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Facilities for the definition of generic object types, generic type cate-
gories, generic functions and generic procedures in an object-oriented ASM
are described in the paper. These facilities permit one to specify algo-
rithms over complex data structures abstracting both from the type of the
structure components and the structure itself. The use of the facilities is
demonstrated by the specifications of some important parts of Standard
Template Library for C++.
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Предлагаются средства формального определения родовых типов
объектов, сатегорий родовых типов, годовых функций и родовых проце-
дур в объектно-ориентированныхмашинах абстрактных состояний. Эти
средства позволяют специфицировать алгоритмы над сложными струк-
турами данных, абстрагируясь как от типа компонентов структуры, так
и самой структуры. Использование предложенных средств демонстри-
руется примерами спецификаций некоторых важных компонентов библи-
отеки стандартных шаблонов для языка программирования С++.
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1. INTRODUCTION

Object-oriented ASMs as a variant of traditional ASMs [1, 2] are for-
mally introduced in [3]. They permit the specification of a dynamic system
in terms of mutable and constant objects belonging to different object types.
Unfortunately, the technique described in the paper does not provide facil-
ities for the specification of generic object types and generic algorithms.
At the same time, such facilities are highly needed if one wishes to write
reusable specifications.
As a typical example, let us consider the problem of the specification of

the Standard Template Library (STL) for C++ [4] which will be used in
the paper as a running example. The semantics of the library components
is currently given only informally as a set of requirements stated partly in
English and partly as C++ program fragments. As a result, the semantics
remains incomplete and imprecise, depending heavily on reader’s (and li-
brary implementor’s) intuition and knowledge of C++. Therefore, a formal
description of STL independent of a particular programming language is
highly needed.
STL is based on the notion of container which is a data structure consist-

ing of a number of elements of the same type. Several container classes are
defined in STL: vectors, lists, deques, sets, multisets, maps, and multimaps.
Other container classes can be defined if needed. Each container class is
parameterized by the component type. Thus, for each data structure one
can write an algorithm abstracting from the component type. This provides
the first level of genericity typical of C++.
To abstract from the container’s structure, STL introduces the notion

of iterator which is a generalization of the pointer notion. Iterators are
grouped into different iterator categories providing abstract data-accessing
methods. There are categories of input iterators, output iterators, forward
iterators, bidirectional iterators, and random-access iterators. Iterator cat-
egories build a hierarchy. This means that each forward iterator is also
an input iterator and an output iterator, each bidirectional iterator is also
a forward iterator, and each random-access iterator is also a bidirectional
iterator. Algorithms can now be written in terms of iterators abstracting
from a concrete data structure. Most important here is that an algorithm
requiring, say, an input iterator can also use a forward or bidirectional or
random-access iterator. This provides the second level of genericity.

0The research is supported in part by Russian Foundation for Basic Research under
the grant No 98-01-00682.
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One of the ways of the formal STL definition is the use of classical alge-
braic specifications whose advantages are sound mathematical foundation
and existence of specification languages and tools. Taking into account the
generic nature of the data structures and iterator categories, a specification
language like Spectrum [5] providing parameterized sorts and sort classes
can be used for this purpose. However, the notions of iterator and con-
tainer subsume the notion of state which can change when containers are
searched or updated. The modeling of the state by classical algebraic speci-
fications involves extra data structures representing the state which must be
explicitly passed to a function as argument and yielded as result. Algebraic
specifications are also not very convenient for describing a data structure
with an arbitrary order of component insertion and deletion. This leads
to very complex specifications with problems of describing the differences
between different types of containers.
At the same time it seems very natural to consider containers and iter-

ators as objects possessing state and define container classes and iterator
classes as generic object types parameterized by the component type. To
define formally iterator categories and thus represent the hierarchy of itera-
tor classes, we need a notion of class category similar to that of sort classes
of Spectrum. The elaboration of such a notion is one of the tasks of this
paper.
The paper is organized in the following way.
Concrete object types defining sets of states of potentially mutable ob-

jects and object-oriented dynamic systems generalizing the communities of
object states and their transitions are introduced in Section 2. Uncon-
strained generic object types, functions and procedures are defined in Sec-
tion 3. Generic vector types and list types as typical representatives of
Standard Template Library are specified in Section 4 and Section 5, respec-
tively. Object type categories permitting the classification of object types
on the base of their operations are introduced in Section 6. Generic object
types, functions and procedures constrained by type classes are defined in
Section 7. Some related work is discussed in Section 8, and some conclusions
are given in Section 9.
It is assumed that the reader is familiar with the basic ASMs notions

which can be found in [1, 2]. The familiarity with the formal aspects of
object-oriented ASMs [3] is desirable, but not obligatory.
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2. CONCRETE OBJECT TYPES

2.1. Instance algebras

We distinguish between data and objects and, respectively, between data
types and object types. A data identifies itself and is immutable. An object
possesses a unique identifier and state which can be mutable. A data type
defines a set of immutable values and operations over them. An object
type defines a set of states of a potentially mutable object and a number of
methods capable to observe and update the object’s state.
We consider that data types are specified by means of one of the algebraic

specification languages like Spectrum [5], Ruslan [6] or CASL [7]. Let Σ′

be the signature of a number of data type specifications, we call it data
signature in the sequel. An object- structured signature Σ extends Σ′ with
a number of object type signatures [3]. An object type specification over Σ′

