. The remarkable
fact that a graph satisfies the first equality if and only if it satisfies the
second equality was conjectured by C.Berge and proven by L.Lovasz.
This is known as the perfect graph theorem.
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A near perfect matching in a graph G is a matching saturating
all but one vertex in G.
See also Minimal imperfect graph.

Perfect graph theorem — Teopema o coBepineHHBIX I'padax.

See Perfect graph.

Perfect matching — cosepiennoe mapocoderanue.

See Matching.

Perfect k-matching — cosepmennoe k-mapocoderanue.

See k-Matching.

Perfect one-factorization — cosepiiennasi oguH-bakTOpU3AIHS.

See One-factorization.

Perfect sequence — cosepIeHHbIi MAPIIPYT.
Perfectly contractile graph — cosepierno craruBaembiit rpad.

See Contraction of an even pair.

Period — nepwuos,.

See Primitive directed graph.2.

Periodicity of a graph — mepuogmumnocts rpada.

Let ¢ be a graph operator defined on the class C of all finite
undirected graphs. For every positive integer r we define the power ¢"
so that ¢! = ¢ and for r > 2 the operator ¢" is such that ¢(¢"~1(G))
for each G € C¢. A graph G € C} is called ¢-periodic, if there exists
a positive integer r such that ¢"(G) = G. The minimum number r
with this property is the periodicity of the graph G in the operator
o.

Peripheral vertex — nepudepuiinas Bepruna.

See Periphery.

g-Peripheral vertex — ¢-niepudepuiinas BepinHa.
Periphery — nmepudepus.

The periphery P(G) is a set of vertices of maximum eccentricity,
e(v) = diam(G), and those vertices are called peripheral.

Permutation graph — nepecranoBodsslit rpad, rpad mepecraHOBKH

If 7 is a permutation of the numbers 1,...,n, we can construct an
undirected graph G[r] = (V, E) with a vertex set V = {1,...,n} and
an edge set E:

(i,j)) e E& (i—j)(m " — a7 ") <0.

An undirected graph is called a permutation graph if there exists a
permutation 7 such that G = G[r]. It is known that the complement
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of a permutation graph is also a permutation graph and a
permutation graph is a comparability graph.

a-Permutation graph — a-mepecranoBounsiit rpad.

Persistence problem — mpobsiema ycroitanBocTH.

Persistent Petri net — ycroituusas cers [lerpn.

Persistent transition — ycroituussrit mepexor.

Petal of a flower — Jienecrok nserka (rpad).
See Flower.

Petersen graph — rpad Ilerepcena.
A generalized Petersen graph P(n,m), 1 < m < %, consists of
an outer n-cycle y1,Ya, ..., y,, a set of n spokes y;z;, 1 <i <n,and
n inner edges ;T;tm, 1 < ¢ < n, with indices taken modulo n.
The standard Petersen graph is the instance P(5,2). It is possible
to form the Petersen graph by constructing a vertex for each 2-
element subset of a 5-element set, and connecting two vertices by an
edge if the corresponding 2-element subsets are disjoint from each
other.
The Petersen graph is a small graph that serves as a useful example
and counterexample for many problems in graph theory. It is named
for Julius Petersen, who in 1898 constructed it to be the smallest
bridgeless cubic graph with no edge 3-coloring.

Petersen hypernet — runepcers Ilerepcena.

Petri graph — rpad Ilerpn.

Petri net — cern IleTpn.
A Petri net is a finite directed graph with two types of nodes,
referred to as places and transitions. It is a bipartite graph: every
arc goes either from a place to a transition or from a transition to
a place. Consider a transition ¢. Every place p (respectively, ¢) such
that there is an arc from ¢ to p (respectively, from ¢ to ¢) is called
an input (respectively6 an output) place of ¢. The same place can
be both an input and an output place of .
A marking of a Petri net is a mapping m of the set of places into
the set of nonnegative integers. The fact that m(p) = k is usually
visualized by saying that there are k tokens in the place p. A specific
initial marking mg is usually given in the definition of a Petri net.
Thus, formally, a (marked) Petri net is a quadruple N = (P, T, A, my),
where P and T are nonempty finite disjoint sets of places and transi-
tions, A is a subset of P x T|JT x P. (It is often also required that
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the union of the domain and codomain of A equals P|JT; that is,
every place and transition is either the beginning or the end of some
arc.) Finally, m (initial marking) is a mapping of P into the set of
nonnegative integers.

We now define the operation (or execution) of a Petri net. A transi-
tion is enabled (at a marking) iff all its input places have at least
one token. An enabled transition may fire by removing one token
from each of its input places and adding one token to each of its
output places.

The operation of a Petri net starts with the initial marking my.
Whenever some transition is enabled, it may fire. This leads to a
new marking. If more than one transition is enabled, the firing of
such transitions is viewed in an asynchronous fashion: They may
fire simultaneously or at different times, one after another. If two
transitions have common input places, they are said to be in conflict.
This means that only one of them can fire at any marking.

A Petri net defined above is an ordinary Petri net. A general
definition of a Petri net is obtained by introducing multiplicities
for arcs. Multiplicities means that there is an integer greater than or
equal to 1 associated to each arc. The multiplicity of an arc indicates
the number of tokens to be subtracted from the input place, as well
as the number of tokens to be added to the output place. A transition
is not enabled if there are not sufficiently many tokens in each of its
input places.

Petri net with place capacities — cern IleTpu ¢ emKoCTBIO MeCT.

A Petri net with place capacities is a pair (N, C), where N is a Petri
net and C' is a mapping of the set of places of N into the set of
positive integers. For a place p, the value C(p) is called the capacity
of the place p.

A transition in a Petri net with place capacities is not enabled if
there are not sufficiently many tokens in each of its input places or
if the capacity of some of its output places will be exceeded.

Petri net with priorities — cers Ilerpu ¢ mpuopurerammu.
Petri net with waiting — cern Ilerpu ¢ oxxunanumem.
Pfafian orientation of a graph — ndadwuanosa opuenramus rpada.

Let G be a graph, and H be a subgraph of G. We say that H is
central if G\ V(H) has a perfect matching. Let D be an orientation
of G, and let C be a circuit of G of even length. We say that C' is
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oddly oriented (in D), if C' contains an odd number of edges that
are directed (in D) in the direction of each orientation of C. We say
that D is a Pfafian orientation of G, if every central circuit of G
of even length is oddly oriented in D.
It is known that a bipartite graph admits a Pfafian orientation if and
only if it does not contain K 3.

Phrase-structure grammar — rpamMmmaruka ¢ (ppa3oBoii CTPYKTYPOIi.
The same as Grammar.

Phylogeny digraph — duorennsiit oprpad.
Given a graph G = (V, E), the acyclic digraph D is a phylogeny
digraph for G if G is an induced subgraph of a phylogeny graph
P(D) and D has no arcs from vertices outside of G to vertices in G.
The phylogeny number p(G) is defined to be the smallest r such
that G has a phylogeny digraph D with |[V(D) — V(G)| =r.

Phylogeny graph — dwunorennsrit rpad.
Given an acyclic digraph D = (V, A), its phylogeny graph P(D) is
the undirected graph (V, E) with the same vertex set as D and with
the following properties for = # y:

xy € E< (JaeV)|(z,a) € A&(y,a) € 4]

or [(x,y) € A] or[(y,x) € Al.

Phylogeny number — ¢uioremntoe qucio.
See Phylogeny digraph.

Place — mecro.
See Petri net.

k-Placement — k-pazmerenne.

Planar embedding of a graph — miockoe Biioxkenue rpada.
See Planar graph.

Planar graph — mranapusbrit rpad, niockuit rpad.
A crossing-free embedding of a graph in the plane is given by drawing
a graph G in the plane with points representing vertices and curves
representing edges such that no two curves for edges intersect except
at common endvertices. G is a planar graph if there is a crossing-
free embedding of G in the plane.
In other words, a graph (digraph) G is called a planar graph, if
there is a projection II of the vertices and edges of GG into the plane
such that the intersections of the projections of edges occur at the
projections of vertices, and II((u,v)) is a Jordan-curve from II(u)
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to II(v). The projection II is called a planar embedding of G. It
divides the plane into a number of connected regions, called faces,
each bounded by the projection of edges of the graph. There is always
a face with an infinite area, which is called the exterior face.
See also Plane graph.

(a,b)-Planar graph — (a, b)-mwiockuii rpad.

Planar matroid — mianapusiit maTpous,.

Planar tree — miockoe aepeso.

Planar triangulation — miockasa Tpuanrysanus.
A planar map in which each face is a triangle.

Planarity criteria — kpurepun nnanapaocTu.
The following three planarity criteria are classical.
1. Kuratowski’s criterion. A graph G is planar if and only if it
does not contain a subdivision of K5 or K3 3.
Another name is Pontrjagin-Kuratowski’s criterion.
2. Whitney’s criterion. A graph G is planar if and only if it has a
combinatorial dual graph G*.
3. MacLane’s criterion. A graph G is planar if and only if it has a
cycle basis such that each edge of G belongs to at most two circuits
of the basis.

Plane graph — nockuit rpad.
A plane graph is a planar graph with a fixed embedding in the
Euclidean plane.
A graph is said to be plane if it is drawn on the Euclidean plane in
such a way that edges do not cross each other except at vertices of
the graph.

Plane map — miockast kapra.

Plane numbering — nockast Hymeparus.

Plane triangulation — mockas Tpuanryssmms.
A plane graph is a plane triangulation if all its faces are bounded
by 3-cycles.

Plex — cruterenue (ceTs).

Point — Touka, Bepmmuma.

Point-covering number — unc/i0 BepIIMHHOTNO MOKPBITHUSI.

Point spectrum — toueunsrit criekTp.
See Spectrum.

Point-tree hypergraph — nepeso-roueunsiii runeprpad.
A hypergraph H is called a point-tree hypergraph if it is obtained
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from a bipartite graph by replacing, in each edge, the point in one side
of the graph (the same side for all edges) by a tree. More formally,
H is point-tree, if for some set X and a tree, whose vertex set is
disjoint with X, each edge e € H is of the form {z} U V(¢), where
x = x(e) € Xand t = t(e) is a subtree of T For such a hypergraph we
denote by o(H) the number w(H, F), where F' = F(H) = {{z(e)} :
e€ HYU{V(t(e)): ec H}.

Polar graph — mossapmbrit rpad.
The same as Split graph.

Pole — nosoc.

Polynomial algorithm — nonunoMuasbHBIN ajropuTM.

Polynomial expression of the stability function — mommHOMEAaTBEHOE
BbIpaskeHrne (DYHKIUU YCTONIUBOCTH.
See Stability function.

Polynomial graph inclusion problem — npo6siema BK/toueHus rpados
[IOJINHOMOB.

Polynomial transformation — nosmnomuasbuas csonumocTts (Tpancdop-
MUPYEMOCTB ).

Polygonal tree — muoroyrosbHoe gepeso.
A graph G is called a polygonal tree, if it consists of finitely many
regular polygons (we assume any two distinct polygons be not copla-
nar) and has the following two properties:
(1) any two distinct polygons are disjoint or have exactly one edge in
common (such an edge can be a common edge of several polygons),
(2) the diagram obtained by joining the centroids of the polygons to
the mid-point of the common edge has no closed curve.
If all polygons of a polygonal tree G are the same, say s-gons, then
G is called an s-gonal tree. 6-gonal tree is called hexagonal tree.
Consider the diagram defined in condition 2. If we set the centroids
and the mid-points of common edges of some polygons as “red”
vertices and “green” vertices, respectively, and the straight line seg-
ments as edges of a bipartite graph, then this graph is a tree.

Polytop graph — rpad mHororpanmuka.

Polyhedral graph — nommsapaabubrit rpad.
A polyhedral graph G = (V, E, F') with a vertex set V', an edge set
FE and a face set F' is a planar and 3-connected graph. A polyhedral
graph G = (V,E, F) is called face transitive, if for each pair of
faces a, 8 € F there is an automorphism ¢, g = 3.
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Polyhedron graph — rpad mMuororpamnuka.

Pontrjagin-Kuratowski’s criterion — kpurepunit [lonrpsaruna-Kyparos-
CKOTO.
See Planarity criteria.

Poset — gy-mHOXKecTBO.
See Partially order relation.

Post-condition — nocryciosue.

Position tree — nepeso mozwurmii.

Postdomination — noctnomuaupoBanue.

Postdominator — o6sizaresibHBIN TPEEMHUK, TIOCTIOMUHATOP.

Postdominator tree — nmoctaoMuHATOpPHOE JIEPEBO.

Potential liveness of transitions problem — npo6iema xuBoctu mmepe-
XOJIOB.

Potentially dead transition — norenrnua bHO MEPTBBIN TTEPEXOT.

Potentially live transition — moreHuajbHO KUBOI TEPEXO/I.

k-th Power of a graph — k-a crenens rpada.
See Dually chordal graph.

Power-chordal graph — cremenno-xopmgaabHbIit Tpad.
This is a graph G such that all of its kth powers are chordal.

PRAM — napaJuiesibHasi paBHOJIOCTYITHAS MAIIUHA.
See Parallel Random Access Machine.

Pre-condition — upeyciosue.

Predecessor of a vertex — mpeoKk BepITUHBI.
See Flow graph.

Predicate term — joruveckoe BbIparkeHHe, CJIOBO IIPUMEHUMOCTH.
See Large-block schema.

Prefix — npedukc.
See String.

Prefix graph — npedukcubrii rpad.
For all n € N, a prefix graph of width n is a directed acyclic graph
G = (V, E) with n distinguished input vertices z1, ..., x, of indegree
zero and n distinguished output vertices y1, . .., y, of outdegree zero
and with the following properties, where the span of a vertex v € V|
span(v), is defined as {i : 1 < ¢ < n and G contains a path from
x; to v}
(1) Fori=1,...,n, span(y;) = {1,...,i— 1} (for ¢ = 1 this is 0).
(2) For all v € V, span(v) is either empty or an “interval” of the form
{s,...,t}, for some integers s and ¢t with 1 < s <t < n.
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(3) Any two vertices in V' with a common successor have disjoint
spans.
Prefix graph of width n — npeduxcusbiii rpad mmpuss n.
Prefix language — npedukcHbI sA3bIK.
Prefix tree — npedurcHoe j1epeBo, HArPYKEHHOE JIEPEBO.
The same as Trie.
Preorder — mpeamopsmok.
A binary relation on {1,2,...,n} is a preorder, if it is reflexive and
transitive.
Prependant vertex — npessucsiuasi BepinuHa.
A vertex is prependant, if it is adjacent to a pendant vertex.
Prescribed chromatic number — npeanucannoe XxpoMaTuIecKkoe 9ucio.
See List chromatic number.
Prime hammock — mpocroit ramax.
See Hammock.
Prime graph — npumurussbiii rpad, /eMeHTapHbIl rpad.
See Prime labeling.
Prime labeling — npuvmuTuBHas pa3Merka, sIeMeHTapHAsT PA3METKA.
A graph with a vertex set V is said to have a prime labeling, if its

vertices are labelled with distinct integers from {1,2,...,|V|} such
that, for each edge xy, the labels assigned to x and y are relatively
prime.

Primitive cycle — npumuruBHbIil UK.
See Cycle.

Primitive directed graph — npumutuBHBIt oprpad.
1. A digraph D is primitive if there exists an integer k£ such that
there is a walk u — v of length k for every pair u,v € V. The
least such k is called the exponent of D, denoted (D). The local
exponent of D at a vertex u € V, denoted by expp(u), is the least
integer k such that u — v[k] (a walk of length k) for each v € V.
2. The index and period of a given digraph D are the minimum
nonnegative integer k& = k(D) and the minimum positive integer
p = p(D) such that for any ordered pair of vertices « and y there is
a walk of length k from z to y if and only if there is a walk of length
k+ p from x to y in D. A digraph D is primitive if D is strongly
connected and p(D) = 1.

Prism — npuswma.
A prism D,,, n > 3, is a trivalent graph which can be defined as the
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Cartesian product Py x C}, of a path on two vertices with a cycle on
n vertices. The prism can also be defined as the Cayley graph of the
dihedral group of order 2n.
See also Antiprism.

Private neighbour — npusarHbIiii coce.
See Private neighbor set.

Private neighbor set — mpuBaTHOe coceaee MHOXKECTBO.
The private neighbour set of a vertex v in S is denoted by

PN][v,S] = N[v] — N[S — {v}].

If PN[v,S] # 0, then every vertex of PN[v,S] is called a private
neighbor of v with respect to .S, or just an S-pn.
See also Private neighbourhood.
Private neighbourhood — mpusatmoe cocencTso.
See Neighbourhood of a vertex.
Primitive net formula — npumurusHas gpopmyiia.
Primitive Petri net — npumurusuas cers [lerpu.
Print operator — oneparop meyaru cumBoJIa.
Priority — nmpuopurer.
Problem — mpobaema.
Problem of finite-state automaton minimization — npo6jema MuHu-
MU3AIME KOHEYHOTO aBTOMATA.
Problem size — pasmep mpobiiemsb.
See Time complezity.
Process — mporrecc.
Process net — cerp-mporiecc.
Process net with competition — cerb-poriecc ¢ KOHKypeHIIHEiH.
Product of two graphs — npowussesenne 1Byx rpados.
There are some kinds of products.
1. (Weak) direct product G; x G2 of Gy and Go, defined by

V(Gl X GQ) = V(Gl) X V(Gg),
E(G1 xG2) = {((z1,72), (y1,y2))[(z1,y1) € E(G1), (22,92) € E(G2)}.

Other names are Cardinal product, Cross product, Tensor pro-
duct, Kronecker product, Categorical product, Graph con-

junction.
2. Strong direct product G; - G of G; and (s, defined by

V(G - Ga) = V(Gy) x V(Ga),
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E(Gy1 - G2) = {((z1,22), (y1,92))|
(z1,91) € E(G1) and (z2,y2) € E(G2), or x1 = y; and
(72,y2) € E(G2), or (z1,41) € E(G1), and x3 = ya}.
3.1. Cartesian product G; ® Go, defined by

V(G1 @ G2) = V(Gy) x V(G2),

E(G1® G2) = {((w1,72), (y1,y2))]

z1 =y and (z2,y2) € E(G2); or (z1,y1) € E(G1) and 22 = y2)}.
Thus, Gy - Gy = (Gl X Gg) @] (Gl ©® GQ)
3.2. For given graphs G; = (V;, E;), i € [1,n], the vertex set of the
product graph G = (V, E) is the Cartesian product of the vertex
sets of the factors G;, i.e. V. = {(a1,...,a,)}, where a; € V;. Two
vertices @ = (ay,...,a,) and b = (b1, ...,b,) are adjacent in n-fold
C.p. if and only if a; # b; for precisely one i, 1 <1i < n, and for this
i (a;,b;) is an edge in G;.
4. Categorical product of graphs is defined as follows. For given
graphs G; = (V;, E;), i € [1,n], the vertex set of the product graph
G = (V, E) is the Cartesian product of the vertex sets of the factors
G;,ie. V. ={(a1,...,a,)}, where a; € V;. Two vertices a = (aq, ...,
a,) and b = (by,...,b,) are adjacent in n-fold Cartesian product
if and only if for all 4, 1 <14 <mn, (a;,b;) is an edge in G;.

5. Square product is the same as Cartesian product.
6. Semi-strong product G = G; e G2 has the vertex set V(G) =
V(G1) x V(G2) and the edge set E(G) = {(u1, u2)(vi,v2)| u1 = v1
and ugve € Ey or ujuy € E(G1) and ugve € E(G2)}.

7. Lexicographic product G = G1[G2] has the vertex set V(G) =
V(Gl X V(Gg) and the edge set E(G) = {(Ul,UQ)(’Ul,’Ug)| u;y = v
and ugvy € E(G3) or uyvy € E(G1)}.
8. Special product G; @ G has the vertex set V(G) = V(Gy x
V(G2) and the edge set

E(G) = {(u1,u2)(v1,v2)| urv1 € E(G1) or ugvs € E(G2)}.

9. Product of two hypergraphs H; and Hs is a hypergraph H; X
‘Ho, defined by

V(Hl X HQ) = V(Hl) X V(Hg),
E(Hl X Hg) = {El X E2|E1 S E(H1),E2 S E(Hg)}
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Product of two languages — mpoussenenmne ABYX SI3IKOB, KOHKATEHA-
Ul IBYX SI3BIKOB.
See Formal language.

Production — upoxyxiusi.
See Grammar.

Production grammar — mopo:kgaromnasi TpaMMaTHKA.
The same as Grammar.

Profile numbering — npoduibHast HyMepaus.
For a proper numbering f, the profile width of a vertex v is defined
as

wy(v) = f(v) = min f(2),
where N[v] is the closed neighborhood of v. The profile of numbering
f for G is defined as

Pr(G) =) wy(v).

veV

The profile of G is the minimum value

P(G) = min(Py(G).

where f is taken over all proper numberings of G. A proper numbering
f that attains the minimum value is called a profile numbering.
Profile of a graph — npodwuis rpada.
See Profile numbering.
Profile of numbering — npoduib nymepanum.
See Profile numbering.
Profile width of a vertex — npoduibHas MUPUHA BEPITUHBI.
See Profile numbering.
Program — nporpamma.
A computer program (or a program) is an algorithm for a compu-
ter. A program can be either in an executable form (an executable
program) or a source code (or a source program) from which an
equivalent executable program is derived (e.g., compiled); the source
program may also be used to describe an algorithm to a reader.
Program dependence graph — rpad nporpaMMHBIX 3aBUCHAMOCTEIA.
Program dependences — mporpaMMHbIe 3aBUCUMOCTH.
Program equivalence — 3KBUBa/IEHTHOCTH ITPOTPAMM.
When a program calculates some function (as is usually the case),
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there is a natural and most general definition of equivalence: two
programs, which have a common set of arguments are functionally
equivalent, if their functions are the same.
However, an unavoidable obstacle in developing a general theory
is the following negative result in the theory of algorithms. Some
property of a program is said to be internal, if it takes place for
all programs functionally equivalent to it. Rice has proved that for
any internal property of a program, there is no algorithm which
would recognize those programs which possess the given property
(naturally, the class of programs should be reasonably meaningful,
for instance, it should compute any recursive function).
The principal way of narrowing the concept of equivalence of programs
is to compare not only the values of the functions evaluated by
programs, but also some history of computation during the execution.
Formally the concept of history is introduced as follows. In addition
to the universal algorithm of program execution, another algorithm
is introduced which, in accordance with the program and a set of its
input data, constructs some object. The latter is called the history
of the program realization and contains some information about
its execution. The history may comprise any number of details, but
the result of the program execution has to be recovered by it in a
single-valued way. Hence, programs with coincident histories auto-
matically have coincident results. A special case of a history is the
program itself (an identical tracing algorithm). This history, naturally,
is the most detailed one, because we can get any information from
the program by applying to it the universal algorithm of execution.
The equivalence based on this history appears to be the narrowest:
the program is equivalent only to itself.

