
Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

V. A. Nepomniaschy, N. V. Shilov, E. V. Bodin

A NEW LANGUAGE BASIC-REAL FOR SPECIFICATION
AND VERIFICATION OF DISTRIBUTED SYSTEM MODELS

Preprint
65

Novosibirsk 1999

To design distributed systems the standard formal description techniques
(FDT), such as Specification and Description Language (SDL), Extended
State Transition Language (ESTELLE), Language of Temporal Ordering
Specification (LOTOS) are used. The verification of FDT specifications
(proving their safety, progress, and other properties) is still an open prob-
lem. The logical approach to the problem consists in the development
of mathematical semantics for FDT, in a choice of a logical language for
property presentation, and in the development of a corresponding proving
methodology.

Our approach to verification of SDL specifications uses two-level scheme
which combines the translation of SDL to a model high-level language with a
verification method for the models. We use especially designed Basic-REAL
(bREAL) specification language. This language with rigorous mathematical
semantics is a version of the specification language REAL based on SDL and
CTL.

The paper presents syntax and semantics of bREAL in both formal and
informal levels. Some semantical properties of bREAL specifications (in-
cluding invariance under stuttering and the interleaving property of con-
currency) are proved. A specification and verification example (“Good
Passenger and Slot-Machine”) is also given.

c© A. P. Ershov Institute of Informatics Systems, 1999

Российская академия наук
Сибирское отделение

Институт систем информатики
им. А. П. Ершова

В. А. Непомнящий, Н. В. Шилов, Е. В. Бодин

НОВЫЙ ЯЗЫК BASIC-REAL ДЛЯ СПЕЦИФИКАЦИИ И
ВЕРИФИКАЦИИ МОДЕЛЕЙ РАСПРЕДЕЛЕННЫХ

СИСТЕМ

Препринт
65

Новосибирск 1999

Для разработки распределенных систем широко используются методы
формального описания (МФО), такие как Specification and Description
Language (SDL), Extended State Transition Language (ESTELLE), Lan-
guage of Temporal Ordering Specification (LOTOS). Верификация МФО-
спецификаций (доказательство свойств безопасности, прогресса, etc.) —
актуальная научная проблема. Логический подход к этой проблеме
подразумевает разработку точной математической семантики дляМФО,
выбор логического языка представления свойств и выбор соответству-
ющей методики доказательства.

Предлагаемый подход к верификации SDL-спецификаций использует
двухуровневую схему. На первом этапе SDL-спецификации транслируются
в модельный язык высокого уровня, а на втором этапе верифицируются
свойства модельных спецификаций. В качестве модельного языка исполь-
зуется специально разработанный язык Basic-REAL (bREAL). Этот язык
имеет точную математическую семантику и является версией ранее
описанного языка REAL, который основан на SDL и CTL.

В препринте на формальном и неформальном уровне описаны син-
таксис и семантика языка bREAL, доказано несколько математических
свойств этой семантики (включая устойчивость к заиканию и интер-
ливинговый характер параллелизма), приведен пример спецификации
и верификации системы “Касса-Пассажир”.

c© Институт систем информатики им. А. П. Ершова СО РАН, 1999

1. INTRODUCTION

The standard formal description techniques (FDT), such as SDL (Spec-
ification and Description Language) [27], ESTELLE (Extended State Tran-
sition Language) [12], LOTOS (Language of Temporal Ordering Specifica-
tion) [11] are used for design of distributed systems. The verification of
FDT specifications (proving their safety, progress, and other properties) is
an actual open problem. The logical approach to the problem consists in
the development of mathematical semantics for FDT, in a choice of a log-
ical language for the property presentation and in the development of a
corresponding proving methodology. Implementation of FDT specifications
is another important problem and we would like to separate it from the
verification problem.

The development of mathematical semantics lags behind the Formal
Description Techniques evolution. A challenging Object-Oriented advance
of FDTs in the 90-ies widens the gap between the modern FDTs and the
mathematical background, between the distributed system specification and
their mathematical verification. For example, the latest version of SDL-92
has no formal semantics oriented to verification [14] although interesting
results have been obtained for fragments of SDL-88 [5, 13, 19, 24]. As far as
concerns the property presentation of SDL specifications, linear (LTL) and
branching time (CTL) temporal logics [7, 19], metric temporal logic (MTL)
[1, 2, 18], Lamport’s logic TLA+ [14], process algebra (CRL) [13] have been
used. We would like to remark that using these formalisms for real-time
properties often leads to complicated formulae.