is a pair <object type signature, axioms>. Let OTY PE be a set of (object
type) names and OΦ a set of object type specifications. An object-structured
specification is then a triple < OTY PE, OΦ, into >, where into is a function
mapping OTY PE into OΦ. If T ∈ OTY PE, ots ∈ OΦ, and into(T ) = ots,
then the maplit < T �→ ots > is the specification of the object type T (in
this case we also write sometimes that ots is marked with T ).
An object type specification consists of an object type signature and ax-

ioms in the following form:
class Object-type-name = spec
[object-type-signature]
{axioms},

where object type signature is a triple set-of-attribute-signatures; set-of-
mutator-signatures; set-of-observer-signatures.
An attribute or observer signature has the following form: operation-

name: operation-profile; where operation-profile is either T or T1, . . . , Tn −→
T , where T, Ti are data/object type names indicating the types of at-
tribute/observer parameters (if any) and result. A mutator signature is ei-
ther just a mutator name or mutator-name: mutator-profile, wheremutator-
profile is a sequence of data/object type names indicating the types of mu-
tator parameters.
Intuitively, a tuple of attributes defines an object’s state, an observer is

a function computing something at a given object’s state, and a mutator is
a procedure changing an object’s state. Attributes are often called instance
variables, and observers and mutators are often called methods in object-
oriented programming languages.
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Notation: in the following examples sets of attribute, observer, and
mutator signatures in the object type signature are preceded by keywords
attribute, observer, and mutator, respectively.
As an example, let us consider a simple model of memory consisting of

locations storing integer numbers. A consecutive number of locations form
a vector which is a structure allowing both sequential and random access
to its elements. A location representing a vector element is called a vector
iterator in the sequel.
Such an iterator can be understood as an object possessing the attribute

value_stored updated by the mutator put_value and observed by the ob-
server get_value. Since we wish to provide both sequential and random
access to the vector elements, we define several extra observers as well. As
a result, we create the following object type signature:
class VecIt = spec
[attribute value_stored: Integer;
mutator put_value: Integer;
observer get_value: Integer;

advance, retreat: VecIt;
plus, minus: Nat −→ VecIt;
difference: VecIt −→ Nat;
eq, neq, less, greater, leq, geq: VecIt −→ Boolean]

In the above example, the community of vector elements is represented
by the class VecIt (vector iterator) with several methods permitting to move
either to the next (advance) or previous (retreat) element, to jump sev-
eral elements forward (plus) or backward (minus), to calculate the distance
between two elements (difference) and to compare the element (location)
identifiers (eq, neq, less, greater, leq, geq).
In a particular algebra A, a set of elements called object identifiers is

associated with an object type name T , and a (partial) function atAT :
AT −→ (AT ′

1
, . . . , AT ′

n
−→ AT ′)1 is associated with the attribute name

at : T ′
1, . . . , T

′
n −→ T ′ (a function atAT : AT −→ AT ′ is associated with the

attribute name at : T ′) in an object type signature marked with T ; such
a function is called an attribute function. If id ∈ AT , then atAT (id) is an
attribute of id.
Thus, in any algebra A, each object of the type VecIt is supplied with a

unique identifier, and a function value_storedA mapping object identifiers
to integer numbers is created.

1For a data/object type T , AT denotes the set associated with T in the algebra A.
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Such an algebra extending the algebra of data types is called an instance
algebra. It represents some state of a number of objects. An object is a pair
(id, obs) where id is an object identifier and obs is a tuple of its attributes
called object’s state. An update of an object’s state as well as creation or
deletion of an object leads to the transformation of one instance algebra
into another.
To define the interpretation of observer and mutator names, a notion of

dynamic system is introduced.

2.2. Dynamic system

We discussed above only functions defined inside the frames of object
types. In a more general case, an instance algebra can possess a number of
"independent" functions and constants (i.e., functions without arguments)
defined outside of an object type frame. Such functions and constants are
called dynamic and can be different in different instance algebras. Some pro-
cedures transforming one instance algebra into another by updating objects
and dynamic functions (constants) can also be defined. Thus, we define
a dynamic system signature DΣ as an extension of an object-structured
signature as follows: DΣ = < Σ, DF >, where Σ is an object-structured
signature and DF is set of function and procedure signatures defined in
the same way as attribute and mutator signatures are, respectively, defined
above.
Notation: we introduce dynamic functions and constants with the key-

word dynamic and procedures with the keyword proc.
Examples.
dynamic const an_iterator: VecIt;
dynamic function matrix: Nat, Nat −→ VecIt;
proc allocate: Nat – allocation of a number of iterators;

For any dynamic system signature DΣ = < Σ, DF >, a Σ-algebra A
is extended by an element cA ∈ AT associated with the constant signature
c : T from DF and a (partial) function fA : AT1 × . . . × ATn −→ AT as-
sociated with the function signature f : T1, . . . , Tn −→ T from DF . Terms
constructed with the use of constant or function name are interpreted by
invocations of the corresponding constants or functions. In the sequel, men-
tioning an instance algebra A, we mean a DΣ-algebra.
Let now OID be a set of object identifiers and |D(A′)| a set of instance

algebras satisfying the following conditions:
• all algebras in |D(A′)| have the same data algebra A′, and
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• if T is an object type name and A and B are two DΣ-algebras, then
both AT and BT are subsets of OID (i.e., objects identifiers are
always chosen from the same set).