Program of automaton — mporpamma aBromara.

Program optimization — ontumuzanus nporpamm.

Program schemata — cxemsr mporpamm.
Program schemata are a class of abstract programs with an equiva-
lence relation between them. They retain many structural properties
of programs, in particular, splitting into statements with indications
of the information and control flow between them. This makes it
possible for program schemata to construct many of the characteris-
tics typical for concrete programs, for example, histories of program
execution. In program schemata, variables, operations and predicates
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are represented by formal symbols without any internal properties.
These formal objects keep only the information needed for construc-
ting histories of their realizations, for example, for formal operations,
only the number of formal arguments and the names of formal vari-
ables substituted for them are indicated; for a formal statement
of control transfer, only those statements to which control may be
transferred are labelled, and so on.

Every program scheme « describes (models) a set P, of concrete
programs, and two program schemata « and (3 are considered as
functionally equivalent only if any concrete programs p; € P,
and pp; € Pg having the same structure are functionally equivalent
(i.e. computes the same function).

Concrete programs can be obtained from schemata by means of
interpretation which consists in bringing some concrete variables
and operations into correspondence with formal variables and opera-
tions. Very important is the concept of the set 2 of all interpretations
of program schemata. The theory is developed in such a way that a
fact ascertained for some schema should be true for any interpreting
program. In particular, in this way the notion of equivalence of two
program schemata is introduced: two program schemata S; and S,
are equivalent in the sense of the history H, if for any interpretation
I € Q) concrete programs obtained from S; and S5 are equivalent in
the sense of this history.

Progressive bounded graph — mporpeccuBno orpannydenubiit rpad.
Progressive finite graph — nporpeccusuo Koreunsiit rpad.
Proper control flow graph — npasuibublii yrpad.

Proper coloring — cobcrBennasi, mpaBubHas PaCKpacKa.

See Coloring.

Proper dominator — coGcTBeHHBIN JOMIHATOP, COOCTBEHHBIN 00SI3aTEITH-

HBII IIpeIIIeCTBCHHUK.
See Dominator.

Proper interval graph — cobcTBenHBIN HHTEPBAJIBHBIN TPad.
Proper labeling — npasuiibHast Hymeparius.

See Proper numbering.

Proper matching — npasuibHOe mapocoderanwue.
Proper numbering — npaBujibHast HyMepaIysi.

For a simple graph G = (V, E) with n vertices, a bijection (1-1, onto
mapping) f: V — [1,n] is called a proper numbering of G.
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Another name is Proper labeling.

Proper (vertex) colouring — npasuwibhas packpacka (BepIiuH).
A proper colouring of G is an assignment of colors to the vertices so
that adjacent vertices obtain distinct colors. The chromatic number
X(G) is the minimum number of colors required among all proper
colorings of G.

Proper substring — cobcTBernas momamenodxa.
See String.

Provable problem — wyactuvuno paspenumas 3a/1a49a.
See Decision problem.

Pruned tree — coxkpainennoe J1epegso.
If a leaf v (together with the unique edge e incident with v) of a
nontrivial tree T is removed from 7', we say that v has been pruned
from T'. We refer to the removal of all the leaves of a tree T' of order
n > 3 as a pruning of T. The graph that results from a pruning of T
is a (possibly trivial) tree T*, called the pruned tree of T.

Pseudograceful graph — ncesgorpamnmosusiit rpad.
A graph G = (V, E) such that |[V| < |E| + 1 is said to be pseudo-
graceful, if there exists an injective function called pseudograceful
labelling f : V — {0,1,...,|E| = 1,|E| + 1} such that the induced
function

ff: EG)—{1,2,...,|E(G)|}
defined by

[ (xy) = |f(z) = f(y)| for all 2y € E(G)

is an injection.
See also Graceful graph.
Pseudograph — ncesnorpad.
Let G = (V, E) be adigraph on n vertices. G is called a pseudograph,
if it permits loops but no multiple arcs in D.
Pseudo-hamiltonian graph — ncesmoramuasronos rpad.
See Pseudo-h-hamiltonian graph.
Pseudo-hamiltonicity number — wucso mnceBgoraMuIbTOHOBOCTH.
See Pseudo-h-hamiltonian graph.
Pseudo-/-hamiltonian cycle — miceBo-h-raMubTOHOB UK.
See Pseudo-h-hamiltonian graph.
Pseudo-h-hamiltonian graph — ncesmo-h-ramunibToHOB rpad.
For an integer A > 1, an undirected graph G = (V, E) is a pseudo-
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h-hamiltonian graph, if there exists a circular sequence of h - |V|
vertices such that the following properties hold:

(1) every vertex of G appears precisely h times in the sequence, and
(2) any two consecutive vertices in the sequence are adjacent in G.
A sequence with these properties will be termed a pseudo-h-hamil-
tonian cycle. In this sense, pseudo-1-hamiltonian corresponds
to the standard notion hamiltonian, and a pseudo-1-hamiltonian
cycle is just a hamiltonian cycle. The pseudo-hamiltonicity num-
ber ph(G) of the graph G is the smallest integer h > 1 for which
G is pseudo-h-hamiltonian; in case no such h exists, ph(G) = co. A
graph G with finite ph(G) is called pseudo-hamiltonian. Pseudo-
h-hamiltonicity is a non-trivial graph property. E.g., for every h > 2,
the graph G}, that results from gluing together A triangles at one of
their vertices is pseudo-h-hamiltonian but it is not pseudo-(h — 1)-
hamiltonian.

Pseudo-polynomial algorithm — ncesgonosmaoMua bHbBINR aJIrOpPUTM.

A numeric algorithm runs in pseudo-polynomial time, if its running
time is polynomial in the numeric value of the input (which is expo-
nential in the length of the input - its number of digits).

An NP-complete problem with known pseudo-polynomial time algo-
rithms is called weakly NP-complete. An NP-complete problem
is called strongly INP-complete, if it is proven that it cannot be
solved by a pseudo-polynomial time algorithm. The strong/weak
kinds of NP-hardness are defined analogously.

Pseudo-product — micesonponsseieHue.

Let G and G’ be simple graphs on the same set of vertices V(G) =
V(G") =V, where |V| = n > 1. Define the pseudo product of G
and G’ to be the simple graph G * G’ on the vertex set V with the
edge set (G« G') = E(G)U E(G') U E*, where

E* = {{u,v}: 3w eV : {u,w} € E(G),{w,v} € E(G'),
and Jw’ €V : {u,w'} € E(G"),{w',v} € E(G)}.
For a simple graph G and nonnegative integers s and ¢, we have
G* + G' = G5T,

In particular, the pseudo product is an associative operation on the
set {GF: k€{0,1,2,...,}} for any fixed simple graph G.
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Pseudosimilar vertices — mceBmonomo6HbIE BEPITHHEI.
Pseudosymmetric digraph — nceBgocummerputnbit oprpad.
See Symmetric graph.
Pseudovertex — nicepioBepiiuHa.
Pseudo-wheel — 1cesno-koseco.
The pseudo-wheel consists of a cycle graph on 2n vertices with
n additional edges connecting vertices on the opposite sides of the
cycle.
Pumping lemmas — jieMmMbl 0 BO3pacTaHUN.
Pure synthesized grammar — 4ucro cuHTe3UpPOBAHHBIE TPAMMATUKH.
Pushdown automaton — aBromar ¢ Mara3swHHOI MaMsITHIO.
See Model of computation.
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Quad cycle — kBajpar.
A quad cycle in a bigraph is a p-cycle, where p is divisible by 4.

Quadrilateral — 4eTBIPEXCTOPOHHUK, YETHIPEXYTOJILHUK.
A cycle of length 4 is called a quadrilateral.

Quadtree — xkBagIEPEBO.
A quadtree is a ternary tree representing a hierarchical decomposi-
tion of the plane, originally proposed for representing point sets. Each
node of the quadtree corresponds to a square region, called a box.
The root usually corresponds to the smallest enclosing square of the
given set of objects. A node of the quadtree acquires four children,
when its associated box is split into its four quadrants.

Quasi-bipartite mixed graph — kBazuaBy10IBHBII CMeITaHHBIN Tpad.
A mized graph is called quasi-bipartite, if it does not contain a
nonsingular cycle, i.e., a cycle containing an odd number of unoriented
edges.

Quasibipyramid — kBazubunupamua.
The plane dual graph A of the antiprism A, is the graph of a
quasibipyramid.

Quasi-diameter — kBazuauamerp.
Let p(x,y) be a distance function on the vertex set V of a directed
graph without loops and let p,,(z,y) be a function defined by

Pm($7y) = min{p(x,y), p(y,x)}.

Then the quasi-diameter d,,(G) = max, yev pm(z,y) and the
quasi-radius 7, (G) = mingecy maxycy pm(z,y)
Quasi-radius — kBasupajuyc.
See Quasi-diameter.
Quasistrongly connected graph — kBazucuabHO CBA3HBII Tpad.
Quasi-transitive tournament — KBasuTpaH3UTUBHBIN TYPHUP.
See Transitive tournament.
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R

Radial path — paguanbHbIit Ty Th.
A radial path in a graph G is a path of length r(G), where (G)
is the radius of G that joins a central vertex to one of its eccentric
vertices.

Radially critical graph — pajmanbao kpurnaeckuii rpad.

Radius of a graph — pajguyc rpada.
See Eccentricity of a vertex.

p-Radius — p-paamyc.
Let G = (V, E) be a graph and w : V — R* U {0} be a nonnegative
weight function defined on V. We define the radius r(S) of a set
S CV as max{w(u)d(u,S) : u eV}, where d(u,S) = min{d(u,v) :
v|inS}. For a given positive integer p < |V|, we define the p-radius
of G as

rp(G) = min{r(C); € CV, |C] = p}.

See also Radius of a graph, p-center.
Radius-essential edge — paguyc-cymecTBennoe pedpo.
An edge e is radius-essential if rad(G/e) < rad(G). The number
of radius-essential edges in a graph G is denoted by ¢, (G).
Ramanujan graph — rpad Pamanymxkana.
1. A finite regular graph of degree k is said to be a Ramanujan
graph if, apart from the trivial eigenvalues £k, its spectrum is con-
tained not only in [—k, k] as Perron—Frobenius guarantees, but in the
smaller range [—2v/k — 1,2+v/k — 1]. This range is in some asymptotic
sense the smallest possible.
2. A k-regular graph X is a Ramanujan graph if and only if its
Thara zeta function Zx (s) satisfies the "Riemann hypothesis”, i.e., all
poles of Zx(s) in 0 < Rs < 1 lie on the line Rs = 3.
Ramsey graph game — pamceeBckast urpa na rpadax.
The board of the game is the complete graph K, with s vertices. The
players alternately occupy the edges of K, and that player wins who

first occupies all the edges of some complete subgraph K,,.

n

2
The Ramsey Graph Game is denoted by R(s,n).

Random access machine — paBHomocTymHas agpecHast MAIIITHA.
See Model of computation.

Random graph — ciywaitubrit rpad.
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Rank function — panrosas ¢yukms.
See Matroid.

Rank of a graph — panr rpada.

Rank of a graph group — panur rpymnmnsl rpada.

Rank of a hypergraph — panr runeprpada.
See Hypergraph.

Rank of a matroid — panr marpona.
See Matroid.

Ranking number — uncio pan:KupoBaHus.
See k-ranking.

k-Ranking — k-pamkuposanue.
Given an undirected graph G, a (vertex) k-ranking of G is a
mapping (coloring) f : V(G) — {1,2,...,k} such that every path
connecting two vertices u,v of the same rank f(u) = f(v) contains
a vertex w with a higher rank, f(w) > f(u). The ranking number
Xr(G) is the minimum integer k for which there exists a k-ranking.
It is well known and easy to see that, for the path Pp, of length L —1
on L vertices, we have

XT'(PL) = I_log LJ +1

and that the longest k-rankable path Pox_| = 2122 ... 29x_; admits
the unique optimal ranking f with

f(z;) = max{j: 27}i} +1

for all 1 <i < 2F.
Analogously, k-ranking for directed graphs is defined.

Ray — my4.
1. A ray (zg,1,...) is an infinite path (or chain) in an infinite
graph. The other name is one-way infinite path. A double ray
(...,x_1,20,21,...) is an infinite path (or chain) which contains the
vertex xg. The other name is two-way infinite path.
2. See Basic block.

F-Ray — F-nyu.
Let F be a numbering of a cf-graph G and A be a ray of G. A is
called F-ray if it contains only F-arcs.

Reachability — moctmxuMocTb.

Reachability graph — rpad moctmxkumocTn, rpad pasmMeTox.
The reachability graph of a Petri net N is a (not necessary finite)
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directed graph whose nodes are labeled by markings reacheable for
N. The arcs of the reachability graph are labeled by the transitions
of N in such a way that there is an arc labeled by t from a node
labeled by m4 to a node labeled by ms iff the firing of ¢ changes the
marking mq to mo.

Reachability matrix — maTpura 10CTHKIMOCTH.

Reachability problem — npo6iema gocruzkumoctu (pa3Merkn).
The reachability problem for Petri nets consists in finding an
algorithm for deciding about a Petri net N and a marking n of NV
whether or not m is reachable for N.
The reachability problem was for a long time the most-celebrated
open problem in the theory of Petri nets. Before a proof for its
decidability was found, many equivalent versions for the statement
were known. The equivalent versions dealt with various aspects of
Petri nets, language theory and vector-additive systems. For example,
the reachable problem for Petri nets is decidable iff the empty marking
problem for Petri nets is decidable.

Reachability relation — ornomenne gocTUKUMOCTH.

F-Reachable (from p) node — F-moctuxkumas (u3 p) BepumHa.
See Numbering of cf-graph.

Reachable (from a) vertex — gocrimkumast (13 @) BepIIAHA.
Given a digraph G = (V, A), a vertex w € V is called reachable
from v € V iff there exists a path from v to w.

Reachable marking — nocruxknmast pasmerka.
Let N be a Petri net. A marking m is called reachable for N iff
there is a finite sequences of firings of the transitions of N leading N
from the initial marking to m. All reachable markings of a Petri net
N are denoted by R(N).

Reaching matrix — marpuria KOHTPaIOCTHKIMOCTE, MATPUTIA, OOPATHBIX
JIOCTUZKUMOCTEIA.

Reaching set — KoHTpPaI0CTHKUMOE MHOXKECTBO.

Reach-preservable graph — coxpassitoruit JocTu:kuMoCTb rpad.
Given a spanning tree T of a graph G, a vertex v € V(G) is called
reach-preserving if the distance dr (v, w) = dg(v,w) for all w in G.
A graph is called reach-preservable graph if each of its spanning
trees has a reach-preserving vertex.
By definition, it is clear that all trees are reach-preservable, and any
cycle is reach-preservable. Furthermore, we can deduce that connected
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unicyclic graphs are reach-presevable.

Reach-preserving vertex — coxpassiorasi JJOCTHKAMOCTh BepIITHHA. See
Reach-preservable graph.

Realizable admissible sequence — peajiusyemasi joIycruMasi MoCje10-
BaTEJIbHOCTb.
See Admissible sequence.

Realization of a hypergraph — peanuzanus runeprpada.

Realizer of P — peamuzép P.
See Linear extenson of a poset.

Reasonable numbering — pasymuasi Hymeparius.
A numbering of a c¢f-graph G is called reasonable if the following
two properties hold:
(1) for any two distinct nodes p and ¢, if p is a dominator of ¢, then
F(p) < F(q).
(2) if G is an arrangeable graph, then F is its arrangement.

Receiver — nmpuémuuk.
See Directed graph.

Recognizer — pacmosnaBaren.
See Large-block schema.

k-Recognizer — k-pacno3naBareib.
See Large-block schema.

Reconstructible graph — pekoncrpyupyemsrit rpad.
1. A graph G is reconstructible, if every graph hypomorphic to G
is isomorphic to G.
2. An infinite locally finite connected graph G is reconstructible,
if there exists a finite family (€;)o<i<n (n > 2) of pairwise finitely
separable subsets of its end set £(G) such that, for all z,y,2',y" €
V(G) and every isomorphism f of G — {z,y} onto G — {a',y’}, there
is a permutation 7 of {0,...,n — 1} such that f(£2;) = Q. for
0<1<n.

k-reconstructible graph — k-pekoncrpyupyembriii rpad.
Let k be an integer (k > 1) and G = (V, E) a graph with more than
k vertices, a graph G’ = (V, E’) is a k-reconstuction of G if, for
any subset W of V' with k elements, the subgraph G(W) and G'(W)
induced by W are isomorphic. The graph G is k-reconstructible,
when each k-reconstruction of G is isomorphic to G. G. Lopez (1978)
proved that any graph is 6-reconstructible.

Reconstruction of a graph — pekoncrpykius rpada.
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k-reconstruction of a graph — k-pexoucrpyupyemsbrii rpad.
See k-reconstructible graph.

Rectangular graph — npsmoyrosbublit rpad.

Recursive set — pekypcuBHOEe MHOXKECTBO.
See Decision problem.

Recursively enumerable language — pekypcuBHO-TIEPEUINCIUMBIIL S3BIK.
See Grammar.

Recursively enumerable set — pekypcuBHo-TIepetIrCIMMOE MHOXKECTBO.
See Decision problem.

Recursive nonterminal symbol — pekypcusHbIil HeTepMUHAJIBHBIN CHM-
BOJI.

Redex — penexc.
See Graph transformation rule.

Reduced graph — npusenennsiit rpad.

Reduced hypergraph — cokparennsriit runeprpad.
A hypergraph H is a reduced hypergraph if no edge e € H is
contained in its another edge.

Reduced path covering — nmpuseenHoe myTeBOe MOKPBITHE.

P,-Reduced graph — P;-cBoaumbrit rpad.
This class was introduced by Jamison and Olariu (1989) as the class
of graphs for which no vertex belongs to more than one induced P;.
See P,-sparse graphs.

Y-Reduced sequence — Y -cBOauMBIi MapIipyT.

Reducible additive hereditary graph property — cBoiicTBo cBOTUMOIT
aJITUTUBHOI HacJexyeMoCcTH rpados.
See Additive hereditary graph property.

Reducible (control) flow graph — cBogumblii yupasssiomuii rpad.
Let G be a cf-graph and let k > 0. The k-derived cf-graph Gj, of G,
denoted Gy = Ix(G), is defined by the following rules: Go = G, and
for any k > 0 the cf-graph G, is derived from the cf-graph Gy_1 by
reduction of its maximal interval into nodes. The limit cf-graph of
G is defined as its k-derived cf-graph Gy, such that Gy = I;+1(G).
G is called (interval) reducible if its limit cf-graph is trivial and
(interval) irreducible otherwise.

Reducible by Hecht and Ullman flow graph — cBomgumbiii mo Xexry u
YabMmaHy yrpaBJdonmii rpad.
See Collapsible graph.
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P,-Reducible graph — P;-cBoaumbriit rpad.
See Py-reduced graph.

Reduction tree — nmepeBo peaykiimii.

Reflexive graph — pedJiekcupnbiii rpad.
Undirected graph which has loops in all vertices is called a reflexive
graph.

Reflexive relation — ormomenue pedrekcuBHOCTH.
See Binary relation.

Reflexive-transitive closure of a graph — pediekcuBHO-TpaH3uTHBHOE
3aMbIKaHue rpada.

F-Region — F-00jiacTh.
See Numbering of cf-graph.

Region of connectivity — obsracts cBsi3HOCTH.

Region-interval presentation — 3ouHO-UHTEpBaIbLHOE TIPEICTABICHUE.
The same as Zone-interval reprezentation.

Register-interference graph — rpad mMexkpeructpoBbix cBsizeil.
For each procedure, a register-interference graph is constructed
whose nodes are symbolic registers and an edge connects two nodes,
if one is live at the point, where the other is defined.

Regressive bounded graph — perpeccusto orpanundensslii rpad.

Regressive finite graph — perpeccuBHo KoHeUHBIT rpad.

Regular basic subnet — perysspubiit 6a30BbIit hparMeHT ceTu.

Regular expression — perynsapHoe BbIpazkeHue.
Assume that ¥ and ¥’ = {+,* , 0, (, )} are disjoint alphabets. A string
w over the alphabet 3 J Y’ is a regular expression over X iff w is
a symbol of 3, or the symbol (), or w is of one of the forms (w; +ws),
(wiws), (w1)*, where wy and ws are regular expressions over Y.
Each regular expression w over ¥ denotes a language L(w) over X
according to following conventions:
(1) the language denoted by ) is the empty set,
(2) the language denoted by a € ¥ consists of the string a,
(3) for all regular expressions wy and wy over X, we have

L((w1 4+ w2))=L(w1)) U L(w2),

L((wiws))=L(wy)L(ws),

L{(w)") = (L(w))*.

The following property holds:

L = L(w) for a regular expression w over X iff L is a regular language

over 2.
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Regular expression nonequivalence problem — 3amaga 0 HesKBU-
BaJIEHTHOCTH PETYJISIPHBIX BLIPAYKEHUIA.

Regular graph — perynapusrit rpad, oamopoaubiit rpad.
G is a regular graph of degree k, if every vertex is incident with k
edges (i.e., every vertex has the degree equal to k).
A graph that is not regular is called irregular. It is well known that
a simple graph must have at least two vertices of the same degree.
If a graph has exactly two vertices of the same degree, we call it a
maximally irregular graph.
If multiple edges and loops are allowed, the degree sequences in which
all elements are distinct are realizable. If no two vertices of a graph
have the same degree, we call it a totally irregular graph. It is
obvious that a totaly irregular graph cannot be a simple graph.
A graph is (7, s)-regular, if the degree of each vertex is either r or
s.

Regular group of a graph — perynspnast rpymnma rpada.

Regular language — perysisipubIil S3bIK.

Regular loop — perynsgpubrit muk.I.