A popular approach to proving properties of SDL specifications is a simu-
lation of SDL specifications by special models which preserve the properties
under consideration. Finite automata and other finite transition systems,
Petri nets, UNITY programs, etc. are used as models of the specifica-
tions. Two methods are mainly used for proving properties of the mod-
els, namely, model-checking and inductive reasoning. The standard model-
checking method [9] is successfully employed for finite systems, while induc-
tive reasoning is oriented to parameterized and infinite state systems. The
automatic nature is the main advantage of the model-checking technique,
while inductive reasoning implies a manual design of proof outlines and
the level of automatization is limited by the proof-checking. The combina-
tion of model-checking with abstraction (i.e., a homomorphical compression
of a large, or parameterized, or infinite model into a relatively small finite
model) [10] seriously extended a sphere of application of the model-checking

5

method. But the abstraction method requires much additional work for each
nontrivial case of study in order to ensure that the compression mapping
is really homomorphical. The inductive reasoning methods have been pro-
posed for proving safety properties of infinite transition systems [16] and
properties of UNITY programs [8]. We suppose that a development of an
SDL-oriented verification technique is of considerable importance

Our approach to verification of SDL specifications uses two-level scheme
which combines the translation of SDL to a model high-level language with
a verification method for the models. Since the use of a low-level language
(like Petri nets or transition systems) restricts an expressive power of SDL,
we use an especially designed Basic-REAL (bREAL) specification language.
This language with rigorous mathematical semantics is a version of the spec-
ification language REAL [20, 21] based on SDL and CTL. A preliminary
version of bREAL was shortly described in [22]. First verification experi-
ments were described in [3].

The rest of the paper consists of five sections and Appendix. The main
constructs of bREAL are explained informally in Section 2. Foundations
of its formal semantics are described in Section 3. Semantical properties of
bREAL specifications including invariance under stuttering and the inter-
leaving property of concurrency are proved in Section 4. An example “Good
Passenger and Slot-Machine” is given in Section 5. The method of verifica-
tion of progress properties and the verification of the example is considered
in Section 6. In conclusion the results and prospects of our approach are
discussed. Appendix contains the formal syntax, semantics of bREAL, and
specification of the system from the example.

The research is supported by the INTAS-RFBR grant under contract
95-0378.

2. THE GENERAL CONCEPTS OF BREAL

2.1. Representation of the distributed systems

Distributed systems are presented as executional specifications. The
executional specifications have a hierarchical structure based on processes.
The processes can be grouped into blocks which, in turn, make up higher
level blocks.

Channels are used to describe the communication between such enti-
ties as processes, blocks, and the environment. Channels are intended for
passing signals with possible parameters. Channels can have different inner

6

structures, viz., queues, stacks, bags. A process specification in bREAL lan-
guage, as well as an SDL process, describes a sequence of assignments, signal
and parameter reading/writing from/into a channel, a channel cleaning.

In contrast to SDL, each action in bREAL is associated with a time
interval, which specifies the duration of the action. Non-deterministic flow
of control is admissible.

The bREAL language employs a new time concept, i.e., the concept of
multiple clock synchronized by means of linear inequalities on its speeds.

The set of behaviours of an executional specification can be restricted
by fairness conditions. We will consider only the “fair behaviours”, i.e., the
behaviours in which each fairness condition holds infinitely often.

2.2. Representation of the properties

The properties of executional specifications are presented by logical
specifications. Logical specifications expand the branching temporal logic
CTL[9] by means of time intervals and dynamic logic constructs[15]. The
formulae of this language are constructed from predicates by means of
Boolean operations, variable quantification, and two kinds of modalities.
The first kind is behavioural modality with the meaning “for all behaviours”
and “there exists a behaviour”. The second kind of modalities is temporal
modalities on multiple time interval with the meaning “for all time moments”
and “there exists a time moment”.