Given a dynamic system signature DΣ = < Σ, DF >, a set of object
identifiers OID, and a set of instance algebras |D(A′)|, we associate:

• with each observer signature b : T1, . . . , Tn −→ T ′ in an object type
signature marked with T , a partial map (called an observer), bD(A′)

T ,
associating an element a′ ∈ AT ′ with each pair < A,
< id, a1, . . . , an >>, where A ∈ |D(A′)|, id ∈ AT , and ai ∈ ATi , i =
1, . . . , n;

• with each mutator signature m : T1, . . . , Tn in an object type signa-
ture marked with T , a partial map (called amutator),mD(A′)

T , associ-
ating an algebraB ∈ |D(A′)| with each pair< A, < id, a1, . . . , an >>,
where A ∈ |D(A′)|, id ∈ AT , and ai ∈ ATi , i = 1, . . . , n.

• with each procedure signature p : T1, . . . , Tn from DF , a partial map
(called a procedure), p

D(A′)
T , associating an algebra B ∈ |D(A′)|

with each pair < A, < a1, . . . , an >>, where A ∈ |D(A′)|, and ai ∈
ATi , i = 1, . . . , n.

Thus, for the mutator put_value defined in the class V ecIt, a function
mapping states to states is created, and for each observer defined in the
class, a function mapping object identifiers and states to the values of the
types indicated is created. For example, the function advance may produce
the identifier considered to be next to a given identifier in a given state. The
procedure associated with allocate will produce a new state by attaching a
number of locations to the previous state.
An object-oriented dynamic system DS(A′) of signature DΣ consists of

a set of object identifiers OID, a set of instance algebras |D(A′)|, and a set
of observers, mutators, and procedures defined above.
Note that different instance algebras of the same D(A′) can generally

have different sets of object identifiers and different sets of attribute func-
tions, which means that the sets of objects can be different and/or an object
with the same identifier can have different states. At the same time, data
type implementations and static functions are the same in all instance al-
gebras of the same D(A′).
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2.3. Terms and their interpretations

There are several rules for creating terms of object types. Moreover,
a special kind of term called transition term is introduced to denote tran-
sitions from one algebra to another (transition rules are special cases of
transition terms). The main rules for creating the terms are following (we
omit interpretation where it is self-evident).

1. If at : T1, . . . , Tn −→ T ′ is an attribute/observer signature from the
object type signature marked with T , t1, . . . , tn are terms of types
T1, . . . , Tn, respectively, and t is a term of type T , then t.at(t1, . . . , tn)
is a term of type T ′. Examples: id.value_stored, id.advance, id.plus(2),
id.less(id1). The term is interpreted by invoking the corresponding
attribute/observer function in a given state A.

2. If t is a term of type T , then D(t) is a term of type Boolean. Inter-
pretation: D(t)A = trueA if t is defined in A, and D(t)A = falseA

otherwise. The interpretation of this term allows us to check whether
the argument term is defined in a given instance algebra. For exam-
ple, the interpretation of D(id.advance) will let us know whether
there is an identifier next to id in the current state.

3. If m : T1, ..., Tn is a mutator signature from the object type signature
marked with T , t1, ..., tn are terms of types T1, ..., Tn, respectively,
and t is a term of type T then t.m(t1, ..., tn) is a transition term
called a mutator call. Example: id.put_value(3). This kind of term
serves for indicating an update of a mutable object. The term is
interpreted by invoking the corresponding mutator function.

4. If m : T1, ..., Tn is a procedure signature, t1, ..., tn are terms of types
T1, ..., Tn, respectively, then t.m(t1, ..., tn) is a transition term called a
procedure call. The term is interpreted by invoking the corresponding
procedure with the given arguments.

5. If T is an object type name, f is the name of a function with the
profile T1, . . . , Tn −→ T , t1, . . . , tn are terms of types T1, . . . , Tn, re-
spectively, then f(t1, . . . , tn) := new(T ) is a transition term. The
interpretation of this transition term leads to the creation of a new
object identifier with totally undefined attribute functions and forc-
ing f(t1, . . . , tn) to produce this identifier.
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2.4. Axioms

The specification of the method behavior is done by means of axioms.
An axiom is either a static axiom or a dynamic axiom. A static axiom

is a pair t1 == t2, where t1 and t2 are two terms of the same type. A
given algebra A satisfies a static axiom if the interpretation of both parts
of the axiom in A produces the same result. A dynamic axiom has the
same form, where t1 and t2 are transition terms which are generalizations
of transition rules as described above. A given dynamic system DS(A′)
satisfies a dynamic axiom if the interpretation of both parts of the axiom
in any state A ∈ |DS(A′)| produces the same state B.
To specify the object type VecIt, we define 3 auxiliary dynamic func-

tions:
vecit_number: Nat = 0;
natvec: Nat −→ VecIt;
vecnat: VecIt −→ Nat;

The first function indicates the number of vector iterators existing in the
algebra, the second one maps natural numbers into vector iterators, and the
third one maps vector iterators into natural numbers. Thus the functions
imitate the relationship between memory addresses and natural numbers.
Initially the first function is set to zero, the other two are undefined. Up-
dates of the functions are produced by a special procedure allocator defined
in Section 4. With the use of these functions, we can write the following
axioms for the above VecIt signature (typical axioms for equality and non
equality are omitted):
{forall i, i1: VecIt, n: Nat. – declaration of universally quantified variables
i.put_value(x) == i.value_stored := x; – dynamic axiom
i.get_value == i.value_stored; – this one and all the other are static axioms
i.advance == natvec(vecnat(i) + 1);
i.retreat == natvec(vecnat(i) – 1);
i.plus(n) == natvec(vecnat(i) + n);
i.minus(n) == natvec(vecnat(i) – n);
i.difference(i1) == vectnat(i) – vecnat(i1)
i.less(i1) == vectnat(i) < vecnat(i1);
i.greater(i1) == vectnat(i) > vecnat(i1);
i.leq(i1) == vectnat(i) ≤ vecnat(i1);
i.geq(i1) == vectnat(i) ≥ vecnat(i1)}
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3. GENERIC OBJECT TYPES