Regular matroid — perymsapubrit maTpont.
See Matriz matroid.

Regular Petri net — perynsipaas cers Ilerpu.

Regular Petri net with finite marking — peryssipaass koneanopaszme-
JeHHas ceTh llerpm.

Regular set — perynsproe MHOXKeCTBO.
Let X be an alphabet. Regular sets over the alphabet X are all
sets that can be obtained by finitely many applications of the three
following rules:
(1) the empty set @) is a regular set over the alphabet 3,
(2) if @ is in X, then the singleton set {a} is a regular set over the
alphabet X,
(3) if P and @ are regular sets over the alphabet X, then PUQ, PQ
and P* are also regular sets over the alphabet 3.
The following property holds for any language L over X:
L is a regular set iff L is a regular language.

Regular tournament — perymspubiit Typaup.
See Tournament.

(r,s)-Regular graph — (r, s)-peryssipasrii rpad.
See Regular graph.
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d-Regular tree with boundary — d-peryssiproe mepeBo ¢ rpanureii.

See Graph with boundary.

Regularizable graph — perynspusyemsbrit rpad.

1. A graph G = (V, E) is called regularizable (Berge), if for each
edge e € F there is a positive integer m(e) such that the multigraph
which arises from G by replacing every edge e by m(e) parallel edges
is a regular graph.

2. A cf-graph G is called a regularizable graph (or generalized
reducible) (Kasyanov), if there is a sequence of cf-graphs Gg, G1,
..., G, such that Gy = G, G, is trivial, and for all i, 0 < ¢ < r,
graph G; is obtained from G;_; by reduction of a nonempty set of
nontrivial disjoint intervals into nodes.

Many problems on program development and processing are signifi-
cantly simplified if programs have a regular structure and admit a
representation in the form of a nested fragments of a special form. For
example, structured programming consider various types of statement
composition as basic ones, but all of them are intervals. When allowing
any intervals to be considered as basic ones, we get the class of
programs with regularizable cf-graphs.

Control flow graphs of programs that occur in practice frequently
fall into the class of regularizable graphs. Exclusive use of structured
flow-of-control statements, such as if-then-else, while-do, continue,
and break statements, produces programs whose flow graphs are
always regularizable. Even programs written using goto statements
by programmers with no prior knowledge of structured program
design are almost always regularizable. Moreover, any program can
be transformed via splitting statements to the equivalent one with a
regularizable cf-graph.

Theorem. The following properties of a cf-graph G are equivalent:
(1) G is a regularizable graph, (2) G is a reducible graph, (3) G is an
arrangeable graph, (4) G is a collapsible graph,(5) G is a single-entry
graph, (6) G has no forbidden subgraph, (7) G has a single dag.

Relation — ornormenwue.
Relation precedence — orHorenne mpeanTeCTBOBAHNSI.
Reliable relations of execution frequency — jocToOBEpHBIE OTHOIIEHUS

9aCTOTbI UCITOJTHCHM .

Removal of an edge — yuasnenue pebpa.
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Removal of a set of vertices — ymanenne muoxkecTBa BepIHH.
For a given graph (digraph or hypergraph) G, removal of vertices in
X together with all edges incident to them. The resulting |[hyper-,
di-|graph is denoted by G\ X or G — X. If X = {x}, it is simply
G —z.

Removal of a vertex — ymasenune BepIiunb.

Removal-similar vertices — momobmbIe 110 y1aaeHIIO BEPIIUHBL.

Repeatedly executed region — y1acTox moBTOpsSIEeMOCTH.

Repetion-free scheme — ko1, cBOOO/IHBIN OT TOBTOPEHUSI.

A-reprezentation of a cf-graph — A-upezcrasienue yrpada.
See Alt.

Reproduction graph — rpad BocmponssoacTsa.

Restrained dominating set — orpanutventnoe JOMUHUPYIONEE MHOXKECT-
BO.
Aset D C V(G) is arestrained dominating set of G, if each vertex
of V(G) — D has a neighbour in D, as well as another neighbour in
V(G) - D.

Restricted block duplicate graph — orpanuuennbit 6;T0KOBO IyOIUPO-
BAHHBIN Tpad.
A restricted block duplicate (RBD) graph is a graph obtained
by adding zero or more true twins to each vertex of a block graph
B, subject to the restriction that a cut-vertex belonging to three or
more blocks of B receive at most one true twin.

Restricted domination number — wmnco orpaHn<ueHHOrO JTOMUHUPOBA-
Hus.
Let U be a subset of vertices of a graph G. The restricted domi-
nation number r(G,U,~v) of U is the minimum cardinality of a
dominating set of G containing U. A smallest possible dominating
set of G containing all the vertices in U is called a vy-set. The
k-restricted domination number of G is the smallest integer
ri(G, ) such that r,(G,U,v) < rpG,~ for all subsets U of V(G) of
cardinality k. In the case k = 0, the k-restricted dominaiton number
is the domination number. When k = 1, the k-restricted domination
number is called the domsaturation number of a graph and is
denoted by ds(G).

k-restricted domination number — 4ncio k-orpaHM4eHHOrO JOMUHUPO-
BaHUS.
See Restricted domination number.
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Restricted unimodular chordal graph — orpanngensbiit yHIMOIYTSID-
HBIM XOpIaJbHBIA rpad.
A restricted unimodular (RU) chordal graph is a chordal
graph G such that a vertez-clique incidence bigraph VK(G) is oo-
chorded, or equivalently 4-chorded.

k-Restricted total domination number — gucno k-orpanmdyersoro To-
TAJILHOTO JIOMIHUPOBAHUSI.
The k-restricted total domination number of a graph G is
the smallest integer (G, 7:) such that, given any subset U of k
vertices of G, there exists a total dominating set of G of cardinality at
most 7, (G, ) containing U. Hence, the k-restricted total domination
number of a graph G measures how many vertices are necessary to
totally dominate a graph if an arbitrary set of k vertices must be
included in the total dominating set. When k£ = 0, the k-restricted
total domination number is the total domination number.

I'-Restricted graph — I'-orpanundennsrit rpad.

Restriction of a hypergraph — cyxenue runeprpada.
The restriction of a hypergraph H onto X C V(H) is the hyper-
graph Hx on the set X, for which F(Hx) is the collection of sets
EnX, FEe E(H). If X =V(H) —Y, then we adopt the notation
Hx =H\Y and Hx =H —vy, if Y = {y}.

Restriction method — meron cyxenus 3amadu.

Restriction of a graph — orpanndenne rpada.

Result — pesyubrar (oneparopa).
See Large-block schema.

Retract — perpaxr.
A retraction f from a graph H = (Vy, Ey) to a subgraph G =
(Ve,Eg) is a mapping f : Vg — Vg such that for every edge
(u,v) € Eg (f(u), f(v)) € Eq and f(w) = w for all w € V. Then
G is a retract of H. G is an absolute retract if G is a retract of
any graph H containing G as an isometric subgraph, provided that
X(G) = x(H). Note that a retract G of H is necessarily an isometric
subgraph of H.

Retraction — perpakuus [rpadal.
See Retract.

Retreating arc — Bosspamaroiast gyra.
See Depth of a flow graph.
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Reverse arc — obparnas mayra.
For a given arc (v,w), the arc (w,v) is called the reverse arc of
(v, w).

Reverse digraph — o6parusiit oprpad.
For a given digraph G, the graph G, = (V, E,) is said to be reversal
or reverse digraph, where

E,. = {(-T,y)| (y,x) € E},
or in other words,
(x,y) € B < (y,z) € E.

Reverse path — obparhbrIit yTh.
Rewriting rule — npasuso mepernucsiBanust.
Ridge graph — xpebroBsrii rpad.
See Skeleton graph.
Right-linear grammar — npaBosinHeiiHasT TpPaMMAaTHKA.
Right-linear language — s3bIKk paBOJUHEHHDII.
Right-linear tree — mpaBocTopoHHee mepeso.
Rightmost derivation — npaBbrit BHIBOSI.
Right-sided balanced tree — mpaBocToponHee OalaHCHpPOBAHHOE Iepe-
BO.
See Height balanced tree.
Rigid circuit graph — nukinnaeckn xecrkuit rpad, TPUAHTYIMPOBAHHBIIM
rpad, xopaaabHbIil rpad.
See Chordal graph.
Rigid graph — xkectkuit rpad.
A graph that has no proper endomorphism is called a rigid graph.
Rim — o6ox (rpad).
See Wheel.
Ring-sum — xosbieBas cymma.
The ring-sum of two graphs G; = (V1,E;) and Gy = (Va, Es),
written as G; @ Ga, is the graph

(Vi uVa), ((E1 U Eg) \ (E1N Ey)).

In other words, the edge-set of G; @ G2 consists of those edges which
are either in G; or in G5, but not in both. It is easy to see that the
operation of ring-sum is both commutative and associative.
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Roman domination — pumMmckoe qoMuTHEpOBaHUE.
A Roman dominating function on a graph G = (V,FE) is a
function f: V — {0, 1,2} satisfying the condition that every vertex
u for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. The weight of a Roman dominating function is the value
f(V) = > ,cv f(u). The minimum weight of a Roman dominating
function on a graph G is called the Roman domination number
of G.

Root — xopens.
See Directed tree.

Rooted balance — kopreBoit baanc.

Rooted graph — xopuesoit rpad.

Rooted tree — xopmueBoe mepeso.
A rooted tree is a tree in which one of its vertices is designated as
a root.

Rooted product — xopreBoe npousseenue.
Let G = (V, E) be asimple graph of order n and let H = {Hq, ..., H,}
be a family of rooted graphs. The rooted product G(H) is the
graph obtained by identifying the root of H; with i-th vertex of G.
In particular, if H is the family of the paths Py, ,..., P, with the
rooted vertices of degree one, the corresponding graph G(H) is called
the sunlike graph and is denoted by G(kq,..., k).

Rotational Cayley digraph — spamaresnsusriit rpad Koam.
See Complete rotation.

Round forest — sec o6xoza.

Route — 06xox, mapiipyT.
See Routing.

Routing — mapmpyrusanms
A routing p in a graph or digraph G assigns to every pair of different
vertices a path (a chain) p(z,y) from z to y. The paths p(x,y) are
called routes. Given a graph G, it is assumed that all communications
between vertices are done through the routes of a fixed routing. Two
parameters have been proposed to measure the efficiency and fault
tolerance of a fixed routing in a graph or a digraph: the forwarding
index and the diameter of the surviving route digraph. The vertex-
forwarding index of a routing p in a graph or a digraph G, £(G, p),
is the maximum number of routes passing through a vertex. The
edge- or arc-forwarding index, 7(G, p), is defined analogously.
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For a given set F of faulty vertices and/or arcs, the vertices of the
surviving route digraph are the non-faulty vertices and there is an
arc between two vertices if and only if there are no faults on the route
between them. Fault-tolerant routings are such that the diameter of
the surviving route digraph is small for any set of faults of a bounded
size.
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S

Safe Petri net — Gezonacuasi cersb Ilerpu.
A Petri net is called safe if it is 1-bounded.

Safe place — Gezomacuoe mecro.

Safeness problem — npo6siema 6Ge3omacHoCTH.

Satisfiability problem — 3aza4da o BeImoHEMOCTH.

Saturated vertex — macoIleHHas BEPINHA.
See Deficiency of a graph. See also Unary node.

k-Saturated graph — k-macbienssrii rpad.
A graph G is k-saturated, if G is Ki-free, k > 3, and adding any
new edge e to GG creates a copy K.

H-Saturated graph — H-macerimenssiii rpad.
A graph G is H-saturated, if G is H-free and adding any new edge
e to G creates a copy of H.

Schema with node number repetition — ko ¢ gybupoBanuem HOME-
POB BEpIIIHH.

Schema with distributed memory — cxema ¢ pacmpeaeseHHON MaMs-
THIO.

Schema simulation — cxemHoe Mojte/IUpOBAHME.
Let a = (Gq, Ra, Q) be a large-block schema.
A scale A of «v is such a pair (A1, Ag) that A; is a partion of G, into
disjoint fragments and A, is a partion of X, into disjoint subsets.
A schema ( simulates « on the scale A, if the following property
holds. For any I; € Q, there is Iy € Qg such that I and I, are
equal on X, ; the execution and memory state sequences of o under
I, and (§ under I, as well as information connections between the
statements, are equal in the sense of the above correspondence.
It is clear that the relation of schema simulation is transitive and
that there is such a standard schema « and its scale A that any (§
simulating o on A is not a standard schema.
There is an algorithm that, for any large-block schema a and any
scale A of «, constructs a schema ( that simulates o on A. But the
property of precise schema simulation is not partially decidable in
the class of large-block schemas.

Scheme with indirect addressing — cxema ¢ KOCBEeHHOH ajipecaliuei.

Scheme with separators — koj ¢ HCIIOJIB30BaHNEM OMPAHUYINTEEIA.

Scorpion — cKOpmIHOH.
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See Spider.
Search forest — jiec o6xoma.
Second Order formula — dopmysia BToporo nopsiixa.
See Logic for expressing of graph properties.
Section — ceuenue.
2-Section graph — 2-cexmumonnbIii rpad.
The 2-section graph 2SEC(H) of the hypergraph H has the vertex
set V of this hypergraph, and two distinct vertices are adjacent if and
only if they are contained in a common edge of H.
Segment — cermenT.
When M is a cycle, for 7, j with ¢ < j < i+ p, we define the segment
Mlv;,v;] of M by M[v;,v;] = (v4,vi41,...,v;) (indices are to be read
modulo p); when M is a path, for i, j with 1 < ¢ < j < p, we define
the segment M [v;,v;] of M by Mv;,v;] = (vs, Vig1,...,0j).
Seidel switching — nepexsirouareb 3eiiess.
See Vertex switch.
Seidel spectrum — crekrp 3eiigesns.
The Seidel spectrum consists of the eigenvalues
NZX N
of its (0, —1,1) adjacency matrix A* = A*(G).
P (X)) = |A — A*| denotes the Seidel characteristic polynomial.
Seidel characteristic polynomial —xapakrepucruueckuit moauaom 3eii-
JieJtsl.
See Seidel spectrum.
Self-centered graph — camonenTpupoBaHHbIii rpad.
A graph G is self-centered, if every vertex is in the center, that is,
C(G)=V(G).
Self-complementary graph — camomononuuTenbubiit rpad.
A graph is said to be self-complementary, if it is isomorphic to
its complement. One of self-complementary graphs is the transitive
tournament.
Self-converse digraph — camoobparHbriit rpad.
See Converse digraph.
Selfdual tournament — caMoIBONCTBEHHBIN TYpHUP.
See Dual tournament.
Self-loop — camomnersis, merJis.
The Loop.
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Self-modified Petri net — camomomudumupyemast cets [lerpm.

Self-negational signed graph — camomnerarususiit rpad.

Self-opposite directed graph — camoobparHbIil Tpad.

Semantic net — cemanTUYecKasi CETh.

Semaphore — cemacop.

Semicomplete multipartite digraph — wosynossbIil c-mOaBHBIE Op-
rpad.
See Semicomplete c-partite digraph.

Semicomplete c-partite digraph — nmosymosabtit ¢-nonbHbI oprpad.
A semicomplete c-partite digraph is a digraph obtained from
a complete c-partite graph by substituting each edge with an arc,
or pair of mutually opposite arcs with the same end vertices. A
semicomplete multipartite digraph (SMD) is a semicomplete c-
partite digraph with ¢ > 2. Special cases of SMD’s are semicomplete
bipartite digraphs (¢ = 2) and semicomplete digraphs (¢ = n, the
number of vertices). A c-partite tournament is a semicomplete c-
partite digraph with no cycles of length 2, and, analogously, a multi-
partite tournament (MT) is a SMD wih no cycles of length 2.

Semicomplete digraph — mosymosubrit oprpad.
If each partite set in a semicomplete c-partite digraph consists of a
single vertex, then such a digraph is called a semicomplete digraph.

Semicycle — 1osyKoHTYD.

Semidecidable problem — wactuumo pa3permumMast 3a1ad9a.
See Decision problem.

Semieuler graph — mnouysitsrlepos rpad.

Semigirth — nosyobxsar.
Let G be a (di)graph with its diameter D and the minimum degree 6,
and let 7 > 0 be an integer. The m-semigirth (7 = (7(G), 1 < /(™ <
D, is defined as the greatest integer such that, for any two vertices
U, v,
a) if d(u,v) < €7, the shortest u — v path is unique and there are at
most 7 paths u — v of length d(u,v) + 1,
b) if d(u,v) = P, there is only one shortest u — v path.
The O-semigirth ¢° = ¢ is simply called a semigirth. Observe that if
G is a graph with girth g, then the semigirth £ = [(g — 1)/2].

Semigraph — mosyrpad.
A semigraph G is a pair (V, X), where V is a nonempty set whose
elements are called vertices of G and X is a set of n-tuples, called
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edges of G, of distinct vertices for various n > 2, satisfying the
following conditions.
S.G.-1. Any two edges have at most one vertex in common.
S.G.-2. Two edges (uy,us, ..., uy,) and (v1,va, ..., vy) are considered
to be equal if and only if
(i) m = n and (ii) either u; = v; for 1 <14 < n or u; = vy_;4; for
1< <n.
The adjacent graph or a graph G, of G is the graph with the same
vertex set as that of G, and two vertices are adjacent in G, if and
only if they are adjacent in G.
The consecutive adjacent graph G., of G is the graph with the
same vertex set as that of G, and two vertices are adjacent in G, if
and only if they are consecutive adjacent vertices in G.

Semigroup of a graph — nosyrpynna rpada.

Semihamiltonian graph — mosyramuibToHOB Tpad.

Semiirreducible graph — nosynecBoaumebrii rpad.

Semikernel — momysipo.
A semikernel of a digraph D is an independent set of vertices such
that for every z € V(D) \ S for which there exists a Sz-arc there
also exists a zS-arc. It is introduced by Newmann-Lara (1971). See
Semikernel modulo F.

Semikernel modulo F' — nomystapo o mojysio F.
Let F be a set of arcs of a digraph D (i.e., FF C A(D)), aset S C V(D)
is called a semikernel of D modulo F, if S is an independent set
of vertices such that for every z € V(D) \ S for which there exists an
Sz-arc of D\ F there also exists a zS-arc in D.

Semiorder — mosynopsiokK.
The relation P is a semiorder if the following conditions hold:
(1) P is irreflexive;
(2) if (z,y) € P and (z,w) € P, then (x,w) € P or (z,y) € P;
(3) if (z,y) € P and (y,2) € P, then (x,w) € P or (w,z) € P.
semiorder is an interesting subclass of interval orders.

Semipath — mosymnyTs.

(p,q) Semiregular graph — (p, q) nosyperyssapubiii rpad.
A graph G is called (p,q) semiregular, if G is bipartite and the
degrees of vertices in each bipartite partition of the vertex set are p
and ¢, respectively.

Semiregular group of a graph — mosyperynspuast rpymma rpada.
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Semisymmetric graph — mosxycummverpuansii rpad.
Let G be a subgroup of the full automorphism group of a graph X.
We call X G-semisymmetric graph, if it is regular and G acts
transitively on its edge set but not on its vertex set.

Semi-Strong Perfect Graph Conjecture — rumnoresa o moJiycrporux co-
BEPIEHHBIX rpadax.
See Py-isomorphic graphs.

Sentence — mpejtoxKenme.
See Grammar.

Sentencial form — cenrennuagbHas GopMa, BBIBOIUMAS IEIOYKA [PAM-
MaTUKH.
See Grammar.

Separable graph — pasneaumsbrit rpad.

k-Separability — k-oraeumocTs.

Separating set — passessiorniee MHOXKECTBO, pa3pes.
See Clutset.

Separating triangle — pazbuBaromuit TpEyroIbHUK.

Separation-width — mmpuna ykraakm.
Given a layout ¢ of G, V7 (i), V,f (i), and V] (i) are defined as follows:

Vo (i) = {u € V[E,(i)] : p(u) < i},

V(i) = {v e VIE,(i)] : i < p(v)},
— (V= (] < 1V
Vet = { Ve 0V 0 < V)
® V" (i) otherwise.
Then we define the separation-width of G with respect to ¢, denoted
by swy(G), by

sw,(G) = max{|V] (i) : 1 <i <[V}
We further define the separation-width sw(G) of G by

sw(G) = min sw,(G),
©
where minimum is taken over all possible layouts of G.
Separator — cenaparop.
1. (Separator of a graph) In a connected graph G, a separator
S is a subset of vertices whose removal separates G into at least
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two connected components. S is called an (a — b) separator iff it
disconnects the vertices @ and b. An (a — b) separator is said to
be a minimal separator iff it does not contain any other (a —
b) separator. A minimum separator is a separator of minimum
size. Clearly, every minimum separator is a minimal separator. The
(vertex) connectivity k(G) is defined to be the size of a minimum
separator. The connectivity of a complete graph is |V| —1. It doesn’t
have any separator.
See also Cutset, (a,b)-cut.
2. (Separator of a hypergraph) Let H be a hypergraph and X
be a subset of V(H). A proper subset X of V(H) is a separator of
H, if (X) is not connected.
Special separators are given by borders defined as follows. Let C be a
connected induced subhypergraph of ‘H. The boundary of C in H,
denoted OpC, is the set of vertices that do not belong to V(C) and
are adjacent to some vertex of C; the closure of C in H, denoted by
[C]a, is the subhypergraph of H induced by V(C) U dxC. A border
is a separator of H that is the boundary of an e-component of H for
some edge e of H.
A partial edge of H which is a separator is called a partial-edge
separator of H. A partial-edge separator X of H is a divider, if
there exist two vertices u and v of H that are separated by X but
not by any proper subset of X.
We say that two vertices of H are tightly connected in H, if they
are separated in ‘H but not in any partial edge of H. Moreover, by a
compact of H we mean a set of pairwise tightly connected vertices
of H.

(a,b)-Separator — (a, b)-cenaparop.
Let a and b be nonadjacent vertices. A set S of vertices is a minimal
(a,b)-separator if a and b are in different connected components of
G — S and there is no proper subset of S with the same property.
A minimal separator is a set S of vertices for which there exist
nonadjacent vertices a and b such that S is a minimal (a, b)-separaror.

Sequence — MapIipyT.

Sequence of length n — mapupyT JAJuHbL n.

Sequential control structure — nocsieioBaTeIbHAS CTPYKTYPA YIIPABJIE-
HUSL.