The predicates are of the following four kinds:
1. relations between values;
2. locators of the control flow;
3. emptiness/fullness controllers for channels;
4. checkers of signals for channels.

2.3. Time concept

A scale is a finite set of linear (in)equalities, where time units are vari-
ables, and integer numbers are coefficients.

Each time unit presented in the scale is a tick of a special clock. A
collection of special clocks is a multiple clock. The scale defines a set of
restrictions for synchronization of special clock speeds in the multiple clock.
The asynchronous clock system synchronized by means of the scale can be
used as a multiple clock measuring time in multiticks. A multiinterval is a
finite set of intervals with its boundaries presented by linear expressions with

7

integer coefficients over time units. (The boundaries NOW and INF also can
be used.) There are three popular semantical formalisms for time: discrete
time, fictitious tick, and continuous time[1]. From a conceptual point of
view, our approach is close to the fictitious clock model[25].

2.4. An outline of the syntax

A specification (executional or logical) consists of a head, a scale, a
context, a scheme, and subspecification(s).

The head defines the specification name and kind: an executional speci-
fication is either a process or a block, and a logical one is either a predicate
or a formula. Processes and predicates are elementary specifications, blocks
and formulae are composite specifications.

The concepts of time and scale were discussed above.
The context of a specification consists of type definitions, variable and

channel declarations. Let us note that there are program and quantor vari-
ables in the bREAL language. The values of the quantor variables can not
be changed in executional specifications, they can be varied by the (universal
and existential) quantifiers in logical specifications. The values of program
variables can be changed by assignments in executional specifications.

The scheme of an executional specification consists of a diagram (de-
scribed in the following sections) and a finite set of fairness conditions. The
concepts of a fairness condition and fair behaviour were discussed above.

The scheme of a logical specification consists of a diagram and a system
list. The system list consists of the name(s) of the executional (sub)specifi-
cation(s) whose properties are described by the logical specification.

A diagram of a formula is constructed from name(s) of (sub)specifica-
tion(s) by propositional combinations, quantification over a quantor vari-
able, and dynamic/temporal expressions.

2.5. Block diagrams

A block diagram consists of channel routes. A route connects a subblock
with another subblock or (exclusively) with the (external) environment. In
the last case the channel is called an input or output channel. Otherwise, the
channel is called an inner channel. A block diagram can have both graphical
and linear (textual) form. The graphical form of the block diagram is a
marked graph whose vertices are rectangles marked by names of subblocks
or the environment symbol, and the edges correspond to channels. The

8

linear form of a block diagram is a list of edges of the graphical form. The
two forms of the block diagram representation are equal in rights.

An informal semantics of blocks is as follows. All subblocks of a block
work in parallel, and they interact with each other and with the external
environment by sending/reading signals with parameters via channels. As
follows from the formal semantics of bREAL, a concurrent access to channels
is impossible, i.e., at each moment only one subblock or the environment
can change the contents of a channel.

2.6. Process diagrams

A process diagram is a generalization of a program scheme. It consists
of transitions. Each of them consists of a control state, a body, a time
interval, and a non-deterministic jump to next control states. The body of
a transition determines the action to perform, such as

• to read a signal from an input channel
(and to assign the values of the parameters to program variables);

• to write a signal into an output channel
(with parameter passing by value);

• to clean an input or output channel;
• to execute a non-deterministic sequential program.

Each of the actions is performed instantly, but it can happen only within
the time interval specified for the transition.

A process diagram can have both graphical and linear forms. The graph-
ical form of a process diagram is auxiliary and can be omitted. It is an ori-
ented graph, whose vertices are marked by the control states, while the edges
represent the control flow. The shape of a vertex depends on the kind of the
correspondent transition: > (“pendant”), if the state marks a transition
with a signal sending; < (“flag”), if the state marks a transition with
a signal reading; C (“standard”), if the state marks a transition with
a signal cleaning; (“box”), if the state marks a transition with a pro-
gram execution; �� ��(“oval”), if the state marks no transition. In contrast
to the graphical form, the linear form of a process diagram is mandatory.
It is a complete description of all transitions of the process.