We cannot be satisfied with only concrete object types because many
object types can have a similar structure and it would be tiresome to specify
them again and again. Therefore a notion of generic object type is intro-
duced. We start with the simplest case, unconstrained generic object types.
An object-structured specification Σ is defined above as a triple

< OTY PE, OΦ, into >, where into is a function mapping OTY PE into
OΦ. We propose the following way of constructing the names in OTY PE
(which will be called type terms from now on), using two non intersecting
sets of names, S and R: if S ∈ S, then S is a type term; if T1, ..., Tn are
type terms and R ∈ R, then R(T1, ..., Tn) is a type term.
Let now into(R(T11, ..., T1n)) = Spec1 and into(R(T21, ..., T2n)) = Spec2,

whereR(T11, ..., T1n) andR(T21, ..., t2n) are type terms and Spec1 and Spec2
are object type specifications. We say that the object type R(T11, ..., T1n)
is a sibling of the object type R(T21, ..., T2n) if the replacement of each T1i

with T2i, i = 1, ..., n, in Spec1 converts it into Spec2. We can propose a
special way of constructing a part of the function into for a family of object
type siblings.
Let q1, ..., qk be names (of type parameters). A pair< R(q1, ..., qk), Spec >

(where R ∈ R and Spec is an object type specification additionally us-
ing q1, ..., qk as type terms in method signatures) is part of the function
into, such that for any type term Ti, i = 1, ..., k, into(R(T1, ..., Tk)) =
Spec[q1/T1, ..., qk/Tk], where Spec[q1/T1, ..., qk/Tk] is an object type speci-
fication produced by replacing each qi in Spec with Ti.
A pair < R(q1, ..., qk), Spec > is called a generic type specification, and

R is called a generic object type. The replacement of type parameters with
type terms in both parts of a generic type specification is called a generic
type instantiation. Note that due to the use of the function into, we do not
need to introduce a special semantics for generic object types. A generic
type specification in this approach is just a way of defining a part of this
function. This corresponds one to one to the practice of modern program-
ming languages (like C++) regarding generic object types as templates.
Two type terms R(T11, ..., T1n) and R(T21, ..., T2n) are equivalent if T1i

and T2i, i = 1, ..., n, are the same type name or if they are equivalent.
Example. Taking into account that in a real memory we would like to

have locations storing values of different types, we could define the following
signature of a generic vector iterator type:
class VecIt(T) = spec
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[attribute value_stored: T;
mutator put_value: T;
observer get_value: T;

advance, retreat: VecIt(T);
plus, minus: Nat −→ VecIt(T);
difference: VecIt(T) −→ Nat;
eq, neq, less, greater, leq, geq: VecIt(T) −→ Boolean]
To write axioms for this generic type, we apparently must have generic

versions of the above functions vecit_number, natvec, and vecnat. Thus,
we introduce some notions permitting us to define generic functions:

• a generic function profile is a pair < (q1, ..., qk), FP q >, where
q1, ..., qk are names (of type parameters) and FP q is a function pro-
file constructed by extending the set of type terms with q1, ..., qk;

• a generic function signature is a pair op : FP q, where op is an oper-
ator and FP q is a generic function profile.

Notation: we use the brackets gen ... profile to embrace type param-
eters.
Examples:
vecit_number: gen T profile Nat = 0;
natvec: gen T profile Nat −→ VecIt(T);
vecnat: gen T profile VecIt(T) −→ Nat;

If op :< (q1, ..., qk), FP q > is a generic function signature and T 1, ....T k
are type terms , then op(T 1, ..., T k) : FP is an instantiated function sig-
nature, where FP is a function profile obtained from FP q by replacing
each qi with T i; op(T 1, ..., T k) is called an instantiated operator. For ex-
ample, natvec(Integer) is an instantiated operator with the profile Nat −→
V ecIt(Integer). Instantiated operators are used for producing data terms
in the same way as ordinary operators do, for example, natvec(Integer)(2).
According to the extension of the object-structured signature with generic

function signatures, an algebra A of a given signature is extended with
a set of functions mapAq, one for each generic function signature op :<
(q1, ..., qk), FP q >; such a function binds an instantiated operator
op(T 1, ..., T k) to a function in A.
Notation: instead of op(T 11, ..., T1k)(t1, ..., tn), we write op(t1, ..., tn)

where it seems appropriate.
A generic function specification consists of a generic function signature

and a set of axioms.
Example. The axioms of the generic object type VecIt(T) would be
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now the following:
{forall T: TYPE, i, i1: VecIt(T), n: Nat.
i.put_value(x) == i.value_stored := x; – dynamic axiom
i.get_value == i.value_stored; – this one and all the other are object axioms
i.advance == natvec(T)(vecnat(T)(i) + 1);
i.retreat == natvec(T)(vecnat(T)(i) – 1);
i.plus(n) == natvec(T)(vecnat(T)(i) + n);
i.minus(n) == natvec(T)(vecnat(T)(i) – n);
i.difference(i1) == vectnat(T)(i) – vecnat(T)(i1)
i.less(i1) == vectnat(T)(i) < vecnat(T)(i1);
i.greater(i1) == vectnat(T)(i) > vecnat(T)(i1);
i.leq(i1) == vectnat(T)(i) ≤ vecnat(T)(i1);
i.geq(i1) == vectnat(T)(i) ≥ vecnat(T)(i1)}
Similar to generic functions, generic procedures can be defined:
• a generic procedure profile is a pair < (q1, ..., qk), PP q >, where

q1, ..., qk are names (of type parameters) and PP q is a procedure
profile constructed by extending the set of type terms with q1, ..., qk;

• a generic procedure signature is a pair p : PP q, where p is a procedure
name and PP q is a generic procedure profile.