Sequential-alternative process — mnocienoBaTebHO-AIBTEPHATHBHBIM
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IIPOIIECC.

Sequential-alternative process net — mociemoBaTebHO-AILTEPHATHB-
Hasl CETh-IIPOIIECC.

k-Sequentially additive graph — k-miocieoBaeibHO ajmuTUBHBIH rpad.
See k-sequentially additive graph.

k-Sequentially additive labeling — k-mocnemoBarenbHo aaauTUBHAS
pa3MeTka.
Given a graph G with p vertices, ¢ edges and a positive integer k, a
k-sequentially additive labeling of G is an assignment of distinct
numbers k, k+1,k+2,...,k+p+q—1 to the p+q elements of G sush
that every edge uv of G receives the sum of the numbers assigned to
the vertices u and v. A graph which admits such an assignment to
its elements is called a k-sequentially additive graph.

Sequential-parallel control structure — nocjemgoBarebHO-IAPAILIE] b
Hasl CTPYKTypa YIIPaBJIEHUS.

Sequential process — mocjemoBaTeILHBIN TPOITECC.

Series-parallel graph — napaJsutensro-110C/IETOBATEIBHBLI TPAd.
Series-parallel graphs are recursively defined as:
(1) A one-vertex graph with a loop is series-paralel.
(2) Subdividing an edge of a series-parallel graph G with a new vertex
gives a series-parallel graph (the series operation).
(3) Creating a parallel edge for a non-loop edge of a series-parallel
graph (the parallel operation).
(4) There are no further series-parallel graphs.
Note that these graphs can have loops and multiple edges. Since
series-parallel graphs are the graphs which contain no subgraphs
homeomorphic to Ky, the outerplanar graphs are series-parallel
graphs.
See also Transitive series-parallel graph.

Series-parallel poset — napaJitebHO-TIOCTIEIOBATETHHOE Ty-MHOXKECTBO.
Let P, = (V1, <) and Py = (Va, <2) be finite posets with V1NV, = 0.
The parallel composition P; + P> = (V,<4) of Py, P is defined by
V=ViUV,, and u < v iff (u,v € V7 and v <; v) or (u,v € Vo and
u <2 v). The series composition P; x Po = (V, <,) of Py, Py is defined
by V=ViUV,, and u < v iff (u,v € V4 and u <3 v) or (u,v € V3
and u <g v) or u € V; and v € V4. P = (V,<) is series-parallel
poset if |V| = 1 or P is obtained by P; + P> or Py x Py of smaller
series-parallel posets Py, Ps, i.e. the class of series-parallel posets is
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the smallest class which contains the one-element poset and is closed
under + and .

Server — cepgep.
See Directed graph.

Set — MHOXKECTBO.

3-set exact cover problem — 3aja4a 0 TOYHOM MOKPBITUU 3-MHOXKECTBA-
MU.

Set of firing sequences — MHOKECTBO II0CJIEI0BATEILHOCTEl cpabaThiBa-
HUIA.

Set of priorities — mMHOXKecTBO IPUOPHUTETOB.

Set of reachable markings — MHOXXeCTBO JOCTHKHMMBIX PA3METOK.

Shell — obosiouka mapa, cdepa.
A shell of radius r centered at v is defined by

Cr(v) ={z €V :d(z,v) =r}.

Shortest path — kparaaiimmuii myTh.
See Length of a path.

Shortest-path distance — mucranmusa KpaTJaifinero myTH.
See Length of a path.

Shortest spanning tree — kpar4aiimmnit 0CTOB, MUHHUMAJBHBIA OCTOB,
KpaTJafiinas CBA3BIBAIONIA CETh.

Shortest Steiner’s tree — maukparuaiimee nepeso [llreitnepa.

Shredder — pazmenuresb.
A subset S of V(G) is called a shredder, if G — S consists of three
or more components. A shredder of cardinality k is referred to as a
k-shredder.

Sierpinski graph — rpad Ceprnackoro.
The Sierpinski graph S(n, k) (n,k > 1) is defined on the vertex
set {0,1,...,n}" , two different vertices u = (i1,42,...,4,) and v =
(j1,42,- -, Jn) being adjacent if and only if u ~ v. The relation ~ is
defined as follows: u ~ v if there exists an h € {1,2,...,n} such that
(1) Vi, t < h =i = J,
(ii) in # jn,
(lll) Vi, t > h =i = jh&jt = 1ip.

Signed dominating function — 3makoBass moMuHUpYyIOMAS QYHKITAA.
See Dominating function.

Signed domination number — [4nc0 3HAKOBOTO JIOMUHUPOBAHUSI.
See Dominating function.
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Signed labeled graph — 3nakoBbIit TOMEYEHHBIN Tpad.

A graph G is said to be signed if each edge of G is given an odd
or even label. In a signed graph G, a subset of E(G) is odd (resp.,
even) if it contains an odd (resp. even) number of odd-labeled edges.
A graph is odd-signable, if it can be signed so that the edge set
of every chordless cycle is odd. A signed graph is odd-signed, if
the edge set of every chordless cycle is odd. A signed graph S is
balanced, if every cycle in S is positive.

Signed total domination — 3nakoBoe TOTAIBLHOE JOMUHIUPOBAHUE.

A function f: V(G) — {—1,1} defined on the vertices of a graph
G is a signed total domination funciton (STDF), if the sum of
its values over any open neighborhood is at least 1. An STDF f is
minimal, if there does not exist an STDF g : V(G) — {-1,1}, f # g,
for which g(v) < f(v) for every v € V(G). The weight of an STDF is
the sum of its values over all vertices. The signed total domination
number of G is the minimum weight of an STDF of G, while the
upper signed total domination number of G is the maximum weight
of a minimal STDF on G.

Signed total domination function — ¢yHKIUs 3HAKOBOrO TOTAJIBHOIO

JIOMUHUPOBAHUSI.
See Signed total domination.

Signed total domination number — wmc/i0 3HAKOBOrO TOTAJIBHOTO J10-

MUHUPOBAHHUS.
See Signed total domination.

Sign of a graph — 3nak rpada.
Sigraph — 3naxoBbIil rpad.

The same as Signed graph.

Similar edges — momob6mBIE pebpa.

Similar vertices — momgobHbIE BEPITHUHBI.

Simple chain — npocras 1ermnb.

Simple circuit — npocroii uKII.

Simple clique polynomial — npocToii KJINKOBBIIi TTOJIMHOM.

See Clique polynomial.

Simple cutset — mpocroit paspes.
Simple cycle — mpocToit K1

See Cycle, Path.

Simple edge — mpocroe pebpo.

An edge of multiplicity one is called simple.
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Simple eigenvalue — mpoctoe cobcTBEHHOE 3HAYCHUE.
An eigenvalue is simple, if its multiplicity is equal to 1.
Simple elimination ordering — mpocToe ynopsgoueHne NCKIIOUEHMSI.
See Strongly chordal graph.
Simple graph — mpocroii rpad, obbikKHOBEHHBIIT rpad.
A graph without loops and multiple edges is called simple.
Simple hierarchical graph — nepapxuwecknit rpad.
See Hierarchical graph.
Simple hypergraph — npocroii runeprpad.
A hypergraph H = {es,...,en} is simple, if the condition e; C e,
implies ¢ = j.
Simple loop — mpocToii nukiI.
Simple path — mpocroit myTh.
See Path.
Simple rotation — npocroe Bparenue.
Simple transition — mpocroit nepexo.
Simple vertex — mpocras BepimmHA.
See Strongly chordal graph.
Simplicial clique — cummmIMa bHaS KIUKA.
A simplicial clique is a clique induced by a simplicial verter and
all its neighbors.
Simplicial vertex — cummuIua bHAS BEPITUHA.
A vertex v € V is simplicial in G, if a closed neighborhood N[v] is a

clique in G.

Simply related paths — BzaumHO IpocTbhie My TH.

Simply sequential numbering — npocrasi mocsegoBaTe/bHAST HyMepar-
usl.
For a graph G with p vertices and ¢ edges, a labeling is a simply
sequential numbering if each of the numbers 1,2, ..., p+q is either

a vertex label or an induced edge label.
If h is the smallest vertex label in a simply sequential numbering
(and so the numbers 1,2,..., h—1 are induced edge labels, if h < 1),
then h is called the height of the simply sequential numbering.
Single-entry graph — ommoBxomoBBIi rpad.
A control flow graph is called single-entry, if it contains no multient-
TY zZOMmes.
Single-entry zone — ogHOBXO/10Bast 30HA.
See Strongly connected region.
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Singular edge exchange — cunrysnsipnas pebeprast 3aMeHa.

Singularly related graphs — cunryasapmo cBs3anubie rpadbl.

Sink — BBIXO/I, CTOK.
A sink of a directed graph D is a vertex v € V(D) such that N*(v) =
0.

Sink-tree — mepeBo MCTOYHUKOB.
See Directed tree.

Size of a graph — pa3mep rpada.
The size of a graph G is the number of edges in G.

Size of a directed hypergraph — pasmep opueHTHPOBAHHOIO THIIEPrPA-
da.
See Directed hypergraph.

Skein — morok.

Skeleton graph — ocToB BBIIyK/I0T0 KOHYyCA.
The skeleton graph of the convex cone C' is the graph G¢ whose
vertices are the extreme rays (a face of dimension 1) of C' and there is
an edge between two vertices if they are adjacent on C' (two extreme
rays of C are said to be adjacent on C), if they span a two-dimensional
face of C).
The ridge graph of C is the graph G, whose vertices are the facets
of C' and there is an edge between two nodes if they are adjacent on
C. So, the ridge graph of a convex cone is the skeleton of its dual.

Skewed tree — mepeBo co CKOCOM.

Skewness of a graph — nckakennocts rpada.

Skirting cycle — kpaitauit 1uk.
See Halin graph.

Skolem-graceful graph — rpammosssrit o Crosemy rpad.
A graph G with p vertices and ¢ edges is Skolem-graceful if it
admits a Skolem-labeling defined as follows: the vertex labels are
1,2,...,p and the edge labels are 1,2,...,q.

Skolem-labeling — pasmerka Ckosiema.
See Skolem-graceful graph.

Slater number — uuncio Caarepa.
Let GG be a connected graph with n > 2 vertices and let v be a vertex
of G. The Slater number of a vertex v, denoted by f(v), is

f(v) =min{f(v,w) : we V(G)\{v}},

where f(v,w) is the number of vertices of G that are closer to v than
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to w minus the number of vertices of G that are closer to w than to
.

Smith graph — rpad Cmura.
Smith graph is a connected graph whose indez is equal to 2.

Snark — cHapk.
A snark is a connected, bridgeless cubic graph with chromatic index
equal to 4.
P. G. Tait initiated the study of snarks in 1880, when he proved that
the four color theorem is equivalent to the statement that no snark
is planar. The first known snark was the Petersen graph, discovered
in 1898. Snarks were so named by the American mathematician
Martin Gardner in 1976, after the mysterious and elusive object of
the poem The Hunting of the Snark by Lewis Carroll.
In 2001, Robertson, Sanders, Seymour, and Thomas announced a
proof of W. T. Tutte’s conjecture that every snark has the Petersen
graph as a minor.

k-Snark — k-cnapk.
See Nowhere-zero k-flow.

Solvable problem — wactugmo pa3perumas 3a1a4a.
See Decision problem.

Solution of a digraph — pemenue oprpada.
See Independent set.

Son of a vertex — cbIH BepITHHEI.
See Directed tree.

Sorting tree — jepeBo cOpTHPOBKH.

Source — UCTOYHUK, HAYAJO JYTH.
1. If e = (v,w) is the arc of a digraph G then v is the source,
s(e) = v, of e.
2. The same as Input.

Space complexity of an algorithm — eMKocTHasi CJI0XKHOCTH AJrOPUT-
Ma.

Span of f — Span f.
See Span-labeling.

Span-labeling — Span-pasmerka.
An L(j, k)-labeling of a graph G, where j > k, is defined as a function
f:V(G) — ZT U {0} such that if u and v are adjacent vertices in
G, then |f(u) — f(v)| > 4, while if v and v are vertices such that
d(u,v) = 2, then |f(u) — f(v)| > k. The largest label used by f is the
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span of f, denoted span(f). The smallest span among all L(j, k)-
labelings of G, denoted \; 1 (G), is called the span of G. An L(j, k)-
labeling of G that has a span of \; ;(G) is called a span-labeling
of G.
t-Spanner — t-cTsruBaTeb.
For any real valued parameter ¢ > 1, a spanning subgraph S =
(V, E';w) with E/ C FE is a t-spanner of an edge-weighted graph
G = (V,E;w), if
ds(u,v) <t-dg(u,v)

for all u,v € V. The parameter ¢ is called a stretch factor.
The t-spanner is called tree t-spanner, if the subgraph S is a tree.
Obviously, for an unweighted graph, the only 1-spanner is the graph
itself.

Spanning cotree — KoocTOB.

Spanning forest — jiec-kapkac.

Spanning hypertree — runepkapkac.
A spanning hypertree of H is an undirected hypertree, Tp =
(V, Er), such that:

1. ET Q E;
2. (T, U{h.}) L R, Ye € (E\ E7).

Recall that R is the root set.

Spanning sequence — OCTOBHBII MapIIpPyT.

Spanning subgraph — cyrpad.

Spanning tree — kapkac, 0CTOB, OCTOBHOE JI€EPEBO, CKEJIET, CTSTUBAIOIIEE
JIEPEBO.

Spanning tree vector — BekTOp-Kapkac.

P,-Sparse graph — P,-paspexeHnsiit rpad.
The class of Pj-sparse graphs was introduced by Hoang (1985),
as the class of graphs for which every set of five vertices induces
at most one P; (i.e., a path of length 4). This class contains the
class of Pj-reducible graphs. These two classes contain the class
of cographs. They have practical applications in the areas such as
scheduling, clustering and computational semantics. It is known that
linear O(|V| + |E|) time algorithms are proposed for solving five
optimization problems on the class of Pj-sparse graphs: maximum
size clique, maximum size stable set, minimum coloring, minimum
covering by cliques, and minimum fill-in.
Babel and Olariu (1995) introduced the class of (g, t) graphs which,
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for t = q — 4, extends the class of Py-sparse graphs. In such a graph
no set of at most ¢ vertices is allowed to induce more than ¢ distinct
Py’s. (4,0) graphs are exactly the cographs.

Spectral radius — pajauyc crekrpa.
See Characteristic polynomial of a graph.

Spectrum of a graph — cuekrp rpada.
Given a graph G, the spectrum of the graph G is the spectrum
(collection of eigenvalues) of the adjacency matriz Ag of G. Since
Ag is symmetric, the eigenvalues of G (the elements of its spectrum)
are real.
For an infinite digraph, a complex number A is a spectrum of an
operator A, if A — X\ has no bounded inverse, and the set o(A) of
all spectra of A is called the spectrum of A. In particular, mo(A)
denotes the point spectrum, that is, the set of all proper values of A.
If there is a sequence {z,} of unit vectors in a Hilbert space H with
(T —A)*z,|| — 0, then A is called an approximate proper value, and
all approximate proper values form the approximate point spectrum
m(A). If (T — XN)zn] — 0 and ||(T" — X\)*z,|| — 0 for some unit
vectors {x, }, then X is called a normal approximate spectrum of A,
all of which form the normal approximate (point) spectrum m, (A).
Obviously we have

m(A) C7(A) Co(A).

For a directed graph G, the spectrum o(G), the point spectrum
mo(G), the approximate point spectrum 7(G) and the normal
approximate (point) spectrum m,(G) are defined by
o(G) = 0(A(G)), molG) = mo(A(G)), 7(G) = T(A(G)) and 7,(G) =
T (A(Q)).
Sperner’s Lemma — Jlemma Ilnepuepa.
Lemma. Let T be a triangulation of A, and let x be a coloring of the
points of T by n + 1 colors, which satisfies the following conditions:
1. Each vertex of A, is colored by a different color.
2. The points of T' on a face 7 of A,, are colored by the vertices of
T.
Then there exists a simplex in the triangulation, whose vertices receive
all n+ 1 colors.
Sperner property — cpoiicrso Illmepuepa.
A poset P is said to have the Sperner property if the maximum
size of an antichain in P equals the size of the largest rank of P.



250 KoncrpyupoBaHue u onTuMuA3aIus NporpaMm

Spider — mayk.
A spider is a tree having at most one vertex with its degree being
greater than 2. This vertex is called the body of a spider. A path
connecting the body and a leaf is called a leg. If all but, possibly, one
of legs have length at most 2, then the spider is called a scorpion.
See also Caterpillar.
A wounded spider is a tree with a single vertex of degree p, p
pendant vertices, and at most p — 1 vertices of degree 2, each of
which is adjacent to a pendant vertex and the vertex of degree p,
where p > 1.

Split dominating set — pacmernisiemoe JOMUHUPYIOIIEE MHOXKECTBO.
See Split domination number.

Split domination number — pacmenisiemoe JOMUHUPYIOIIEE TUCIIO.
A dominating set D of G is a split dominating set of G, if the
induced subgraph (V(G) — D)¢ is disconnected. The split domina-
tion number ~;(G) of G is the minimum cardinality of a split
dominating set of G.

Split graph — pacmennsgemsbrit rpad, rpad pacmenieHmuii.
Split graph is a graph (G, A, B) for which there exists a partition
of the vertex set into a cliqgue G(A) and a stable set G(B). If the
clique and the stable set both have the same number of vertices k,
this graph is called a k-sun.
The split graphs were introduced independently by Foldes and Ham-
mer (1976 — 1977) and R.Tyshkevich (1980) (as polar graphs).

Split isomorphism — pacmieriennsiit nzoMmopdusM.
Let (G, A, B) and (H,C, D) be split graphs and let f be an isomor-
phism of G onto H. f is called a split isomorphism, if f(A) = C
and f(B) = D.

Split sequence — pacriensiemast MOCIEI0BATETHHOCTD.

Split tree — pacmenisgemoe jepeso.
See Binary split tree.

Splitoid — cruron,.
Let S be the class of all split graphs. A splitoid is a hereditary S-
well-covered graph. It is known that all split graphs are splitoid.

Splitting of a vertice — pacuierienue BEPIIMHBI.
For splitting of a vertice x of a graph G into vertices 1, ..., Tk,
one needs to remove x and replace each (z,y)-edge (y € V(G) —{z})
by an (z,y)-edge for exactly one i, 1 < i < k.
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Splitting off — pacmerienue (napsr pédep).
Splitting off a pair of edges su, sv in a graph G means replacing
these two edges by a new edge uv.

Square — kBajpar.
See Chordless cycle.

Square of a graph — kBagpar rpada.
The square of a graph G2 is the graph with a vertex set V(G?) =
V(G), for which (u,v) is an edge in G? if and only if the distance
de(u,v) between v and v is 1 or 2. It is known that the square of
every 2-connected graph is hamiltonian and the square of a connected
graph is pseudo-hamiltonian.

Square radical from a graph — xBagpaTHBIIT KOpeHDb U3 Tpada.

Squared graph — orkBagpupoBaHHbIN rpad.
A graph G is a squared graph, if G = H? for some graph H.

SSSP problem — 3ajaga o kparyaiimem myTn.
This is the single-source shortest path problem. Given a digraph
with non-negative arc weights, Dijkstra’s algorithm takes O(n?) time.
An implementation of Dijkstra’s algorithm that uses Fibonacci heaps
reduced the time to O(nlogn + m).

k-Stability — k-ycroiiuuBocTs.
A property P defined on all graphs of order n is said to be k-stable,
if for any graph of order n that does not satisfy P the fact that uv is
not an edge of G and that G +ww satisfies P implies dg(u) +dg(v) <
k. Every property is (2n — 3)-stable and every k-stable property is
(k + 1)-stable. We denote by s(P) the smallest integer k such that
P is k-stable and call it the stability of P. This number usually
depends on n and is at most 2n — 3.

Stability function — dyukus He3aBUCHIMOCTH.
The function ag¢ : {0,1}™ — N such that for each z € {0,1}" ag(z)
is the stability number of a subgraph induced by z. It can be shown
that this function can be expressed uniquely in the form

> a]]ew

teA i€t

where A is a collection of subsets of {1,...,n} and the a;’s are real
coefficients. This expression is called the polynomial expression
of the stability function.
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Stability number — BepmrHHOE YKCTIO HE3ABUCUMOCTH.
The maximum cardinality of an independent set is called a stability
number.
The other name is Independent number.

f-Stability number — uucso f-crabunbaocTn.
See f-stable set.

Stable set — crabuapHoe, ycTORYNBOE MHOXKECTBO.
See Independent set.

f-Stable set — f-ycroitunBoe MHOXKECTBO.
A set of vertices S C V(G) is said to be an f-stable set, if dg(u,v) >
f(u) + f(v) holds for each pair of distinct vertices u,v € S. If we
take a constant function taking the value 1 as f, an f-stable set is an
ordinary stable set (also called an independent set). The f-stability
number, denoted by ay(G) = max{|S|: S is an f-stable set}.

Stable vertex set — crabujbHOE MHOXKECTBO BEPIIIHUH.
It is the same as Stable set and Independent set.

Stamen of a flower — Toruunka nserka (rpad).
See Flower.

Standard form of a net — cranmaprHas ¢popma ceru.

Standard schemata — cranjgaprTHbie CXEMBI.
They are an important subclass of large-block schemas which
includes all schemas «a such that the following properties hold. €2, is
the set of all possible interpretations. The set operands of a consists
of only nonstrong inputs and strong outputs. Every transformer has
a single strong output, and every recognizer has no outputs.

Star — 3Be3ma.
1. A tree with one vertex connected to all other vertices is a star.
2. A star is a complete bipartite graph K .
3. A star is either a tree of order 2 or a tree of order n > 3 whose
pruned tree S* is a trivial tree.
Another name is Starred graph.

Star-chromatic number — 3Be31HOE XPOMATHYIECKOE UHCIIO.
The star-chromatic number of a graph G (denoted x*(G)) is
defined as

X*(G) = inf{k/d : G has a (k,d) — coloring}.
It is known that
X(G) =1 <xXM(G) < x(G), ie, x(G) = X" (G)],
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where x(G) is the chromatic number of G.

Thus the chromatic number of a graph is determinated by its star-
chromatic number. On the other hand, two graphs with the same
chromatic number could have different star-chromatic numbers. In
this sense, the star-chromatic number of a graph captures its structure
more precisely than the ordinary chromatic number.

Star coloring — 3Bé3Has packpacka.

See Clircular coloring of a graph.

Star-extremal graph — 3Be3mHO-3KCTpEMANBHBIN Tpad.

A graph G, for which the star-chromatic number is equal to the
fractional-chromatic number, i.e., x*(G) = chif(G), is a star-extre-
mal graph G. It has a very interesting property, namely, if G is
a star-extremal graph and H is an arbitrary graph, then the
star-chromatic number x*(G[H]) of the lexicographic product G[H|
is equal to the product of x*(G) and the chromatic number x(H) of
the graph H.

n-Star graph — n-3Be3nubIil rpad.

The n-star graph S, is an undirected graph consisting of n! nodes
labeled with n! permutations on symbols 1,2, ..., n. There is an edge
between two nodes u and v in S, if and only if there is a transposition
7[l,i], 2 < i < n, such that «[1,i{](v) = v. The n-star graph
is an (n — 1)-connected vertex-symmetric Cayley graph (with the
generating set {w[1,2],7[1,3],...,nw[l,n]} for the symmetric group
of order n).

Starlike tree — 3B&3110110/100HbIl Tpad, 3BE310110/I00HOE JEPEBO.

A tree is called starlike, if it has exactly one vertex of degree greater
than two.
See also Star.

Starred graph — 3Be3za.
The same as Star.

Starred polygon — 3Be3HBIIl MHOIMOYTIOJIbHUK.

Start operator — omeparop craprt.

Start vertex — mHavaJsibHasi BEpIIUHA.

Starting node of a fragment — craproBas BepmmHa dpparmMenTa.
See Fragment.

State — cocrosinue.

State of compound transition — cocTosiHre COCTABHOTO IEPEXOIA.

State transition diagram — xonedHO-aBTOMATHAS JUATDAMMA.
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State-machine Petri net — apromarnas cers Ilerpu.

Status of a vertex — craryc BepIuHbI.
The status s(v) of a vertex v in G is the sum of the distances from
v to all other vertices. Let x(G) = r, so that G is r-chromatic. Let
S ={v; < wa...,v.} be a set of r vertices having distinct colors in
a proper r-coloring of G. The total status of S is defined as the sum

of distances
ddS)= > dviv;).

1<i<j<r

The Chromatic status > x(G) of G is the minimum value of the

total status Y _ d(S) of all sets S among all proper r-coloring of G.
Steiner distance — paccrosuue IlTeitrnepa.

See Steiner n-center.

Steiner n-center — n-mentp Illteitunepa.

The Steiner distance of a set S of vertices in a connected graph G is
the minimum number of edges in a connected subgraph containing S.
The Steiner n-eccentricity e, (v) is the maximum Steiner distance
among sets of order n containing v. The Steiner n-center is the
set of vertices with the minimum Steiner n-eccentricity. It is easy to
verify that the Steiner 2-eccentricity and 2-center correspond to the
eccentricity and center, respectively.

Steiner n-eccentricity — n-skciiearpucurer [lreitaepa.

See Steiner n-center.

Steiner minimal tree — muanmabHoe mgepeso IllTeitrepa.
See Steiner’s problem in Fuclid plane.

Steiner point — Touka Ilreitrepa.

See Steiner’s problem in Fuclid plane.
Steiner trade — Tpeiin [MlTeitnepa.
See G-trade.

Steiner’s problem in Euclid plane — esBkiumoBa 3amaqa Illteitaepa.
Let P = {p1,p2,...,pn} be a set of n given points (called terminal
points) in the plane with a distance function d. A minimum cost
network interconnecting these terminal points is called a Steiner
minimal tree (SMT). The cost of a network is the sum of its edge
costs and the cost of an edge is the distance (measured by the distance
function d) between its end points. Therefore, an SMT is always a tree
network whose leaf vertices are some of the terminal points and whose
internal vertices are either terminal points or some Steiner points
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which are introduced to reduce the network cost. The Steiner’s
problem in Euclid plane or the Steiner tree problem asks for an
SMT for a given set of terminal points with a given distance function.
The Steiner tree problem with Euclidean and rectilinear distances
attracted much attention due to their applications in telecommunica-
tions and in VLSI design of printed circuits.

Steiner’s problem in graphs — 3amaua [ITeiinepa ma rpadax.

Stem — cTBoOJI, cTebEb.
See Leaf density.

Stochastic Petri nets — croxacrtuueckue ceru Ilerpu.
See High-level Petri nets.

Stop operator — omeparop cror.

Stratified net formula — paccioennas dpopmysta cern.

Stretcher — nocuiiku.
A stretcher is a graph whose edge set may be partitioned into
two triangles and three vertex-disjoint chordless paths, each with
endpoints in both triangles In a graph with no odd hole, every induced
stretcher has three vertex-disjoint chordless paths of the same parity;
therefore, a stretcher is called odd or even depending on the parity
of the paths (odd or, respectively, even).

Strict partial order relation — orHoImEeHE CTPOrOro YaCTUIHOIO YIIOPSI-
JlodeHnst (mopsijika).

String — memouka.
A string (or word) a over an alphabet . is a finite sequence of
symbols from > placed one after another. « consists of zero or more
symbols of >, and the same symbol of Y may occur in « several
times. The string consisting of zero symbols is called the empty
string, written e. The set of all words over an alphabet } is usually
denoted by >_" (using the Kleene star), and the set of all nonempty
strings over an alphabet 3 is usually denoted by S.7. The sets 32*
and 3.7 are infinite for any 3. In terms of algebra, 3" and 3.7 are
a free monoid (with the identity e¢) and a free semigroup generated
by >.
For strings a and [, the sequence af is called the concatenation
(or catenation) of a and . The empty string is an identity with
respect to concatenation: e = eax = « holds for all strings «.. Because
concatenation is associate, the notion a', where i is a positive integer,
is used in a customary sense. By definition, a® is the empty string e.
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The length of a string «, denoted by |«|, is the number of symbols
a, when each letter is counted as many times as it occurs.
A string « is a substring (or a factor) of a string 3, if there are
strings v and ¢ such that § = yad. Furthermore, if v = e (respectively,
d = e), then « is called an initial substring, or a prefix, of §
(respectively, a final substring or a suffix of 3). A substring « of
a string ( is called a proper substring of 3, if « # .

Strong argument — o6s13aTe/IbHBINA apryMeHT (0oneparopa).
See Large-block schema.

Strong chromatic index — cuibHBI XpOMaTHIECKUIT UHJIEKC.
The strong chromatic index is the minimum size of a partition of
the edges of a graph into induced matchings.

Strong closure of a graph — cunbHoe 3ambikanune rpada.
The strong closure of a graph G is the graph obtained from G by
recursively joining pairs of nonadjacent vertices, whose degree sum
is at least n+ 1 (n is the number of vertices of G), until no such pair
remains. The strong closure of G is denoted by sc¢(G). The notion
of a strong closure is useful in the study of Hamiltonian graphs.

Strong component of a digraph — GukomionenTa.
This is a maximal strongly connected subgraph.

(Strong) equivalence of schemas — (dyHKIMOHAIbHASI) SKBUBAJIEHT-
HOCTh CXEM.
See Large-block schema.

Strong degree of a graph — cunbnas cremenns rpada.

Strong dominating set — cTporo joMuHUpPYIOIEe MHOXKECTBO.
A subset D of G is a strong (weak) dominating set of G, if for any
vertex y € V(G) — D there exists a vertex x € D adjacent to y in G
and such that degg(x) > dega(y) (dega(x) < dega(y)), respectively.

Strong domination number — 4ucs0 cTPOroro JOMUHUPOBAHMSI.
The strong domination number is defined as the minimum cardi-
nality of a strong dominating set of G.

Strong Helly property — cuibHOe cBoiicTBO XeJiu.
See Helly hypergraph.

Strong input — obg3aresbHbIil Bx0J, (oneparopa).
See Large-block schema.

Strong matching — crporoe napocoderanue.
A strong matching is a matching M = {ej,ea,...,e;} where no
end of e; is adjacent to an end of e, 1 <4 # j < k.
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Strong orientation — cuibHast opuenTaIM.
See Orientation of a graph.

Strong output — obsa3aTebHBIN BBIXO (OIIEpaTOpa).
See Large-block schema.

Strong perfect graph conjecture — crporasi runoresa o COBEpIIIEHHBIX
rpadax.
See Minimal imperfect graph, Semi-Strong Perfect Graph Conjecture.

Strong product of graphs — cunbHoe mpoussemenne rpados.
For given graphs G; = (V;, E;), i = 1,...,n, the vertex set of the
product graph G = (V, E) is the Cartesian product of the vertex sets
of the factors G;, i.e. V.= {(a1,...,a,)}, where a; € V;. Two vertices
a= (ai,...,a,) and b = (by,...,b,) are adjacent in n-fold strong
product if and only if for each i, 1 <14 < n, either (a;,b;) is an edge
in G; or a; = b;.

Strong result — ofs3aresnbHBIi pesysbTaT (oneparopa).
See Large-block schema.

Strong support vertex — cTporo omnopHasl BepIIIHA.
See Support verter.

Strong unique independence graph — crporo exuHCTBeHHBII rpad He-
3aBUCUMOCTH.
A graph G is a strong unique independence graph, if G is
bipartite and has a unique B(G)-set. (8(G) is the independence num-
ber).
Theorem(G. Hopkins, W. Staton). A tree is a strong unique inde-
pendence tree if and only if the distance between any pair of its leaves
is even.

Strong B-tree — cuibHOe B-1epeso.

Strongly chordal graph — crporo xopmaabubrit rpad.
A vertex v of a graph G is simple, if the set {N[u] : u € N[v]} is
totally ordered by inclusion. A linear ordering (v1,...,v,) of V is a
simple elimination ordering of G, if for all i € {1,...,n} v; is
simple in G;, where G; is a graph induced by {v;,...,v,}. A graph is
strongly chordal graph if it admits a simple elimination ordering.
A strongly chordal graph is a trampoline-free chordal graph.

Strongly circuit closed graph — cunpHO MUKIMYEeCKN 3aMKHY TBIiT Tpad,
JIBYCBSI3HBIN rpad.

Strongly circuit connected edges — cuibHO IUKJINYECKH CBI3HBIE PED-
pa.
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Strongly circuit connected vertices — cunpHO TUKIMYECKH CBsS3HBIE
BEPIIIHBI.

Strongly coadjoint vertices — cuibHO KOCOTpsI?)KEHHBIE BEPIITUHBI.
See Coadjoint pair.

Strongly NP-complete problem — cunbao NP-nojHast 3aa4a.
See Pseudo-polynomial algorithm.

Strongly connected component — OukoMmIOHeHTa, CHJIbHAS KOMIIOHEH-
Ta, KOMIIOHEHTA CUJIBHOW CBSI3HOCTH.
The relation of strong connection (see Strongly connected vertices)
is an equivalence relation on the vertex set of a digraph. Strong
connection partitions the vertices of this graph into subsets, each of
which induces a strongly connected component (or bicompo-
nent).
In other words, the strongly connected components of a directed
graph G are its maximal strongly connected subgraphs. If each strong-
ly connected component is contracted to a single vertex, the resulting
graph is a directed acyclic graph called the condensation (or factor-
graph) of G.

Strongly connected graph — cunbHO cBsI3HBII rpad.
A digraph G is strongly connected, if for any pair of vertices v, w
there is a path from v to w and vice versa.

Strongly connected region — 30Ha, cuIbHO CBsI3HAS 00JIACTD.
A nontrivial strongly connected subgraph of a cf-graph is called a
strongly connected region (or zone).
A zone with a single entry node is called single-entry.
A zone is called multientry, if it has no less than two entry nodes.
A multientry zone S is maximal, if there is no such multientry zone
Z that S is a proper subfragment of Z.
The following properties of maximal multientry zones hold. Maximal
multientry zones are not pairwise intersected. A node p is an initial
node of maximal multientry zone S iff p is an entry node of S.

Strongly connected vertices — cubHO CBsi3HBIE BEpPIIUHBI.
Two vertices, v1 and vs, are said to be strongly connected, if there
is a directed path from v; to vo and(!) a directed path from vy to v;.

Strongly cyclic edge connected graph — cuibHO OpUEHTHPOBAHHO-TTNK-
JITYECKU-PEOEPHO CBA3HDIN rpad.

Strongly cyclically closed graph — cuibHO OpHEHTHPOBAHHO-IINKJITIEC-
KU 3aMKHYTHIT rpad.
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Strongly dense m-ary tree — cuibHO ILIOTHOE M-apHOE JEPEBO.
See r-dense tree.

Strongly NP-hard problem — cunbno NP-TpymaHas 3aata.
See Pseudo-polynomial algorithm.

Strongly equistable graph — cuibno skBucTabuabHLI rpad.
See Equistable graph.

Strongly geodetic graph — ctporo reomesuteckuit rpad.

Strongly non-circular grammar — cuIbHO aIlUKJIMIeCKasi TPaMMATHKA.

Strongly perfect graph — crporo coseprenusit rpad.
G is a strongly perfect graph if each induced subgraph H of G has
a stable set meeting all maximal cliques in H: for all V! C V there is
S C V' stable in G[V'] such that for all maximal cliques C' in G[V’]
|S N C| = 1. The class of strongly perfect graph is the proper
subclass of perfect graphs.
G is very strongly perfect, if for each induced subgraph H of G
each vertex of H belongs to a stable set of H meeting all maximal
cliques of H. Very strongly perfect graphs are also strongly perfect.

Strongly quasibiconnected graph — crporo kBa3zubucesa3ubIit rpad.

Strongly transitive graph — cuibno TpaH3uTHBHBIM Tpad.

Strongly unilateral digraph — crporo ogHocTopoHHUi oprpad.

Strongly weak digraph — crporo ciabwiit oprpad.

Structured net formula — crpykrypHas dopmyna cern.

Subchain — nonuens.

Subchromatic number — mogxpoMaTuyecKoe IUCIIO.

Subdegrees of a graph group — nojcremnenu rpyibl rpada.

Subdivided edge — noapaszburoe pebpo.

Subdivision graph — rpad nonpasbuenuii.
A graph G’ is a direct subdivision of a graph G, if G’ is obtained
from G by subdividing an edge of G into two edges by inserting a
new vertex: there is an edge (u,v) € E with £/ = (E\ {(u,v)} U
{(u, ), (z,v)} and V' =V U{z},x ¢ V (subdivision of an edge).
A graph G’ is a subdivision of G, if it is obtained from G by a
sequence of direct subdivisions.

Subdivision of an edge — noapazbuenue pebpa.
See Subdivision graph.

Subgraph — noarpad, yacrs rpada, dacTuuHbIil rpad.
1.(Subgraph in a weak sense) For a graph G = (V, E) this is a graph
H = (Vy,Eg) with Vg CV and Ey C E. Another name is Part of
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a graph.

2. (Subgraph in a strong sense) If W C V' then G[W] denotes the
subgraph induced by W, i.e. G[W] is the subgraph with the vertex
set W in which two vertices are adjacent whenever they are adjacent
in G. Another name is Induced [with vertices] subgraph.

Subgraph derivable graph — rpad, mopoxaéunbii moarpadamm.

See Subgraph derivation.

Subgraph derivation — BbiBoz noarpada (moarpadoBblii BEIBOLI).

A graph H' is directly subgraph derivable from a graph G, denoted
by G — H’, if there is a graph H, such that G = H and H' is a
subgraph of H.

We say G > H is a subgraph derivation, where - is the transitive
and reflexive closure of —; in that case, we also say that H is sub-
graph derivable from G.

Subgraph isomorphism problem — npo6iema nzomopdHOTO NoArpada.

Subhypergraph — noaruneprpad.

A subhypergraph induced by a set A C V is the hypergraph H 4
defined on A by the edge set Ha ={eNA:e € H}.

Submodular function (of a matroid) — cybmonynsiprast  dyHKIHSA
(maTpounsa).

Submodular inequality — cybmomynsipHOE HEpaBEHCTBO.

Subnet — noacers.

Suborthogonal double cover — cyboproronanbpHoe ABOIHOE TOKPBHITHE.
A suborthogonal double cover (or SODC) of K, by a simple
graph G is a set S = (G4, ...,Gy) of subgraphs of K,,, called pages,
isomorphic to G such that

e every edge of K, is contained in exactly two pages,
e |[E(G;)NE(G)| <1, Vi # j, i.e. two different pages have at
most one edge in common.
An SODC differs from an ODC in the second condition, where for
ODCs the edge sets of different pages are required to have exactly
one edge in common.
Suborthogonal subgraph — cyboproronasbubrit mogarpad.
See Orthogonal subgraph.

Substitution of a graph — noxcranoeka rpada.

1. A substitution of a graph G for a vertex z of a graph H
(supposing G and H are vertex-disjoint) is the following operation:
we remove x from H and replace each edge (z,y) (y € V(G) — {z})
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by the |V(G)| edges connecting y to the vertices of G.
2. Let G and R be two graphs over ¥ (a finite set of node labels).
Let C' C ¥ x Vi be an embedding relation for R, and let u be a node
from G. The graph G[u/cR] is obtained by replacing the node u by
R with respect to C' as follows:
1. Let J be the union of G (without the node u and its incident
edges) and a copy of R which is disjoint with G.
2. For each edge (v,u) from G, add an edge (v,w) to the set of
edges of J if and only if (¢(v),w) € C. The resulting graph is
Thus G[u/cR)] is obtained substituting v by R and establishing
connections according to C.

Substitutional closure — noacranoBouHOEe 3aMBIKAHUE.

For a class P of graphs, the substitutional closure P* consists of
all graphs that can be obtained from P by repeated substitutions;
that is, P* is generated by the following rules:

(S1) P C P*, and

(S2) if G,H € P* and v € V(G), then G(v — H) € P*.

Subword — nocioso.

See String.

Substring — noanenouka.

See String.

Subtree — momepeso.

Subtree with the root » — momgaepeso ¢ kopuem 7.
Succession relation — orHomenue ciaegoBaHKA.
Successive coloring — mocienoBaresibHasi pacKpacKa.
Successor of a vertex — mpeeMHUK BEPIIWHBL.

See Flow graph.

Suffix — cydduxc.

See String.

Sum graph — rpad cymm.

A graph G(V,E) is called a sum graph, if there is an injective
labeling called sum labeling L from V to a set of distinct positive
integers S, such that zy € E if and only if there is a vertex w in V
such that L(w) = L(x)+ L(y) € S. In this case w is called a working
vertex. Every graph can be made into a sum graph by adding some
isolated vertices, if necessary.

Sum graph labeling offers a new method for defining graphs and for
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storing them digitally.

Sum hypergraph — cymmapmbiit rueprpad.
A hypergraph H is a sum hypergraph iff there are a finite S C
N+t and d,d € Nt such that calH is isomorphic to the hypergraph
Hya(S) = (V,€), where V.= S and € = {e C S : d legle|] <
dA Y vee U € S}. For an arbitrary hypergraph #, the sum number
o = o(H) is defined as the minimum number of isolated vertices
wi, ..., Wy €V such that HU {w;,...,w,} is a sum hypergraph.

Sum labeling — cymmapnas pa3merxka.
See Sum graph.

Sum number — cymmapHoe 9uCIO.
See Sum hypergraph.

Sum of graphs — cymma rpados.
The sum G + G2 of graphs G; and G» is the graph with the vertex
set V(G1) x V(G3) in which two vertices (u1,uq2) and (v, vs) are
adjacent if and only if w; = v; and (ug,v3) € Es or us = vs and
(’Z,Ll7 ’Ul) € El.
See also Product of graphs.

k-Sun — k-comnie.
See Split graph.

Sunlike graph — connanenonobubIit rpad.
See Rooted product.

Superconnected graph — cymepcsasubriit rpad.
A graph G is said to be superconnected if, for every minimum
vertex cut (cut set of vertices) C of G, G\ C has isolated vertices.
See also Connected graph.

Supercritical graph — cynepkpurnaeckuii rpad.
See Total domination edge critical graph.

Supereulerian graph — cynepsitiepos rpad.
A graph is supereulerian if it has a spanning eulerian subgraph (a
spanning closed trail).

Supereulerian index — cymnepsiijiepoB nHIEKC.
The supereulerian index is defined as

$(G@) = min{ m : L™ (G)— supereulerian}.
Supergraph — naarpad, HakpbiBaomuit rpad.

A graph G’ is a supergraph of the graph G, if V(G') = V(G) and
E(G) C E(G).
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Supermagic graph — cynmepmaruwecknii rpad.
If G is a (p, q)-graph in which the edges are labeled by 1,2,...,¢ so
that the vertex sums defined by f*(u) = > {f(u,v) : (u,v) € E} are
constant, then G is called supermagic.

Superoblique graph — cynepkocoii rpad.
See Oblique graph.

Superperfect graph — cynepcosepmennsiit rpad.
See Interval coloring.

Super point-connected graph — cymnep Touedno-cBsA3HBIN Tpad.
See Connected graph.

Superposition of graphs — cynepnosumus rpados.

Super edge-connected graph — cyneppébepHo-cBA3HBIN rpad.
A connected graph is said to be super edge-connected, if every
minimum edge-cut isolates a vertex.

Super (a,d)-edge-antimagic total graph — cynep (a, d)-pébepro-anTn-
MarmJeCcKuii TOTaJbHBIN Ipad.
See Super (a,d)-edge-antimagic total labeling.

Super (a,d)-edge-antimagic total labeling — cynep (a, d)-pé6epro-an-
THUMAarudecKast TOTaJbHash PACKPACKA.
The edge-weight of an edge u under a labeling is the sum of labels
(if present) carried by that edge and the vertices x,y incident with
the edge u.
An (a,d)-edge-antimagic total labeling is defined as a bijection
from V(G)|J E(G) into the set {1,2,...,|V(G)|+ |E(G)|} such that
the set of edge-weights of all edges in G is equal to {a,a+d,...,a+
(|E|—1)d}, for two integers a > 0 and d > 0. An (a, d)-edge-antimagic
total labeling g is called super if g(V(G)) = {1,2,...,|V(G)|} and
G(B(G) = {[V(G)] + L, IV(G)| +2,..., V(G)| + [E@G)]}.
A graph G is called (a,d)-edge-antimagic total or super (a,d)-
edge-antimagic total if there exists an (a, d)-edge-antimagic total
or a super (a,d)-edge-antimagic total labeling of G.