If p :< (q1, ..., qk), PP q > is a generic procedure signature and T 1, ....T k
are type terms , then p(T 1, ..., T k) : PP is an instantiated procedure signa-
ture, where PP is a procedure profile obtained from PP q by replacing each
qi with T i; p(T 1, ..., T k) is called an instantiated procedure name. Instanti-
ated procedure names are used for producing transition terms in the same
way as ordinary procedure names do.
According to the extension of the dynamic system signature with generic

procedure signatures, a dynamic system DS(A′) of a given signature is
extended with a set of functions mapDSq, one for each generic procedure
signature p :< (q1, ..., qk), PP q >; such a function binds an instantiated
procedure name p(T 1, ..., T k) to a procedure in DS(A′).
A generic procedure specification consists of a generic procedure signa-

ture and a set of dynamic axioms. An example of a procedure specification
can be found at the end of the next section.

4. GENERIC VECTOR TYPES

We can now give a formal specification of the generic vector type infor-
mally defined in [4]. It is assumed that vector elements (which are vector
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iterators) are numbered starting from zero. The clause dom in the specifi-
cation indicates the domain of a partial function: in a domain specification
dom t : b, t is defined if and only if b evaluates to true. A transition rule
of the form set R1, ..., Rn end indicates parallel execution of the transition
terms R1, ..., Rn.
class Vector(T) = spec
[attribute comp: Nat −→ VecIt(T);

– vector’s components, initialized by an allocator
size: Nat; – vector’s current size, initialized by an allocator
max_size: Nat; – vector’s maximum size, initialized by an allocator
begin: VecIt(T); – the first element of a vector, initialized by an allocator

mutator empty_vec; – default constructor
intialized_vec: Nat, T; – initialization of the first n components
copy: Vector(T); – copy constructor
push_back: T; – append an element at the end of a vector
pop_back; – delete the last vector’s element
insert: VecIt(T), T; – insert an element at the position indicated
erase: VecIt(T); – remove the element indicated
swap: Vector(T); - swap the contents of two vectors

observer empty: Boolean; – is a vector empty?
[]: Nat −→ T; – fetch a vector’s element
front, back: T; – first and last vector’s elements
end: VecIt(T)]

– the identifier of the element following the last vector’s element
{forall x, x1: T, iv, iv1: VecIt(T), n, n1: Nat, v, v1: Vector(T).
dom v[n]: n ≥ 0 & n ≤ v.size;
dom v.intialized_vec (n, x): n ≤ v.max_size;
dom v.push_back(x): v.size < v.max_size;
dom v.insert(iv, x): v.size < v.max_size;
dom v.erase(iv): iv.geq(v.begin) & iv.less(v.end) & v.size > 0;
v.empty_vec == v.size := 0;
v.intialized_vec (n, x) == set forall i: Nat.

if i < n then v.comp(i).value_stored := x, v.size := n end;
v.copy(v1) == v := v1;
v.push_back(x) ==

set v.comp(v.size).value_stored := x; v.size := v.size + 1 end;
v.pop_back == v.size := v.size - 1;
v.insert(iv, x) == forall i: Nat. set v.size := v.size + 1,
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if v.comp(i).geq(iv) & i < v.size
then v.comp(i+1).value_stored := v.comp(i).value_stored,
if v.comp(i).eq(iv) then v.comp(i).value_stored:= x end;

v.erase(iv) == set forall i: Nat. if v.comp(i).geq(iv) & i <= v.size
then v.comp(i).value_stored := v.comp(i+1).value_stored,
v.size := v.size - 1 end;

v.empty == v.size =0;
v[n] == v.comp(n).value_stored;
v.end == v.begin.plus(v.size+1);
v.front == v.comp(0).value_stored;
v.back == v.comp(v.size).value_stored }.
A very interesting task is the specification of a vector allocator, a special

procedure which allocate memory for a particular vector (according to STL,
such a procedure is associated with each container class, we define it here for
vectors). A new kind of transition rules, For-loop, based on the sequential
transition rule defined in [3] is used in the specification. This rule is defined
as follows:
Let i be a variable of type Nat, t1 and t2 be terms of type Nat not

containing i, and R be a rule, then
for i = t1 to t2 do R

is a transition rule called For-loop. Interpretation in an algebra A:
(for i = t1 to t2 do R)A =
(seq R[t1/i], if t1 < t2 then for i = t1 + 1 to t2 do R)A.

The allocator can now be defined in the following way:
proc vec_allocator: gen T profile T, Nat
{forall v: Vector(T), n: Nat.
vec_allocator(T)(n) == seq
set v.max_size := n, v.size := 0,

for i = 0 to n do v.comp(i) := new_var(Vector(T)
v.begin := v.comp(0)

end,
forall i: Nat. if i ≤ n then
set vecit_number(T) := vecit_number(T) + n,

vecnat(T)(v.comp(i)) := vecit_number(T) + i,
natvec(T)(vecit_number(T) + i) := v.comp(i)

end end};
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5. LIST TYPES AND ITERATORS

A list is a sequence of elements ordered according to the use of con-
structor operations “push_back” (appends an element to the end of a list),
“push_front” (appends an element to the beginning of a list), and “insert”
(insert an element in the middle of a list). All list elements are numbered
starting with one for the first element. The number of the last element is
equal to the number of list’s elements. A list element is an object of the
corresponding iterator type ListIt. We define it first.
class ListIt(T) = spec
[attribute value_stored: T;

pred, next: ListIt(T);
mutator put_value: T;
observer get_value: T;

advance, retreat: VecIt(T);
eq, neq: VecIt(T) −→ Boolean]

{forall i: ListIt(T), x: T.
i.put_value(x) == i.value_stored := x;
i.get_value == i.value_stored;
i.advance == i.next;
i.retreat == i.pred}.
Now we can define the generic list type. Due to space limitations, the

specification of some mutators is left to the reader. Note that a transition
rule of the form seq R1, ..., Rn end indicates sequential execution of the
transition terms R1, ..., Rn, and a transition rule of the form while b do
R end indicates the repetition of the execution of the transition term R.
Formal semantics of both rules can be found in [3].
class List(T) == spec
[attribute begin, end: ListIt(T);

size: Nat; – list current size
mutator empty_list; – empty list constructor

intialized_list: Nat, T; – initialized list constructor
copy: List(T); – copy constructor
push_front: T; – append an element at the beginning of a list
push_back: T; – append an element at the end of a list
pop_front; – delete the first list’s element
pop_back; – delete the last list’s element
insert1: ListIt(T), T; – insert one element at the position indicated
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insertN: ListIt(T), Nat, T; – insert N elements at the position indicated
erase1: ListIt(T); – remove the element indicated
eraseN: ListIt(T), ListIt(T); – remove the elements between the iterators

observ empty: Boolean; – is the list empty?
front, back: T] – first and last list’s elements

{forall x, x1: T, n, n1: Nat, l, l1: List(T), i, i1: ListIt(T).
dom l.pop_front: l.size > 0;
dom l.pop_back: l.size > 0;
dom l.erase1(i): l.size > 0 & i.geq(l.begin) & i.less(l.end);
dom l.eraseN(i, i1): l.size > 0 & i.geq(l.begin) & i1.leq(l.end) & i.less(i1);
dom l.front: l.size > 0;
dom l.back: l.size > 0;
l.empty_list == set l.begin := undef, l.end := undef, l.size := 0 end ;
l.push_back(x) == import temp: ListIt(T) in

set temp.pred := l.end, temp.next := undef, temp.value_stored := x,
l.end := temp, l.size := l.size +1,
if l.size = 0 then l.begin := temp else l.end.next := temp end ;

l.intialized_list(n, x) ==
seq l.empty_list, while l.size < n do l.push_back(x) end ;

l.copy(l1) == seq sequence of transition rules end;
l.push_front(x) == import temp: ListIt(T) in set of transition rules;
l.pop_front == if l.size > 1 then

set l.begin := l.begin.next, l.begin.next.pred := undef, size := size -1 end
else set l.begin := undef; l.end := undef; l.size := 0 end ;

l.pop_back == if l.size > 1 then set of rules else set of rules;
l.insert1(i, x) == if ¬D(i.next) then set of rules else set of rules;
l.insertN(i, n, x) ==

seq l.insert1(i, x), if n > 1 then l.insertN(i.next, n-1, x) end ;
l.erase1(i) == if ¬D(i.next) then l.pop_back – last element is deleted

elseif ¬D(i.pred) then l.pop_front – first element is deleted
else set i.pred.next := i.next, i.next.pred:= i.pred, size := size - 1 end ;

l.erase(i, i1) == seq l.erase(i), if i.next.neq(i1) then l.erase(i.next, i1) end ;
l.front == l.begin.value_stored; l.back == l.end.value_stored}.
A list allocator just initializes the attributes of a list, its specification is

trivial.
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6. OBJECT TYPE CATEGORIES

The generic constructs defined above permit us to specify algorithms
over data structures, such as vectors or lists, abstracted from the type of
the component of the structure. We would like also to specify algorithms ab-
stracted from the data structure itself, i.e. to specify an algorithm capable,
for example, to manipulate both vectors and lists. Object type categories
serve this purpose.
An object type category resembles a sort class of Spectrum [5] or type

class of Ruslan [6] both based on type classes introduced in [8] and sypes
introduced in [9]. It defines a set of object type specifications with some
common properties.
Let CAT be a set of names and CS be a set of specifications constructed

like object type specifications with the use of an extra object type name
"@", and intc : CAT −→ CS be a function mapping names in CAT to
specifications in CS. If C ∈ CAT , cs ∈ CS, and cs = intc(C), then the
maplet < C �→ cs > is the specification of the object type category C.
Let < C �→ cs > be the specification of an object type category and

< T �→ ots > be the specification of an object type. It is said that the object
type T is a type of the category C (or T belongs to C) if cs[T/@] ∈ ots],
where cs[T/@] is the specification cs with the symbol "@" replaced with T .
Example:
classcat Equal = spec — category of object types with equality operation
[observer eq, neq: @ −→ Boolean]
{forall x, y: @, exist z: @.
x.eq(x) == true; x.eq(y) == y.eq(x);
x.eq(z) & z.eq(y) == x.eq(y);
x.neq(y) == ¬x.eq(y)}.
Any object type possessing the operations eq and neq specified as above

is the type of the category Equal.
Constructing a type category, we can inherit the specification of an ex-

isting type category producing the union of the specifications as result.
Like an object type, an object type category can be generic, i.e., it can

use type parameters in its specification. The definition of a generic object
type category is the same as the definition of a generic object type. Iterator
categories serve as examples.
1. Each iterator type of the following category has operations advance