Support vertex — nmoamepKuBaroiasi BEpIINHA.
Any vertex which is adjacent to a pendant vertex (leaf), while a
strong support vertex is adjacent to at least two leaves.

Surviving route digraph — oprpad BbIKUBaeMbIX MapIIPyTOB.
See Routing.

Switch operation — onepanus nepekrOYeHMs.
See 2-Switch.
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Switch equivalent graphs — rpadni, SKBUBaJIEHTHBIE 110 TEPEKJTIOIECHUIO.
See 2-Switch.

2-Switch — 2-niepekiouenue.
A 2-switch in a simple graph G is the replacement of a pair of edges
zy and zw in G by the edges yz and wx, given that ez and wx were
not present in G originally.
The switch operation is addition or deletion of an edge whose
endpoints have the same degree. Graphs H and H' are switch equi-
valent, if there is a sequence of switches transforming H to H'.

Switching — nepekirouenue.
Switching G? of G on a proper subset o of V(G) is the graph
obtained from G by deleting all edges between o and ¢, the comple-
ment of o in V(G), and introducing new edges between o and o°
whenever they were nonadjacent in G.

Symbol — cumBot.
See Alphabet.

Symmetric binary tree — cummerpudHoe OUHAPHOE JEPEBO.

Symmetric directed graph — cumMerpuanbiit oprpad.
This is a digraph G = (V, A) containing, for every arc (v,w) € A,
the antiparallel arc (w,v) € A. A pseudosymmetric digraph is a
digraph such that deg™(z) = deg™ (z) at every vertex.
See also Balanced digraph.

Symmetric edge — cummerputanoe pebpo.

Symmetric relation — cummerpudHOe OTHOIIEHHE.

Symmetric traversal — cummerpudHbIil 06XO/T.

Symmetrical difference of graphs — cummerpudeckasi pasHOCTb rpa-
dos.

Symmetrical group of a graph — cummerpuveckast rpymma rpada.

Synchrograph — curxporpad.

Synchronization graph — cunxpounuzaruonssiii rpad.

Syntactical diagram — curTaKCHYeCKas TuArPAMMA.

Syntax analysis — cuaTakcudeckuit aHaM3.

Syntax diagram — cuHTaxcHIecKas JuarpaMma.

Syntax tree — cuHTaKCHIECKOE JEPEBO.
1. The same as Derivation tree.
2. The same as Abstract syntax tree.

System of disjoint representatives — cucrema pas3juYHBIX IPEICTABU-
TeJieit.
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The same as System of distinct representatives.

System of distinct representatives — cucrema pasganmIHBLIX IpeICTaBH-
Tesel.
Given a hypergraph H, a system of distinct representatives is a
one-to-one mapping ¢ : E(H) — V(H) such that o(E) € E for each
E € E(H). If no confusion can arise, we also call the range o(E(H))
a system of distinct representatives.
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T

Tail of a hyperarc — xoHer| runepyru.
See Directed hypergraph.

Tail place — xBocTOBOE MecTO.

Target — cToK, KOHeIl qyTH.
1. If e = (v, w) is the arc of a digraph G, then w is the target of e,
denoted t(e) = v.
2. The same as Output.

Tensor product — TeH30pHOE TPOU3BEIEHNE.
See Product of two graphs.

Term — Tepm.

Terminal alphabet — TepmunabHbIi amdaBuT, aadaBUT TEPMUAHATLHBIX
CHUMBOJIOB, aJi(DABUT TEPMUHAJIOB.
See Grammar.

Terminal edge — Bucsiuee pebpo.

Terminal language — TepMUHAIBHBIN S3BIK.

Terminal marking — 3akmounTebHasT pa3sMeTKa.

Terminal marking — repmunaabHast pasmerka.

Terminal state — 3akiounTeNILHOE COCTOSTHUE.

Terminal symbol — repMmuHaIbHBIN CUMBOJI.
See Grammar.

Termination of a compound transition — 3asepimenne cocTaBHOTO TIE-
pexojia.

Terminal node — koneuHas BepIimHa.
See Control flow graph.

Terminal node of a fragment — koneuynasi Bepmmaa (parmenta.
See Fragment.

Terminal vertex — konueBas BepiiuHa; (MHOIJA) BUCAYAS BEPIIUHA.

Term-rewriting system — cucrema mepenuchiBaHUS TEPMOB.

Test and decrement operator — onepaTop yCJIOBHOI'O BBIYMTAHUS €U~
HUIIBI.

Theta-graph — mTa-rpad.

Thickness of a graph — Toamumna rpada.
The thickness T'(G) of a graph G is the minimum number of planar
subgraphs of G whose union is G. It is known that the thickness T' of
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a simple graph with n vertices and |E| edges satisfies the following:

r> | EL]
~|3n—6

For a complete graph K,

TZ[nm_ﬂy‘:{mn_1%+wn_l®J:L1

6(n —2) 6(n — 2) gDl

Threshold graph — moporossrit rpad.
A graph is called threshold, if there is a non-negative weight function
on its vertices such that each stable (independent) set of vertices has
the total weight at most 1, and each non-stable set of vertices has a
total weight exceeding 1.

Tightened graph — crarusaembrit rpad.

Tightly connected vertices — mioTHO CBSI3aHHBIE BEPITUHBI.
See Separator.

Time complexity — BpeMeHnHast CJI0KHOCTD, BEIUCIATEIbHAS CJI0KHOCTD.
The time complexity, or simply complexity, of an algorithm is
the number of computational steps that it takes to transform the
input data to the result of computation. Generally this is a function
of the quantity of the input data, commonly called the problem
size. For graph algorithms the problem size is determined by one or
perhaps both of the variables n (= |V|) and m (= |E|).

For a problem size s, we denote the complexity of a graph algorithm
A by Cyu(s), dropping the subscript A when ambiguity arise. C4(s)
may vary significantly, if the algorithm A is applied to structurally
different graphs but which are nevertheless of the same size. We
therefore need to be more accurate in our definition. In this text
we take C4(s) to mean the worst-case complexity. Namely, this
is the maximum number, over all input sizes s, of computational
steps required for execution of the algorithm A. Other definitions
can also be used. For example, the expected time-complexity is
the average, over all input sizes s, of the number of computational
steps required.

The complexities of two algorithms for the same problem will in
general differ. Let A; and A, be such algorithms and suppose that
Ca,(n) = in? and Cya,(n) = 5n. Then A, is faster than A; for all
problem sizes n > 10. In fact, whatever had been the (finite and
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positive) coefficients of n? and of n in these expressions, A, would be
faster than A; for all n greater than some value, say ng. The reason,
of course, is that the asymptotic growth, as the problem size tends
to infinity, of n? is greater than that of A;. The complexity of A, is
said to be of lower order than that of A;.
Given two functions F' and G whose domain is the natural numbers,
we say that the order of F' is lower than or equal to the order of G,
provided that:

F(n) < K-G(n)

for all n > ng, where K and ng are two positive constants. If the order
of F is lower than or equal to the order of G, then we write F' = O(G)
or we say that F' is O(G). F and G are of the same order provided
that F' = O(G) and G = O(F). It is occasionally convenient to write
0(G) to specify the set of all functions which are of the same order
as G. Although 6(G) is defined to be a set, we conventionally write
F = 0(G) to mean F € 0(G). Illustrating these definitions, we see
that 5n is O(4n?) but 5n # 6(3n?), because 1n? is not O(5n). Note
also that low order terms of a function can be ignored in determining
the overall order. Thus the polynomial (3n3 +6n%+n+6) is O(3n3).
It is obviously convenient when specifying the order of a function
to describe it in terms of the simplest representative function. Thus,
(3n3 + 6n?) is O(n?) and 3n? is O(n?).

When comparing two functions in terms of order, it is often convenient
to take the following alternative definition.

Letting lim,, o F'(n)/G(n) = L, we see that:

(i) If L = a finite positive constant, then f = 6(G).

(ii) If L =0, then F is of lower order than G.

(iii) If L = oo, then G is of lower order than F.

The complexity of an algorithm is important to the computer scientist.
One reason for this is that the existence of an algorithm does not
guarantee in practical terms that the problem can be solved. The
algorithm may be so inefficient that, even with computation speed
vastly increased over those of the present day, it would not be possible
to obtain a result within a useful period of time. We need then to
characterize those algorithms which are efficient enough to make their
implementation useful so that they can be distinguished from those
which may have to be disregarded for practical purposes. Fortunately,
computer scientists are able to make use of a rather simple characteri-



CuoBapb 1o rpadam B nuHpopMaTiKe 269

zing distinction which, for most occasions, satisfies the need. The
yardstick is any O(P)-algorithm, where P is a polynomial in the
problem size, which is called an efficient algorithm. Many algo-
rithms have complexities which are exponential, or even factorial, in
the problem size.
Notwithstanding our earlier warnings, we call any problem for which
no polynomial time algorithm is known and for which it is conjectured
that no such algorithm exists, an intractable problem.

Timed Petri nets — Bpemennsie cetn Ilerpu.
See High-level Petri nets.

Token — duwumka.
See Petri net.

Tolerance graph — TosepanTubIit rpad.
A graph G = (V| E) is a tolerance graph (an interval tolerance
graph), if there exists a finite collection I = {I, : x € V'} of closed
intervals on a line and a set t = {t, : * € V} of positive numbers
satisfying (x,y) € E ift |I, N I,| > min{t,,t,} (where |I| denotes the
length of I).
The pair (I, ) is called a tolerance representation of G. A tolerance
representation (I,t) is bounded if t, > |I,| for all z € V. G is
a bounded tolerance graph, if G is a tolerance graph which
admits a bounded tolerance representation.
The class of tolerance graph is the subclass of weakly chordal
graphs.

¢-Tolerance competition graph — ¢-toslepanTHsIil rpad KOHKYpPEHIINU.
See Generalized competition graphs.

¢-Tolerance competition number — ¢-rosieparsoe 9nc/I0 KOHKYPEHITHH.
See Generalized competition graphs.

Tolerance representation — npejcraBjenne TOJepaHTHOCTH.
See Tolerance graph.

Topological graph — Tonosornueckuii rpad.

Topological measures of program complexity — Tomonornueckue me-
PBI CJIOKHOCTHU IIPOTPAMM.

Topological representation of a graph — Tomosornaeckoe mpegcrase-
nue rpada.

Topological sorting — rormoJiornyeckasi COpTUPOBKA.

S-Topological graph — S-ronosiorugeckuii rpad.
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Toroidal graph — ropounanbubrit rpad.
A graph G is toroidal if it is crossing-free embeddable in the torus
just as planar graphs in the plane.

Toroidal thickness — Tommuua Topou aIbHA.

Total chromatic number — ToraabHOE XPOMATHIECKOE YUCJIO.
See Total coloring.

Total coloring — roraspHas packpacka.
The total coloring of a graph G is a coloring of its vertices and
edges in which any two adjacent or incident elements of V(G) U
E(G) are colored with different colors. The minimal number of colors
required for this coloring is called the total chromatic number and
is denoted by x+(G).

L-Total coloring — L-totaipHas packpacka.
See List total coloring.

Total connectivity — TorajbHast CBSI3HOCTD.
See Connectivity.

Total dominating function — roragpHO HOMUHUpPYOMAS DYHKIHSA.
As a fractional generalization of the total dominating set, a total
dominating function (TDF) of a graph G = (V, E) is defined as a
function f: V' — [0,1] such that }°, () f(u) = 1 for each v € V.
(Here N(v) is the open neighborhood of v.) A TDF f is minimal
(MTDF) if no function g : V. — [0,1] with ¢ < f is also a TDF
of G, where g < f means that g(v) < f(v) for each v € V and
f # g. Obviously, an integer-valued (minimal) TDF is exactly the
characteristic function of a (minimal) total dominating set.

Total dominating set — ToraspbHO JOMHHHUDYIONIEE MHOXKECTBO.
See Dominating set.

Total dominating number — 4ncji0 TOTAIBLHONO JTOMUHUPOBAHUSI.
See Dominating set.

Total domination edge critical graph — pebepuo-kpututeckuii rpad
TOTAJIBHOTO JJOMUHUPOBAHMUS.
A graph G is defined to be total domination edge critical, or
simply k;-critical, if

(G +e) <n(G) =k
for any edge e € E(G). B
A graph G is supercritical, if v, (G+e) = 1,(G)—2 for any e € E(G),

where E(G) # emptyset.
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Total domination number — 4nc0 TOTAIBHOIO TOMUHUPOBAHUSI.
The total domination number 7;(G) is the minimum cardinality
of a total dominating set.

Total domination subdivision number — yuc;io nogpazbuennii ToTaIb-
HOT'O JIOMUHUDOBAHMUSI.
The total domination subdivision number sd,, (G) is the mini-
mum number of edges that must be subdivided (where each edge
in G can be subdivided at most once) in order to increase the total
domination number.

Total edge length of a graph — Toranbuas pebeprast jyinHa rpada.

Total graph — rorasbHbIi rpad.
Given a graph G = (V,E), a total graph is the graph T(G) =
(VUE,E"), where:

E" =EU{(e1,ez)le1,e2 € E and e1, e2 are adjacent in G}

U{(v,e)lv € V,e € E and v is one of the ends of e in G}.

Total labeling — ToTaysbHas pa3merka.
See Labeling.

Total restrained dominating set — TorasbHOE OrpanuueHHOE JOMUHU-
pyIolee MHOYKECTBO.
For a graph G = (V,E), a set D C V(G) is a total restrained
dominating set, if it is a dominating set and both (D) and (V(G)—
D) are isolate free.

Total status — ToranbubIil craTyc.
See Status of a vertez.

Total k-subdominating function — TortamprHas k-cybmoMuHUpPYyIIAsT
dbyHKIHA.
Let G = (V, E) be a simple graph. For any real-valued function f :
V — R, the weight of f is defined as f(V) = >_ f(v), over all vertices
v € V. For a positive integer k, a total k-subdominating function
(TkSF) is a function f : V — {1,—1} such that f(N(v)) > 1 for
at least k vertices v of G. The total k-subdomination number
745 (G) of a graph G equals the minimum weight of a TkSF on G. In
the special case for k = [V, 7L, is the signed total domination
number.

Total k-subdomination number — roranbpHoe k-cybmoMuHUpYIOIEe duc-
JI0.
See Total k-subdominating function.
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Total Z-transformation graph — Toranbubiii Z-TpaHchOpPMAIMOHHBIH
rpad.
See Z-transformation graph.
Totally adjacent vertex set — MHOXXeCTBO TOTAJIbHO-CMEXKHBIX BEPIIIKH.
Totally balanced hypergraph — ToranpHO cOaaHCHPOBAHHBII rUIEp-
rpad.
A hypergraph is totally balanced if every cycle of length greater
than two has an edge containing at least three vertices of the cycle.
It is known that a hypergraph H is totally balanced if and only if
every subhypergraph of H is a hypertree. See also Balanced hypergraph.
Totally balanced matrix — TorajbHO cOalaHCHpOBaHHAS MATPHUIIA.
See Incidence matriz.
Totally irregular graph — ToTajabHO UppeEryIApHBIA Tpad.
See Regular graph.
Totally stratified net formula — rorassHO-pacciioennast popmyiia ceTu.
t-Tough graph — t-xkectkmit rpad.
A graph is t-tough, if the number of components of G\ S is at most
|S|/t for every cutset S C V(G).
In particular, a graph G is called 1-tough, if w(G — S) < |S] for
every set S of some vertices of G satisfying w(G — S) > 1, where
w(G — S) denotes the number of components of G — S.
Toughness of a graph — kecTkocTh rpada.
The toughness ¢(G) of a graph G (where G is not a complete graph)
is defined (Chvatdl, 1973) by

where W is a cutset of G and ¢(G — W) denotes the number of
connected components of the graph G — W. It is well known that a
hamiltonian graph has toughness at least 1 and pseudo-h-hamiltoni-
an graph has toughness at least %
Tournament — TypHup.

An oriented complete graph, i.e. a (simple) digraph T without loops
in which exactly one of (x,y) or (y,x) is an arc for every pair x # y,
x,y € T. The vertex v of a tournament T has a positive (negative)
valence k, if there are k arcs from (into) v. A tournament T is
regular of degree t, if the positive valence of each of its vertices is
t. A tournament is doubly regular with a subdegree t, if all pairs
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of vertices jointly dominate precisely ¢ vertices. A tournament 7' is
called almost regular, when A = J.
See also Transitive tournament, Quasi-transitive tournament.

Tournament matrix — marpuia 06xXoI0B.

Traceable digraph — BeruepumBaemsiii oprpad.
A digraph is said to be traceable, if it contains a hamiltonian path.

Traceable graph — BoruepunBaembIii Tpad.
A graph is traceable, if it contains a spanning path.

Trail — cien, mappyT.
See Walk.

G-Trade — G-Tpeii.
Given a simple graph G, let 71 and T5 be two different decompositions
of some graph H on v vertices into s edge-disjoint copies of G, with
the property that the copies of G in T7 are distinct from the copies of
G in Ty, that is, T} N Ty = 0. Then the pair {T7,T>} is a G-trade of
volume s and foundation v denoted by T¢(s;v). The copies of G
in 77 and 75 are referred to as blocks. The trade is a Steiner trade
provided that H is simple. Such a G-trade is called a graphical
trade to distinguish it from trades based on other combinatorial
objects, such as blocks design and latin squares.

Trampoline of order p — TpamnoyvH OpsiaKa P.
A trampoline of order p (p > 3) is a graph obtained from a p-cycle
C' by adding enough chords to make it chordal, and adding for each
edge (not chord) of C' a new vertex adjacent only to the two ends of
that edge.

Transducer — npeobpazoBaTeb.
See Large-block schema.

Transformer — npeobpazoBareb.
See Large-block schema.

Transformation graph — rpad npeobpazobanuii.
A transformation graph (TRAG, for short) G is given by a (not
necessarily finite) set Vg of vertices and a finite set Ag of (not
necessarily total) transformations of V. The elements of Ag specify
labelled arcs in G, as follows. For each v € Vg and each A € Ag which
is defined at v, there is an arc labelled by A from the vertex v to the
vertex vA (the image of v under ).
Another name is Data graph.
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Transition — mepexo.
See Petri net.
Transition firing — cpabarbiBanue mepexosa.
See Petri net.
Transitivable graph — Tpansurupyemsriii rpad.
Transitive closure of a directed graph — TpamsuruBHOE 3aMBbIKaHTE OP-
rpada.
Given a digraph G = (V, A), the transitive closure of G is the
digraph G* = (V, AT) such that an arc (z,y) belongs to AT iff there
exists a path P(z,y) in G.
Warshall’s algorithm computes transitive closures in O(n?) time.
Transitive closure of a relation — Tpam3uTuBHOE 3aMBbIKAHHE OTHOIIE-
HUS.
Transitive directed graph — tpansutuBHbIit oprpad.
A directed graph is transitive directed graph if, whenever the
arcs (z,y) and (y, z) are in G, the arc (z,2) is also in G.
Transitive group of a graph — rpansutusHas rpymnma rpada.
Transitive orientation — Tpam3uTuBHasT OpHEHTAITHSI.
See Comparability graph.
Transitive reduction of a digraph — Tpan3uTuBHasi peryKius oprpa-

da.
A transitive reduction TR of a digraph G = (V, A) is a digraph
G~ = (V, A7) having the minimum number of arcs and the same

transitive closure of G. It is known that, for any dag G, the transitive
reduction G~ is unique and is a subgraph (partial graph) of G.
Transitive relation — rpan3suTuBHOE OTHOIIEHNE.
See Binary relation.
Transitive series-parallel digraph — TpansuTuBHBIII mapa/LIeTbHO-TIOC-
JIeIOBaTeIbHBIN oprpad.
Transitive series-parallel digraphs are recursively defined as:
(1) A digraph on a single node is TSP (transitive series-parallel).
(2) If G1 = (V4, Ey) and Gy = (Va, Es) are TSP digraphs and Vi N
Vo = 0, then
(2.1) Gy || G2 = (V1 U Vo, By U Ey) is a TSP digraph (the parallel
composition).
(2.2) G — G2 = V1 U Ve, E1 U Ey U (V] x V3)) is a TSP digraph
(the series composition).
(3) There are no further TSP digraphs.
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Transitive tournament — TpaH3UTUBHBIN TYPHUP.
A tournament T such that (z,y) € E(T) and (y,z) € E(T) imply
(z,y) € E(T) is called transitive. The vertices of a transitive
tournament have an ordering (z1, ..., z,) such that (z;,z;) € E(G)
< 7.
A tournament T is quasi-transitive, if vy = vp11 and v; = v,
whenever l <k <n-land1<i<j—1<n-—1. (u= v means
that (u,v) is an arc in 7'.)

k-Transitive graph — k-rpan3utusHsIii rpad.

k-Transitive group of a graph — k-rpansurusnas rpymmna rpada.

Transitively orientable graph — TpansurusHO-OpueHTHUPYEMBIiT TPad.
See Comparability graph.

Transportation network — TpamcnoprHas cerb.
A (transportaton) network is a finite connected digraph in which:
(a) one vertex s, with deg™(s) > 0, is called the source of the network,
and
(b) one vertex t, with deg™(t) > 0, is called the sink of the network.
See also Flow, Network.

Transposition symmetry permutation — cuMmmerpudHas mepecTaHOB-
Ka TPAHCIIO3UIINA.
See Coadjoint pair.

Transversal (of a family S) — tpanceepcasnb (cemeiicrsa .S).
The set T is called a transversal of a family of sets S = {A;}, if
1. TN A; #0, for any i;
2. for any a; € T there exists A;; such that A;, N T = a;.
The maximum number of pairwise disjoint sets from the class S
is called the independence number of S and denoted as a(G).
7(G) denotes the transversal number of S, that is the size of the
minimum transversal of S.
See also System of distinct representatives.
For a hypergraph H = (V, ), a transversal is a transversal of &.

Transversal number — TpaHcBepcaJibHOE YUCIIO.
See Transversal.

Transversal set — BepImHHOE TTOKPBITHE.

Transversal set of a hypergraph — rpancsepcaJjibHOE MHOXKECTBO THIIED-
rpada.

Trap — soBymKa.
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Trapezoid graph — Tpanernuenanbubrit rpad.
The trapezoid graph is the intersection graph of a collection of
trapezoids with corner points lying on two parallel lines. Note that
trapezoid graphs are co-comparability graphs and hence they are
perfect graphs. The coloring problems on trapezoid graphs, Hamilto-
nian cycle problem and others are solvable in a polynomial time.

Traveling salesman problem — 3aja7a KOMMHIBOSZKEPA.

Traveling tourist problem — 3amaua o Typucre.
Given a graph G = (V, E), find the shortest walk visiting a subset
of vertices, such that each vertex is either visited, or has at least
one of its neighbors visited. The vertices of the graph correspond
to monuments the tourist would like to see, and an edge between
two vertices denotes visibility of one monument from another. The
shortest such walk would guarantee that the tourist sees all monu-
ments of interest.

Traversal of a graph — 06xox rpada.

Tree — nepeso.
Tree is a special type of a graph, which is connected (i.e., every two
vertices are connected by a chain) and does not contain any cycle.
The vertices in a tree usually are called nodes or points. A tree with
one vertex is called trivial, degenerate or empty.
Trees are a typical example for recursive definitions of graphs:
(1) A one-vertex graph is a tree.
2 UT=(V,E)isatreeandz ¢ V,y € V, then T' = (VU{z}, EU
{(z,y)}) is also a tree.
(3) There are no other trees.
It may also be defined as a connected graph such that removing any
edge disconnects it; or as a circuit-free graph in which the introduction
of any new edge will produce a circuit. A tree on n points has exactly
n—1 edges, and it always has at least two points of degree 1, provided
V(@) > 2.
See also Forest.

B-Tree — B-jnepeso.

BB-Tree — BB-nepeBo, 6aJaHCHPOBAHHOE IO BECY JIE€PEBO.

H-Tree — H-nepeBo, epeBO COCEICTBA.

H B-Tree — H B-nepeBo, 1epeBo OparcTsa.
See Brother tree.

HS-Tree — HS-nepeso.
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[-Tree — I-nepeBo.

k-Tree — k-mepeso.
1. k-Tree is a graph which can be recursively defined as follows. A
clique with k + 1 vertices is a k-tree, and a k-tree with n + 1 vertices
can be obtained from k-tree with n vertices by making a new vertex
adjacent to exactly all vertices of a k-clique. Subgraphs of k-trees are
called partial k-trees. If a partial k-tree G is a subgraph of a k-tree
H, we call H a k-tree embedding for G.
The minimum value k for which a graph is a subgraph of a k-tree is
called a treewidth of a graph. It is not difficult to see that k-trees
are partial [-trees for every [ > k. Hence, every graph of treewidth k
is a partial [-tree for every [ > k, i.e., the class of partial k-trees is
exactly the class of graphs of treewidth at most k.
It is clear that every graph G = (V, E) with |[V| = n is a partial
n-tree. The problem to determine the smallest k such that G is a
partial k-tree, however, is NP-complete.
2. k-Tree is a spanning tree in which every vertex has degree at most
k.

k-Tree with small height — k-1epeBo mastoit BEICOTHI.

kB-Tree — kB-nepeBo, MHOrOMEpHOe B-JiepeBo.

K — d-Tree — muoroMmepsoe JaepeBo moucka, K — d-aepeso.
See Multidimensional search tree.

1-Tree — 1-71epeBo, yHUIIUKIMIECKOE JIEPEBO.

2 — 3-Tree — 2 — 3-nepeso.

Tree arc — apeBecHas jyra.
See Basic numberings.

Tree automaton — aBromaT Ha/I JIePEBbSIMU.
A tree automaton over an alphabet X, is a quadruple (S, Sp, Sa, f),
where S is a finite set of states; Sy € S is the initial state; Sy C S is
the set of accepting states; and f: S xS x ¥ — S is the transition
function. Often the alphabet X is the set of graphs on k+1 or fewer
(labeled) vertices.

Tree-decomposition — gekoMmosuus aepeBa.
See Treewidth of a graph.

Tree dominating set — qpeBecHoe JOMHUHUPYIONTEE MHOXKECTBO.
A dominating set S is called a connected (acyclic) dominating
set if the induced subgraph (S) is connected (acyclic). The connected
(acyclic) domination number is the minimum cardinality taken
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over all minimal connected (acyclic) dominating sets of G.
If (S) is both connected and acyclic, then (S) is a tree. A dominating
set S is called a tree dominating set, if the induced subgraph (S) is
a tree. The tree domination number ~v;,.(G) of G is the minimum
cardinality taken over all minimal tree dominating sets of G.

Tree domination number — 4wncso IpeBeCHOrO TOMUHUPOBAHUS.
See Tree dominating set.

Tree grammar — IpeBOBHIHAS I'PAMMATHKA.

Tree graph — rpad xapkacos.

Tree language — JApeBOBUIHBIN SA3BIK.

Tree model — apeBecHasi Mojeb.
For a given graph G = (V, E), a tree model of G is a pair (T,7),
where T is a tree, and 7 is a set of subtrees of T, 7 = {T,, : v €V},
such that T, N Ty, # 0 iff (u,v) € E. It is well known that a graph
has a tree model iff it is chordal.
A tree model for a chordal graph G is called a clique model, if the
node set of T is the set C1 of cliques in G and ¢ € T, is equivalent to
v € ¢ for all ¢ € Cl and v € V. Tt is known that every chordal graph
has a clique model.
See also Tree-decomposition.

Tree packing — ykJiajika jepesa.

Tree polynom of a graph — muoOrousIeH epeBbeB rpada.

Tree t-spanner — JIpeBeCHbIH {-CIaHHED.
See t-Spanner.

Tree symmetry number — 4ncio cumMerpuii jiepesa.

Tree traversal inorder — BHyTpeHHUil MOPsiIOK 00X01a, JIepeBa, NHPUKC-
HbIA OPAIOK.

Treewidth of a graph — apeBecnas mmupuna gepesa.
The minimum value k for which a graph is a subgraph of a k-tree.
One can also define the treewidth of a graph by a concept called
the tree-decomposition of a graph.
A tree-decomposition of a graph G = (V, E) is a pair D = (5,7,
where S = {X;|i € I} is a collection of subsets of vertices of G and
T = (I,F) a tree, with one node for each subset of S, such that the
following three conditions are satisfied:
(1) Uier X5 =V,
(2) for all edges (v, w) € E, there is a subset X; € S such that both
v and w are contained in X,
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(3) for each vertex x, the set of nodes {i|x € X;} forms a subtree of
T.
The width of a tree-decomposition ({X;li € I},T = (I,F)) is
max;es(]X;|—1). The treewidth of a graph G equals the minimum
width over all tree-decompositions of G.

TREEWIDTH problem — npobsiema mupuss! gepesa.
See Triangulation of a graph.

Tree-perfect graph — aepeBo-coBepieHHbIN Tpad.
The class of tree-perfect graphs contains all trees and their comple-
ments, and graphs without Py (or cographs).

Triad — Tpuasma.
A triad is a set of three edges incident to a vertex of degree 3.

Triangle — TpeyrosbHuK.
See Chordless cycle.

Triangle-free graph — rpad 6e3 TpeyroJibHIUKOB.

Triangular graph — TpuanryupoBanubiii rpad.
See Triangular vertex.

Triangular vertex — TpuanrymupoBaHHas BepIIUHA.
A vertex u is a triangular vertex, if every vertex in the open
neighborhood N(u) is in a triangle with w. Stated equivalently, a
vertex is triangular, if the induced subgraph [G(N(u)] contains no
isolated vertices. Notice if a vertex w is triangular, then deg(u) > 2.
We say that a graph G is triangular, if it contains at least one
triangular vertex, and is completely triangular, if every vertex in
G is triangular.

Triangulated graph — rtpuanryiupoBanHbIil rpad.
See Chordal graph.

Triangulated-perfect graph — TpuanrynupoBano-coBepierubiit rpad.

Triangulated triangle — TpuanrynmmpoBaHHBIl TPEyTOJTHHUK.
The triangulated triangle T; is the graph whose vertices are the
triples of nonnegative integers summing to [, with an edge connecting
two triples, if they agree in one coordinate and differ by 1 in other
two coordinates.

Triangulation of a circuit — Tpuanrynsamusa muka.
This is a graph consisting of this circuit C' and n — 3 non-crossing
"interior” diagonals (n is the length of C).

Triangulation of a graph — Tpuanryssinus rpada.
Given a graph G, triangulation of G is a graph H with the same
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set of vertices such that G is a subgraph of H and such that H is
triangulated. One says that G is triangulated into H.
There are two problems which have drawn much attention because
of a large number of applications: MINIMUM FILL-IN problem and
TREEWIDTH problem. The first problem is to triangulate a graph
so that the number of added edges is minimum and the second one
is to triangulate a graph so that the maximum clique size in the
triangulated graph is minimum. These problems are both NP-hard.
See also Minimal triangulation, Planar triangulation.

Triconnected graph — TpucssizubIil rpad.
See k-connected graph.

Trie — npedekcHoe nepeBo, HATPYKEHHOE JIEPEBO.
A trie is an ordered tree data structure that is used to store an
associative array, where the keys are usually strings. Unlike a binary
search tree, no node in the tree stores the key associated with that
node; instead, its position in the tree shows what key it is associated
with. All the descendants of a node have a common prefix of the
string associated with that node, and the root is associated with the
empty string. Values are normally not associated with every node,
only with leaves and some inner nodes that correspond to keys of
interest.
Another name is Prefix tree.

Trivial graph — Tpusmnanabusrii rpad.
A graph with one vertex is called trivial.

Trivial interval — TpuBmanbHBII HHTEPBAJI.
See Crritical tournament.

Trivial deadend — TpuBuaabHLII TYIUK.

Trivial deadlok — TpuBmaabHBI TynuK.

Trivial tree — TpuBmanabHOE AEpEBO.
See Tree, Degenerate tree, Empty tree.

True dependence — ucTuHHAsT 3aBUCUMOCTD, UH(MOPMAIIMOHHAS CBSI3b.
See Data dependence.

True twins — ucTuHHbIE OJIU3HEIIHI.
Two vertices of a graph are called true twins, when they are adjacent
and every other vertex is adjacent to both or to none of them.

h-tuple domination — n-kpaTHoe JOMUHUPOBaHUE.
See Double dominating set.
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Turing machine — marmmna Triopunra.
See Model of computation.
Tournament — Typuup.
See Oriented graph.
Tutte polynomial — monunom Tarra.
If G has an empty edge set, then we set the Tutte polynomial
t(G;x,y) or t(G) of G to be 1. Otherwise we have for any e € E(G)
(R1) t(G) =t(G \ e) + t(G/e), if e is not a loop or a bridge,
(R2) t(G) = at(G \ e), if e is a bridge,
(R3) t(G) = yt(G \ e), if e is a loop.
Here (G/e) is the contraction of the edge e.
Two edge merging — ciausgaue aByx pebep.
Two-terminal DAG — aByxmoJocHBIiT O€CKOHTYPHBIN oprpad.
A two-terminal DAG (st-dag) G is a directed graph without any
cycle, having a unique source s and a unique target t. This implies
that an st-dag is weakly connected, namely, there is a path from s to
any vertex and from any vertex to t.
Two-way infinite path — nBycTroponHe-KOHEIHBIIT MAPIIIPYT.
See Ray.
Two-way infinite sequence — jBycropoHHE-6€CKOHEUHBII MapPIIPYT.
Two-way pushdown automaton — AByCTOPOHHUIT Mara3MHHBIA ABTOMAT.
Type-0 grammar — rpammaTtnka tuma 0.
See Chomsky hierarchy.
Type-1 grammar — rpamMmaTuka Tuia 1.
See Chomsky hierarchy.
Type-2 grammar — rpaMMaTiKa TUIA 2.
See Chomsky hierarchy.
Type-3 grammar — rpaMMaTHAKa TUIA 3.
See Chomsky hierarchy.
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U
Ultracenter — ysibTpanentp.
The subgraph of the center C(G) of G induced by the vertices v
with the central distance ¢(v) = m is called the ultracenter of G,
which we denote by UC(G). The number m is referred to as the
ultraradius of G which we denote by urad(G). In a certain sense,
the vertices of UC(G) are the "most central” vertices of G.
See also Central fringe.
Ultraradius — ysisrpapajguyc.
See Ultracenter.
Unary vertex — yHapHasi BepIITHA.
For a given m-ary tree, a node with only one son is called an unary
node. A node with two sons is called binary; a node which has the
maximal allowable number m sons or which is a leaf is said to be
saturated, otherwise it is said to be unsaturated.
n-Unavoidable graph — n-mens6exubriit rpad.
A digraph is said to be n-unavoidable, if every tournament of order
n contains it as a subgraph.
Unbalanced tree — necbarancupoBaHHOe JIePeBO.
Unbounded face — 6eckoneuHasi rpaHb ILJIOCKOIO Ipada, BHEIIHsIsI IPaHb.
Unbounded Petri net — neorpannuennas cers [lerpu.
Unbounded place — meorpanuiIeHHOE MECTO.
Unconnected directed graph — mecBsa3ubrii oprpad.
Undecidable problem — (asropurMudecku) Hepa3pemmMas 3aja4a.
See Decision problem.
Undensity — #emioraocTs rpada, 9ucjio He3aBUCUMOCTH, YUCIO0 BHY TPEH-
Hell yCTOMYUBOCTH.
Underlying graph — Baxubiit rpad, oCHOBHOIT Tpad.
1. See Directed graph.
2. See Hierarchical graph.
Underlying hyperedge tree — Bakuoe rureppébepHoe jiepeBo.
See Hypertree.
Underlying vertex tree — Bakmoe BepIIUHHOE JIEPEBO.
See Hypertree.
Undirected graph — neopuentupoBaHHubIit Tpad.
See Graph.
Undirected hyperpath — neopuenTupoBaHHBIN TUIIEPILY Th.
See Directed hyperpath.
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Unfold process net — passepmyTasi ceTh-mIpoIecc.

Unicursal graph — yaukypcaabubiit rpad, sitaepos rpad.
The same as Fulerian graph.

Unicyclic graph — onsomukmyeckuii rpad, yHUIUKJInIeCKUil rpad.
A connected graph with n vertices and n edges. Notice that a uni-
cyclic graph has a treewidth at most 2.

Unification problem — 3agada yauduxarmn.

Uniform central graph — ogropoaHO-TIeHTpaIbHBIN Tpad.
A uniform central graph is a graph for which every central vertex
has the same set of eccentric vertices.

Uniform star-factor — yaudopmusiii crap-daxrop.
A star-factor of a graph G is a spanning subgraph of G each compo-
nent of which is a nontrivial star.

Uniform hypergraph — yuudopmubIil runeprpad, oJIHOPOIHBIA TUIep-
rpad.
A hypergraph H is a uniform hypergraph if min{le|; e € £} =
max{le| : e € £} for all hyperedges e € €.

h-Uniform hypergraph — h-yundopmustit runeprpad.
A hypergraph H, where |e| = h for all edges of the hypergraph is
called h-uniform.

Uniform inflation — yaudopmuas nadJisiust.
See Inflation.

Unigraph — yuurpad.
A graph G is called unigraph if G is determined by its degree
sequence up to isomorphism, i.e. if a graph H has the same degree
sequence as (G, then H is isomorphic to G.

Unigraphical (degree) sequence — yuurpadudeckas (crenensas) 1o-
CJIeTOBATEIBHOCTD.

Unilateral connectivity — og1HOCTOPOHHSISI CBSIZHOCTb.

Unilaterally connected component — o HOCTOPOHHSST KOMIIOHEHTA.

Unilaterally connected digraph — oHOCTOpOHHE-CBsI3HBI I'pad, OTHO-
CTOPOHHUI Tpad.

Union of graphs — obbemgurenue rpados.
The union of two graphs (not necessarily disjoint) G and H, denoted
by G U H, is the graph with the point set V(GUH) = V(G)UV (H)
and the edge set E(GU H) = E(G) U E(H).
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Unique eccentric point graph — rpad ¢ eguHCTBEHHON 3SKCIEHTpUTIE-
CKOU TOYKOM.
See Eccentric sequence.

Uniquely coloured graph — omso3HauHO packpammBaeMblii rpad.

Uniquely pancyclic graph — yHukaipHO nannukimaeckuit rpad.
A graph G on n vertices is said to be a uniquely pancyclic graph,
abbreviated UPC, if it contains exactly one cycle of every length from
3 to n. It is known that there exist only 7 graphs with less than 57
vertices.

Uniquely transitively orientable graph — eauncTBeHHO TpaH3UTHBHO
OPHUEHTUPYEMBbIN rpad.

Unit interval graph — eaunuunbiil nEHTEPBATBHBII rpad.

Unitary graph — yaurapusiit rpad.

k-Unitransitive graph — k-yuurpan3utuBubiii rpad.

Universal graph — ynusepcasbubIit rpad.
Among a family of graphs H, a graph G is called universal, if any
graph in H is isomorphic to an induced subgraph of G, and is called
w-universal, if any graph in H is isomorphic to a subgraph of G.

w-Universal graph — w-ynusepcabublit rpad.
See Universal graph.

Unordered labeled tree — HeymnopsigoueHHOE TIOMEUEHOE JIEPEBO.
See Labeled tree.

Unrestricted grammar — rpamvarnka 6e3 orpaHnIeHnii.
The same as Grammar.

Unsaturated vertex — cBobo/iHast BepIInHa.
1. See Unary node.
2. A vertex v is unsaturated by a matching M, if there is no edge
of M incident with v. A matching M is called 1-factor (or a perfect
matching), if there is no vertex of the graph unsaturated by M.
The deficiency def(G) of G is the number of vertices unsaturated
by a maximum matching of G. Observe that def(G) = |V| — 2| M|
for any maximum matching M in G.

UPC-graphs — ynukaabHBIN TaHIUKIAIeCKUi rpad.
See Uniquely pancyclic graph.

Upper n-domination number — BepxHee IHUCJIO N-TOMUHUPOBAHUS.
See n-Dominating set.

Upper-level transition — nepexos BepxHero ypopHsi.
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V

Valency of a vertex — BajleHTHOCTb BEPIIUHBI, CTEIIEHb BEPIIUHBI.
See Degree of a vertex.

Valuation — onenusamnmue.
See Labeling.

Value of a cut — Besmunna paspesa, mpomyckHast CIOCOOHOCTH Pa3pesa.

Value of a flow — Besmanna noroxa.

Value of a schema under interpretation — 3natenne cxembl Ipu HH-
TepIpeTaIuy.
Let a« = (Ga, Ra, Qa) be a large-block schema. For any I € Q, the
schema a can be run. The run consists in the execution instructions
that results in transformations of the memory state. Every memory
state W defines for any variable z € X, an element W(x) € Dy
called the value of z at W.
Let @ be a term and W be a memory state. The value of ® at W,
denoted by W(®), is defined by the following rules:
if ® is constant, then W(®) = I(®);
if ® is an operand, then W(®) = W(R,(®P));
if &= f(Pq,...,D,, then W(P) = I(f)(W(Py1),..., W (D,)).
The run of a under I starts with the START instruction whose
execution defines the memory state Wi, such that Wi (x) = I(x) for
any x € X, proceeds sequentially by executing the instructions in
the order they occur in some path (called an execution sequence)
through G, terminates abnormally with such S; that W;(P) = false
for the predicate term P of S; and the current memory state W;, and
terminates normally with a STOP instruction. Only in the former
case the value of a under I, denoted val(e, I), is defined; it is the
tuple of current values of the arguments of the STOP instruction.
Let START, S1,59,...,S;,... and Wy, Ws, ..., W;, ... be execution
and memory sequences of o under I. The execution of S; at W;,
in a general case, consists in processing the current values of its
arguments, replacing some parts of the current values of its results
and defining the next executed instruction (if S; is a recognizer with
a case term ® and W;(®) = r, S; 11 is the r-th successor of S;). Let an
output d of S —1i have a variable x and a data term ®. If d is a strong
output, then the newly computed value W;(®) is assigned to z. If d
is a nonstrong output with an access term g(®4,...,®,,®,d), then
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a (possible empty) part of the current value W;(x) of x is replaced
with W;(®) in such a way that W11 = W;(g(®4,...,P,, P, d)); the
interpretation of g and the values W;(g(®1),..., W;(®,,) specify the
part of & which is replaced with W;(®). Thus, the execution S —i can
use the value assigned to = by S;, j < ¢ (i.e. there is an information
flow between S; and S; through x) only if there is no such S,
j < k < i, that either = is a strong result of S; or Sj redefines the
part of Wy («) which is assigned to « by S;.

Variable vertex — nepemenHnas BepIuHa.
Variance of a graph — aucnepcust rpada.
Vector matroid — marpou; BEKTOPHBII.

Consider an r X n matrix A over a field F' with its columns labeled by
{1,2,...,n}. Define E as the set of column labels and Z as subsets of
column labels that correspond to linearly independent sets of columns
in the vector space V(r, F'). Then Z satisfies the three postulates
and the resulting matroid, denoted by M|[A], is called the vector
matroid of A.

P=NP problem, P versus NP problem — P=NP npob6iema.

See Complexity theory.

Vertex (of a graph) — sepmmna (rpada).

See Graph.

Vertex-antimagic total labeling — BepmunaHO-aHTHMarmYecKas TOTATD-

Has pa3MeTKa.

A bijection A : VUE — {1,2,...,||V]| + |E|} is called a vertex-
antimagic total labeling of G = (V| E), if the weights of vertices
wt(x), x € V, are distinct. A bijection A: VUE — {1,2,...,||V]+

|E|} is called an (a,d)-vertex-antimagic total labeling of G =
(V,E) if the set of vertex weights W = {wt(x)| z € V} = {a,a +
d,...,a+ (V]| —1)d} for some integers a and d.

See also Magic labeling.

Vertex-arboricity — BepuimHHasi IpeBECHOCTb.
Vertex of attachment — coenunsionmas BepirmHa.
Vertex clique cover — mokpbiTre BEPITUH KJIXKAMU.

A vertex clique cover is a collection of cliques that covers all
vertices of G.

The minimum number of cliques in a vertex clique cover is called the
vertex clique cover number and denoted by 6(G).
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Vertex clique cover number — 4nc/io BEpIIMHHOTO TOKPHITUS KJINKAMHA.
See Vertex clique cover.

Vertex-clique incidence bigraph — nBymobHbBIM rpad BEPITUHBI-KIHTKH.
The vertex-clique incidence bigraph of a graph G is a bigraph
VK (G) with the vertices of G on one side and the cligues of G on
the other side, such that a vertex v of G is adjacent to a clique K of
G in VK(G) if and only if v is a member of K in G.