20



and get_value in addition to the operations of the category "Equal".2

classcat InputIterator(T) = spec Equal
[observer advance: @; – advances an iterator one position forward

get_value: T] – dereferencing operation for reading
2. Each iterator type of the following category has operations advance

and put_value in addition to the operations of the category "Equal".3

classcat OutputIterator(T) spec Equal
[observer advance: @; – advances an iterator one position forward
mutator put_value: T] – stores a new value in an iterator
3. Each iterator type of the following category has a mutator put_value

in addition to the operations of the category "InputIterator".
classcat ForwardIterator(T) = spec InputIterator(T)
[mutator put_value: T]
4. Each iterator type of the following category has the operation retreat

in addition to the operations of the category "ForwardIterator".
classcat BidirectionalIterator(T: TYPE) = spec ForwardIterator(T)
[observer retreat: @] - advances an iterator one position backward
5. Each iterator type of the following category has several operations in

addition to the operations of the category "BidirectionalIterator".
classcat RandomAccessIterator(T) = spec BidirectionalIterator(T)
[observer plus, minus: Nat −→ @;

difference: @ −→ Nat;
less, greater, leq, geq: @ −→ Boolean]
According to the definitions, an object type VecIt(T) belongs to the type

categories RandomAccessIterator(T), BidirectionalIterator(T), ForwardIt-
erator(T), OutputIterator(T), InputIterator(T), and Equal. An object type
ListIt(T) belongs to the type categories BidirectionalIterator(T), ForwardIt-
erator(T), OutputIterator(T), InputIterator(T), and Equal (it does not be-
long to the type category RandomAccessIterator(T), however). Thus, a
vector iterator can be used in any algorithm requiring either a random ac-
cess iterator or bidirectional iterator or forward iterator or input iterator or
output iterator. In the same way a list iterator can be used in any algorithm
except that one which requires a random access iterator.

2the category of input iterators is introduced in STL to allow iterating over input
streams in the same way as, say, over vectors.

3the category of output iterators is introduced in STL to allow iterating over output
streams in the same way as, say, over vectors.
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7. CONSTRAINED GENERICITY

According to the definitions of generic components in Section 3, any type
can be used as instantiation argument. At the same time, it is needed very
often that only a type belonging to a certain type category could be substi-
tuted. Therefore, the definitions of generic components should be changed
with taking into account this constraint. The definition of a constrained
generic object type is now the following.
Let q1 : C1, ..., qk : Ck be names (of type parameters) indexed with

type category names. A pair < R(q1 : C1, ..., qk : Ck), Spec > (where
R ∈ R and Spec is an object type specification additionally using q1, ..., qk

as type terms in operation signatures and operators from C1, ..., Ck in ax-
ioms) is part of the function into, such that for any type term Ti of type
category Ci, i = 1, ..., k, into(R(T1, ..., Tk)) = Spec[q1/T1, ..., qk/Tk], where
Spec[q1/T1, ..., qk/Tk] is an object type specification produced by replacing
each qi in Spec with Ti.
The definition of the constrained generic type category is done in a

similar way. Constrained generic functions are defined as follows.
1. A generic function profile is a pair < (q1 : C1, ..., qk : Ck), FP q >,
where q1 : C1, ..., qk : Ck are names (of type parameters) indexed
with type category names and FP q is a function profile constructed
by extending the set of type terms of type categories C1, ..., Ck with
q1, ..., qk, respectively.

2. A generic function signature is a pair op : GFP , where op is an
operator and GFP is a generic function profile.

If opq :< (q1 : C1, ..., qk : Ck), FP q > is a generic function signature and
T 1, ....T k are type terms such that each T i, i = 1, ..., k belongs to the type
category Ci, then opq(T 1, ..., T k) : FP is an instantiated function signature,
where FP is a function profile obtained from FP q by replacing each qi with
T i.
Examples:
1. Specify a function which looks for an element in a data structure

between first and last iterators and returns the iterator storing the value
if it is found and the last iterator if the value is not found.
func find: gen I: InputIterator, T: TYPE profile: I, I, T −→ I;
{forall first, last: I, value: T.
find(first, last, value) ==
if first.get_value = value ∨ first = last then first
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else find(first.advance, last, value)}.
Now, if we have the following declarations:
vec: Vector(Integer);
list: List(Char);

we can invoke the function in the folowing ways:
find(vec.begin, vec.end, 7);
find(list.begin, list.end, ’a’);

In this case both vector iterators and list iterators can be used because both
belong to the category of input iterators required in the function specifica-
tion. In the next example list iterators cannot be used.
2. Specify a function which performs binary search in a structure con-

taining ordered components and returns the identifier of the iterator con-
taining the element to be found (for simplicity we assume that the structure
really contains the element).
func binary_find: gen I: RandomAccessIterator, T: Ordered profile I, I, T −→ I;
{forall first, last: I, value: T.
binary_find(first, last, value) == let d = last.difference(first), h = d/2,

current = first.plus(h), cv = current.get_value in
if cv = value then current
elseif value < cv then binari_find(first, current, value)
else binary_find(current, last, value)}
Now, we can call the function with vector iterators like the following:

binary_find(vec.begin, vec.end, 7)
because these iterators belong to the class RandomAccessIterator, and can-
not call it with list iterators. Note the use of the type class Ordered (not
defined here) needed to make sure that the type of the components contains
the operation "<".