Vertex coloring — packpacka BepIIuH, BEPITUHHAS PACKPACKA.
See Coloring.

Vertex connectivity — BeprmnHas CBA3HOCTD.
For an arbitrary graph G, we define its vertex-connectivity or
simply connectivity, written K, (G) or simply K, to be the mini-
mum number of vertices whose removal will disconnect G. Also we
say that G is h-connected for any positive integer h satisfying h <
K,(G). Any subset of vertices whose removal will disconnect G is
called a vertex-cut.
See also Edge connectivity.

Vertex-connectivity number — uncio BepInHHONR CBA3HOCTH.

Vertex cover, vertex covering — BepIIMHHOE TTIOKPBITHE.
A subset V' C V of a graph G = (V, E) such that for all edges
e=(u,v) € E we have u e V' orv e V'
See also Vertex clique cover.

Vertex-cover polynomial — MHOrOYJIeH BEePIINHHDBIX TOKPBITHIA.
Let CV(G,r) be the set of r-vertex covers in G, and cv(G,r) =
[CV(G,r)|. We define the following generating function:

v=|V(@)|

U (G, 1) = Z cv(G,r)T".

v=0

It is natural to call ¥(G, 7) the vertex-cover polynomial of G.
Vertex covering number — 4ucjio BEpITUHHOTO TOKPHITHUS.
The vertex covering number is the minimum cardinality of a
vertex cover in G, denoted by 7(G).
Vertex covering problem — 3aja1a 0 BepIIMHHOM MOKPBITUN.
Vertex critical graph — BepmuaHO-KpuTHYECKHii rpad.
Vertex cut — BepmuHHOE cedeHUe.
A set S of vertices of a graph G is called a vertex cut of G, if G\ §
has more connected components than G. See also Vertex connectivity.
Vertex disjoint graphs — BepmmnaHO HemepeceKaroIuecs: rpadol.
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Vertex-edge incidence matching — BepmunHo-pebepHoe MHITTICHTHOE
napocoveTaHue.

Vertex-edge incidence matrix — maTpuiia uHIAIEHITAI.
The same as Incidence matriz.

Vertex-forwarding index — See Routing.

Vertex of a hypergraph — Bepmmuna runeprpada.
See Hypergraph.

Vertex incidence matrix — marpuria cMeKHOCTH.

Vertex incident to an edge — Bepmuna, HHIUAEHTHASA PEODY.

Vertex involving — BrsruBaHue BepIIUHBI, CJIUSHUE JIBYX BEPIIUH.

Vertex kernel — BepmmnnOe siipo.

Vertex-labeling — pa3smerka Beprum.
See Labeling.

Vertex level — ypoBenb BepmiuHbi.

Vertex linear arboricity — BepmuHHO JiMHeliHasT 1PEBECHOCTD.
The vertex linear arboricity vla(G) of a graph G is the minimum
number of subsets into which the vertex set V(G) can be partitioned
so that each subset induces a subgraph whose connected components
are paths.

Vertex-magic graph — BepmnHHO-Marnyeckuii rpad.
A graph G is vertex-magic if a vertex-magic total labelling of G
exists.

Vertex-magic labeling — BepmmnHo-Marmdeckast pa3mMeTKa.
See Magic labeling.

Vertex-magic total labeling — BepimunHO-Marudeckasi TorajgbHas pas-
MeTKa.
A one-to-one map A from F UV onto integers {1,2,...,e+ v} is a
vertex-magic total labeling, if there is a constant k such that for
every vertex z,

Az) + Z Azy) =k,

where the sum is over all vertices y adjacent to x. Let us call the
sum of labels at the vertex x the weight of the vertex; we require
wt(x) = k for all z. The constant k is called the magic constant for
A. The edge labels are all distinct.

Vertex minimal dominating graph — BepmuaHO MUHUMAIBLHBIN TOMU-
HUpyOImii rpad.
A vertex minimal dominating graph M,D(G) was introduced
as the graph having V(M,(D(G)) = V(G)US(G), where S(G) is the
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set of all minimal dominating sets of G, and two vertices v and v are
adjacent, if they are adjacent in G or v = D is a minimal dominating
set containing u.

Vertex pancyclic graph — BepuinmmaHO-NAHIUKIHIECKHI rpad.
See [a, b]- Vertex pancyclic.

Vertex path cover — BeprumHHOE IIyTEBOE TIOKPBITHE.
Let P ={Py,..., P} be a set of paths in a digraph D. P is a vertex
path cover of D iff {V(P1),...,V(Pg)} is a partition of V(D).

pny (D) = min{|P| : P is a vertex path cover of D}

is the vertex path number of D.

Vertex path number — BepimHHOe 9UC/IO MyTEiA.
See Vertex path cover.

(a,b)-Vertex pancyclic graph — (a, b)-Beprunno nannukiandeckuii rpad.
Let a, b be integers and a < i < b. G is called (a, b)-vertex pancyclic,
if for any u € V there exists a cycle containing u with ¢ vertices. In
particular, G is vertex pancyclic, if a = 3 and b = |V|.

Vertex t-ranking — BepmmmHOe t-paHKUpOBAHUE.
Let G = (V, E) be a graph and let ¢ be a positive integer. A vertex
t-ranking, called ranking for short if there is no ambiguity, is a
coloring ¢ : V. — {1,...,t} such that, for every pair of vertices z
and y with ¢(z) = ¢(y) and for every path between z and y, there
is a vertex z on this path with ¢(z) > ¢(x). The vertex ranking
number of G, x,(G), is the smallest ¢ for which the graph G admits
a t-ranking.
See also Edge t-ranking.

Vertex t-ranking number — 4nciio BEpITMHHOTO t-paHKAPOBAHMUSI.
See Vertex t-ranking.

Vertex regular graph — BepmuaHO-peryssipabIil rpad.
Let G be a subgroup of the full automorphism group of a graph X.
We call X a G-vertex regular graph, if the action of G on V(X)
is regular. When G = Aut(X), we remove the prefix ?G—" and call
X vertex regular.

G-Vertex regular graph — G-sepruaHO-perynspabiii rpad.
See Vertex regular graph.

Vertex separator — BepmmHHBIH cemapaTop.

Given a graph G = (V,E), a subset S C V is called a vertex
separator for nonadjacent vertices ¢ and b in V \ S, if a and b
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are in different connected components of G[V'\ S]. If S is a v.s. for a
and b but no proper subset of S separates a and b in this way, then S
is called a minimal vertex separator for a and b. A subset S C V
is called a vertex separator, if there exists a pair of nonadjacent
vertices for which S is a minimal vertex separator.

Vertex space — npocTpaHCTBO BEPIIUH.
The vertex space V(G) is the power set of the vertices V(G) viewed
as a vector space over Fj.

Vertex splitting — pacrenienre BepIIuHbI.
A vertex splitting of a digraph G is achieved by replacing a vertex
vg of G by two new vertices v; and v;, replacing each arc vg — v,
in G by v; — v, replacing each arc v, — vp in G by v, — v;, and
adding the arc v; — v;.

Vertex switch — nepexiogaresib BepIINH.
A vertex switch of a simple, undirected graph G = (V, E) at a
vertex v is obtained by deleting the edges incident to v ad adding to
G all edges that are incident to v in G. Vertex switching was first
introduced by van Lint and Seidel and is often referred to as Seidel
switching. Switching has been studied in the context of pan-cyclic
graphs, acyclic graphs, isomorfism, and reconstruction.

k-Vertex connected graph — k-pepmuHHO-CBsi3HBII Tpad.

Vertex-symmetric graph — BepmmuHHO-CHUMMETPUIHBIN Tpad.
A graph G = (V, E) is a vertex-symmetric graph if the group of
graph automorphisms A(G) acts transitively on V, i.e. for any two
vertices v,w € V there is a graph automorphism o € A(G) with
a(v) = w. Cayley graphs are vertex-symmetric.

Vertex transitive graph — BepuuaHO-TpaH3uTUBHEI rpad.
A digraph or graph is vertex transitive, if for every pair of vertices
i and j there is an automorphism that maps i to j.

Vertex star — Bepmunas 3Be3/71a.
See Edge cut.

Very strongly perfect graph — ouens crporo cosepiennsbrit rpad.
See Strongly perfect graph.

Vibration — BuGparmusi, Koebanns.
See Oscillation of a graph.

Visibility graph — rpad BumumocTn.
The visibility graph VG(S) of a set S of n disjoint line segments
in a plane has a vertex for every endpoint of a segment in S, two of
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them being adjacent when the corresponding points see each other,
i.e., the segment they define does not cross any segment in S.
The contracted visibility graph CVG(S) of a set S of n disjoint
line segments has a vertex for every segment in S, two of them, s;
and ss, being adjacent when some endpoint of s; sees some endpoint
of S92.
Let S be a set of n disjoint horizontal line segments in the plane
without two endpoints having equal abscissa. The bar-visibility
graph BV G(S) has a vertex for every segment of S, and two segments
s and t are adjacent, if there is a vertical segment joining s and ¢ and
touching no other segment of S.

Vizing’s conjecture — runoresa Busumnra.
In 1963 V.Vizing conjectured that

Y(G)y(H) < v(GOH)

for all graphs G and H, where v(G) denotes the domination number
of G and GOH is the Cartesian product of G and H.

Volume of a graph — 06ném rpada.
See Geometric realization.

Volume of G-trade — 006bém G-Tpeitaa.
See G-trade.

Voronoi diagram — guarpamma Boposroro.
The standard Voronoi diagram of a set of n given points (called
sites) is a subdivision of the plane into regions, every one associated
with each site. Each site’s region consists of all points in the plane
closer to it than to any of the other sites. One application that
frequently occurs is what Knuth called the "post office” problem.
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W

Walk — mapmipyT.
An alternating sequence of not necessarily distinct vertices and edges,
starting and ending with a vertex, in which every edge is incident with
two vertices immediately preceding and following it. If all vertices
of a walk are distinct (and hence also all edges in the walk are
distinct), the walk is called a simple chain or sometimes a path. The

walk (z1,...,2,4+1) is open [closed] iff 1 # 21 (k1 = 21]. The
length of the walk is k& above. A walk is a trail, if no edge is used
twice.

The other name is Sequence.

Walk-matrix — marpuma MapmpyToB.
The walk-matrix of a graph G is defined by W (G) = (w;;), where
w;; is the number of walks in G of length j that start at v;, 1 <i <n,
1<73<n—-1.

k-Walk — k-mapmpyT.
A k-walk in a graph is a spanning closed walk using each vertex at
most k£ times. When k = 1, a 1-walk is a Hamilton cycle.

Weak NP-complete problem — cina6o NP-tonnas 3amgada.
See Pseudo-polynomial algorithm.

Weak clique-covering cycle — c1ab0 KJIMKOBO-IOKPBIBAIOIINI TTHKJI.
A cycle of a graph C'is called weak clique-covering, if each compo-
nent of G — V(C) is a clique.

Weak clique-covering path — c1a60 K/IMKOBO-TIOKPBIBAIONIHAI Ty Th.
A path P of G is called a weak clique-covering, if each component
of G — V(P) is a clique.

Weak computation — ciabast BBIIUCISIEMOCTD.

Weak k-covering cycle — cabo k-TIOKpBIBAIOIIIIT TTHKJI.
A weak k-covering cycle C of a graph G is a cycle C' such that
each component of G — V(C') has fewer than k vertices.
The other name is k-dominating cycle.

Weak direct product — ciaboe npsimoe mpousBesieHme.
See Product of two graphs.

Weak dominating set — ciraboe qoMuHUpYIONIEe MHOXKECTBO.
See Strong dominating set.

Weak dual graph — ciabo gpoiicrBenHbIil rpad.
The weak dual graph of a plane graph G is the graph G* with
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(finite) faces of G as its vertices, two vertices being adjacent if the
corresponding faces of G share a boundary edge.
Weak NP-hard problem — ciabo NP-TpymaHas 3aata.
See Pseudo-polynomial algorithm.
Weak isomorphism — ciabsiit uzomMmopdusm.
See Cycle isomorphism.
Weak order — csabbrit mopsiiok.

Binary relation on {1,2,...,n} is a weak order if it is a complete
preorder.

Weak Perfect Graph Conjecture — ciabasi runoresa O COBEPIIEHHBIX
rpadax.

Weak Perfect Graph Conjecture (or WPGC) is formulated as
follows: A graph is perfect if and only if its complement is perfect.
See also Strong Perfect Graph Conjecture.

Weakly arithmetic vertex function — ciiabo apudpmernyueckas BepiuH-
Hast QYHKIHUS.
See Weakly (k,d)-arithmetic graph.

Weakly (k,d)-arithmetic graph — caabo (k, d)-apudmernyaeckuii rpad.
A weakly arithmetic vertex function of a graph G = (V, E) is
a vertex function f : V(G) — {0,1,2,...}, such that, for specified
positive integers k and d, {k,k + d,k + 2d, ...} is the set of values
of the induced edge function f* defined by f*(uv) = f(u)+ f(v) for
each edge uv € FE(G). If a graph admits such a vertex function, f,
then G is said to be weakly (k,d)-arithmetic.
In the above definition, if we impose the condition that the vertex
function f is injective, then f is called a (k,d)-arithmetic num-
bering of the graph G and if a graph G admits such a numbering,
then the graph G is called a (k, d)-arithmetic graph.

Weakly chordal graph — ciabo xopaaibublit rpad.
A graph G is called a weakly chordal graph if G and G contain
no induced Ci, k > 5. It is known that the class of chordal graphs
is contained in the class of weakly chordal graphs and the class of
weakly chordal graphs is contained in the class of perfect graphs.

Weakly-connected dominating number — cab0 cBsI3HOE JOMUHUPYIO-
Iee 9ucio.
See Weakly-connected dominating set.

Weakly-connected dominating set — cyiabo cBsi3HOE JOMUHUpYIOIEE
MHOKECTBO.
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A weakly-connected dominating set, W, of a graph G is a domi-
nating set such that the subgraph consisting of V(G) and all edges
incident with vertices in W is connected. Define the minimum cardina-
lity of all weakly-connected dominating sets of G as the weakly-
connected domination number of G and denote this by 7, (G).

Weakly connected graph — cinabo cBs3ubriit rpad, ciradbrii oprpad.
A digraph not representable as G; U Ga, where G1, G2 are vertex-
disjoint non-empty digraphs.

Weakly connected vertices — ciabo cBsi3aHHBIE BEPIIUHEL.
If vertices v; and vy are not strongly connected but are connected in
the corresponding undirected graph, then v; and vy are said to be
weakly connected.

Weakly dense m-ary tree — ciabo mioTHOE Mm-apHOE JIEepeBo.
See r-dense tree.

Weakly geodetic graph — ciiabo reomesudeckuii rpad.
G is a weakly geodetic graph if for every pair of vertices whose
distance is at most 2 there is a unique path of the minimum length
between them.

Weakly pancyclic graph — ciabo nmannukandeckuii rpad.
A graph G with n vertices is called a weakly pancyclic graph, if
it has cycles of all lengths from the girth to the circumference.

Weakly triangulated graph — ciabo tpuanryaupyemsrit rpad.
These are graphs without induced cycles of length > 5 or complement
of such cycles. It is known that all ¢riangulated-perfect graphs are
weakly triangulated.

Weight (of a vertex) — Bec BepIIHUHBL
See Magic labeling.

Weighted degree of a vertex — B3Berennas cTemeHb BEPITAHDI.
Weighted degree d“(v) of a vertex v is the sum of the weights
of the edges incident with v.

Weighted domination number — B3BelieHHOE YKCJIO JJOMUHUPOBAHUSI.
The weighted domination number ~,,(G) of a weighted graph
(G, w) is the minimum weight w(D) = Y . pw(v) ofaset D C V(G)
such that every vertex z € V(G) — D has a neighbor in D.

Weighted girth problem — 3ajata o B3BementoMm obxBaTe.
Given a weighted undirected graph G, the weighted girth problem
(WGP) is to find a cycle having minimal weight. This problem is
in general NP-hard but it can be solved in polynomial time, when G
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does not contain any cycle of a negative weight.
If we force the length of the cycle in the WGP to be less than some
value k, we obtain the cardinality constrained circuit problem
(CCCP). If the cycle in WGP is forced to go through all vertices of
V(G), we obtain the well-known traveling salesman problem.
Weighted graph — B3Bemenmbiii rpad.
1. A weighted graph is a pair (G, w), where G is a graph and w is a
weight function which associates with every vertex x a non-negative
weight w(z). For a subset S of the vertices we define the weight
of S, denoted by w(S), as the sum of weights of the vertices in S.
If 3 evie wv) = [V(G)], then we speak of a normed weighted
graph.
2. In some applications it is natural to assign a number (non-negative
real) to each edge of a graph. For any edge e, this number is written
as w(e) and is called its weight. Naturally, the graph in question is
called a weighted graph. The weight of a (sub)graph is equal
to the sum of weights of its edges.
An unweighted graph can be regarded as a weighted graph in which
the weight w(e) = 1 e is assigned to each edge.
3. The graph G is called a weighted graph if there exist a vertex-
weight function w" : V(G) — R* and an edge-weight function
wE(G) : BE(G) — R{. For a subgraph H of G, the vertex-weight
and the edge-weight of H are defined by

w'(H)y= Y w(); v H)= Y we)

veV(H) e€E(H)

Well-covered graph — xoporrmo mokpsIThIit Tpad.
Let (3, respectively ¢, denote the maximum, respectively minimum,
cardinality of a maximal independent set of G. A graph is called
well-covered if for this graph i = 8 and 4+ A = [2y/n — 1]. The
problem of determining whether or not a graph is not well-covered is
NP-complite.

P-well-covered graph — P-xopoI1io moKpbITEIi rpad.
See Hereditary P-well-covered graph.

Well-located graph — xoporo pasmenénnsiii rpad.
A dominating set, say D, it said to be located if, for every pair of
vertices not in the set D, their neighbours that are in D differ in
at least one vertex. A graph is called well-located, if it has the
property that every independent dominating set is located.
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‘Wheel — xoieco.
A wheel is a graph (denoted W,,) obtained from a cycle of length
n (rim of the wheel) by adding a new vertex vy (hub of the wheel)
that is adjacent with all vertices of the cycle.
See also Pseudo-wheel.

k-Wide diameter — k-mupoxuit muamerp.
The k-wide diameter d;(G) of G is the maximum value of the
k-Wide distance between two vertices of G.

k-Wide distance — k-mupokoe paccrosHue.
For two distinct vertices z,y € V(G), the k-wide distance di(x,y)
between x and y is the minimum integer | such that there exist k
vertex-disjoint (z,y)-chains whose lengths are at most {. We define
di(z,x) = 0.

Width — mupuna.
See F-width.

Width of a layout — mupuna yxiagku.
See Layout.

Width of a tree-decomposition — mupuna apeBecHON TEKOMITO3HUITAN.
See Treewidth of a graph.

F-Width (of a hypergraph) — F-mupusa.
Let H and F be two hypergraphs on the same vertex set. The F-
width w(H, F) of H is the minimal size of an H -covering set of edges
from F. The F-matching width mw(H, F) of H is the maximum,
over all matchings M in H, of w(H, F'). We write w(H) and mw(H)
for w(H, H) and mw(H, H), respectively, and call these parameters
the width and matching width of H.
The independent F-width iw(H, F) of H is the minimal size of
a covering matching in F'. The independent F-matching width
imu(H, F) of H is the maximum, over all matchings M of H, of
im(M, F). Again, we write iw(H) for iw(H, H) and imw(H, H), and
call them the independent width and independent matching
width of H, respectively.

Windmill — Berpsinasi MmesbHUIIA.
A windmill, denoted by pS.K,., is the graph obtained by coalescing
a complete graph K,, r > 2, with p disjoint copies of a graph S(v),
rooted at v € V(S), 0 < p < r. The root vertex, v, in the labelled
graph S, is identified with one vertex of K, so that p distinct vertices
of K, are cut vertices of the windmill.
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A complex windmill is the graph obtained by coalescing a complete
graph K,, r > 2, with disjoint graphs Si,S2,...,5, at p distinct
vertices of K., 0 < p < r, so that these vertices are cut vertices of
the complex windmill.

Word — ciioBo.
The same as String.

Wounded spider — nckasiegenublii mayk.
See Spider.

Wreath product of graphs — koJibiieBoe npouseesieHre rpadoB, JeKCu-
KOrpapuIecKoe IIpOU3BeIeHIe.
The same as Lexicographic product.
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Y

Yanov schemata — cxemnr fdnosa.

Yanov schemata were introduced by A.A. Lyapunov and Yu.l. Yanov
in 1956. A complete presentation of results was described in paper
“Yu.l. Yanov. On logical algorithm schemata, Cybernetics Problems,
1, Fizmatgiz, Moscow, 1958”. It became a classical work owing to
its completeness: all the basic components of the theory of program
transformations were explicitly formulated and, within the construc-
ted system of concepts, were completely studied. Among these compo-
nents are: formalization of the concepts of program schemata, assign-
ment of the equivalence relation, determination of the algorithm
recognizing schemata equivalence and, finally, construction of the
system of equivalent transformations which is complete in the sense
that any pair of equivalent schemas can be transformed into each
other by successive applications of these transformations retaining
the equivalence.
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Z

Zone — 30Ha, CUJIBHO CBsI3HAst 00JIACTb.

The same as Strongly connected region.

Zone-interval reprezentation — 30HHO-UHTEpPBaAJIBHOE MIPE/ICTABIEHNE.
A sequence of different cf-graphs Gg, Gy, ...,G, is called a zone-
interval representation of the cf-graph G, if Gy = G, G, contains
no zones and for all 7, 0 < ¢ < r, the graph G; is obtained from G;_1
by reduction of mutually disjoint intervals, being zones, into nodes.

Z-transformation graph — Z-npeobpaszoBannbrit rpad.
Z-transformation graph, Zr(G), of G with respect to a specific
set F' of faces is a graph on the perfect matchings of GG, such that
two perfect matchings M; and M, are adjacent provided M; and
Ms differ only in a cycle that is the boundary of a face in F. If
F is a set of all interior faces, Zr(G) is a usual Z-transformation
graph; if F' contains all faces of G it is a novel graph called the total
Z-transformation graph.
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