8. RELATED WORK

We are not going to discuss here the approaches representing object
states as elements of the same algebra. The works along this approach
are heavily based on traditional algebraic specification methods. We can
only repeat after F. Parisi-Presicce and A. Pierantonio that "the algebraic
framework so far has been inadequate in describing the dynamic properties
of objects and their state transformation as well as more complex notions
typical of the object oriented paradigm such as object identity and persis-
tency of objects" [10]. The interested reader can refer to [11, 12, 13, 14].
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We review here several works considering object states as algebras. The
first of them are object-oriented extensions of the prominent specification
methods VDM [15] and Z [16]. These are VDM++, Object-Z, and Z++.
VDM++ [17] introduces the notion of a class definition as a template

for a collection of objects possessing a number of instance variables (inter-
nal state) and methods (external protocol). The definitions of the methods
of existing classes can be inherited when a new class is defined (multi-
ple inheritance). Object’s initial state and invariant can be specified. A
set of statements typical of the imperative programming language is pro-
vided. Unfortunately, the description of the semantics of the language is
done rather informally, in the way the semantics of programming languages
is usually done. As a result, the user gets the impression that VDM++
is a programming language provided with some specification facilities (pre-
and post-conditions) rather than a specification language. No genericity is
provided in the language.
Object-Z [18] practically has the same features as VDM++ with the

difference that it is based on Z. A class is here a set of attributes and a
set of operations acting upon these attributes. In contrast to VDM++, the
semantics of Object-Z is formally given. The state is considered here as a
function from a set of identifiers (attributes) to the set of all possible values.
One can say that it corresponds to a homogeneous algebra whose signature
contains only constant symbols (compare it with a more general case of
ASM where functions as algebra components play significant role). An
association of an operation identifier with a finite partial function defining
the values of the operation arguments is called an event. A state transition is
defined as a triple consisting of an event and two states (source and target).
A class definition can be supplied with a number of type parameters, a
kind of unconstrained genericity is provided in this way. No notion of class
category and, respectively, constrained genericity exists in the language.
Object creation is also not provided by the language. Thus, a specification
like that one of lists given above is not possible.
Z++ [19, 20] is another development based on Z providing facilities

comparable to those of Object-Z. The main difference is that its syntax is
quite different from that of Object-Z (which actually follows the syntax of
Z) and is chosen to stress the commonalties with of the concepts of the
language with those of object-oriented programming languages like Effel.
Formal semantics of the language is defined by means of category theory.
However, the main attention is paid to the formal definition of refinements
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between classes while such important notions as state, class, object, etc. are
considered well-known and not defined in the semantics. Like in Object-Z,
a class definition in Z++ can be supplied with a number of type parameters
providing unconstrained genericity. Again, no notion of class category (in
our sense) and, respectively, constrained genericity exists in the language.
The semantics of a generic class specification is also not reported.
In [21] objects are elements of instance structures which are quadruples

of algebras of different signatures. Specifications of the algebras resemble
traditional algebraic specifications. One of the algebras is extended with
extra "state function symbols" mapping object identifiers to their values.
Dynamic operations serving for object evolution are modeled by algebra
morphisms. The author believes that the specification of these operation
should have an imperative nature, but he does not suggest a method of spec-
ification. The approach is further formalized with a heavy use of category
theory in [10]. In contrast to all of this, we represent the state by a single
algebra, we believe that there are no necessity for state function symbols
since user-defined observers perfectly serve for this purpose, and we suggest
a concrete method of specification by means of transition rules.
The “Hidden Sorted Algebra” approach [11], where some sorts are distin-

guished as hidden and some other as visible, treats states as values of hidden
sorts. Visible sorts are used to represent values which can be observed in a
given state. States are explicitly described in the specification in contrast
to our approach. This work combined with Meseguer’s rewriting logic [22]
has served as basis of the dynamic aspects of the language CafeOBJ [23].
There, states and transitions are modeled, respectively, as objects and ar-
rows belonging to the same rewrite model which is a categorical extension
of the algebraic structure. Meseguer’s rewriting logic is also basis of the
specification language Maude [24].
The specification language Troll [25] should be mentioned as one of the

main practical achievements in the field. Troll is oriented to the specification
of objects where a method (event) is specified by means of evaluation rules
similar to equations on attributes. Although the semantics of Troll is given
rather informally, there is a strong mathematical foundation of its dialect
Troll-light [26], with the use of data algebras, attribute algebras and event
algebras. A relation constructed on two sets of attribute algebras and a set
of event algebra, called object community, formalizes transitions from one
attribute algebra into another. Although Troll possesses generic facilities,
non of them is formalized in [26].
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Finally, a fundamental work [27] formalizing bounded parametric poly-
morphism similar to our constrained genericity should be paid attention.
Here genericity is constrained by allowing only those type arguments which
are subtypes of the parameter type. It is evident that our approach is more
general since not every type category can be defined as an object type. An-
other peculiarity of the work is that an object does not possess a unique
identifier, it is just a tuple of methods, and object’s updates are simulated
by method overrides generally producing new objects.

9. CONCLUSION

The mechanisms for the specification of generic object types and type
categories are introduced in the paper. With the use of these mechanisms,
many generic algorithms abstracting from the type of the data structure
being manipulated can be easily specified. The technique is applied to
the specification of some components of the Standard Template Library for
C++. The library thus specified can be easily adapted to another object-
oriented language. The experience obtained in the process of the specifi-
cation has proved the power of the technique. Its main features can be
summarized as follows:
1. We represent immutable values by data types and specify them alge-

braically.
2. We represent mutable objects possessing states by object types and

specify them by means of transition rules.
3. We define generic (data, object) types to abstract from the type of

the component.
4. We define (data, object) type categories to abstract from the struc-

ture.
5. We define a generic algorithm by means of transition rules manipu-

lating the objects thus specified.
Tools supporting this style of specification remain the subject of further

work.
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