Each process is non-deterministic but sequential, i.e., no concurrency is
allowed inside a process. A process communicates with the other processes
and the environment by means of input/output channels.

9

3. THE FORMAL SEMANTICS OF BREAL SPECIFICATIONS

3.1. Models with channel structures

To describe the semantics of the bREAL specifications (both executional
and logical), we need the concept of a model with structures for channels.

Let us fix a bREAL specification. A model with channel structures is
a triple M = (DOM, INT, CHS), where a non-empty set is the domain
DOM of the model, INT is an interpretation of relation and operation
symbols over DOM , and CHS is the data structures for channels, i.e., a
mapping which binds the channels with their contents. The structure of
a channel is a set of all possible contents for the channel. We would like
to consider each possible content as a finite oriented graph whose vertices
are marked by signals with vectors of parameter values. For each channel
structure DAT from CHS, two relations (EMP and FUL), two partial
non-deterministic operations (PUT and GET) and one constant (INI) are
defined below. (Here DOMPAR is a set of parameter value vectors from
DOM , dom and ran are the domain and the range of the functions, SIG
is the set of signals admissible for the channel.

EMP = {INI},
PUT : (DAT × SIG × DOMPAR) → DAT,
dom(PUT) = (DAT \ FUL)× SIG × DOMPAR,
ran(PUT) = DAT \ EMP,
GET : DAT → (DAT × SIG × DOMPAR),
dom(GET) = DAT \ EMP,
ran(GET) = ((DAT \ FUL) × SIG × DOMPAR),

If graph ∈ DAT \ FUL, signal ∈ SIG and vector ∈ DOMPAR, then
the graph PUT (graph, signal, vector) is constructed by adding a new
vertex and several edges connecting the new vertex to the other vertices
and by marking the new vertex by the pair (signal, vector). If graph ∈
DAT \ EMP , then

the triple (graph′, signal, vector) is in GET (graph)
�

graph′ differs from graph
by absence of a vertex and

all edges connecting it with the other vertices,
and (signal, vector)

is the marking of the removed vertex in graph.

10

The rules of removing are determined by the channel structure DAT itself.
(Un)bounded queues, stacks, and multisets are standard channel structures
with the standard semantics. For example, if a structure for a channel is a
queue with admissible signals X, Y, and Z with the only parameter being
integer-valued, then DAT is the set of finite sequences (chains, in terms of
graphs) of pairs of the form (a signal, an integer). In this case the relation
EMP is true on the empty sequence, and FUL is always false. Let graph
= (X,10) −→ (Y,-3) −→ (Z,8). Then

PUT (graph,X,3) = (X,10) −→ (Y,-3) −→ (Z,8) −→ (X,3),
GET (graph) = ((Y,-3) −→ (Z,8), X, 10).

An example of a non-standard channel structure with the same set of signals
is the structure DAT ′, consisting (as well as DAT) of all finite sequences
of pairs of the form (a signal, an integer) with the same relations EMP ′ =
EMP and FUL′ = FUL, but with the operation PUT ′ of insertion of a new
vertex into the middle of the sequence and the operation GET ′ of removing
a vertex from either of the ends of the sequence. The operation PUT ′ is
non-deterministic on all sequences with odd length, and the operation GET ′

is non-deterministic on all sequences with at least two elements. Thus, for
the same sequence graph we have:

PUT ′(graph,X,3) = (X,10) −→ (X,3) −→ (Y,-3) −→ (Z,8) and
PUT ′(graph,X,3) = (X,10) −→ (Y,-3) −→ (X,3) −→ (Z,8),
GET ′(graph) = ((Y,-3) −→ (Z,8), X, 10) and
GET ′(graph) = ((X,10) −→ (Y,-3), Z, 8).

3.2. Time scales and multiple clocks

A scale is a set (a system) of integer linear homogeneous (in)equalities
with time units as variables. A time measure is a positive integer solution
of the system. Thus, we will identify a time measure MSR with a mapping
which associates each time unit with its value MSR(unit). For example,
the scale

1ing ≤ 1min ≤ 20ing, 30opr ≤ 1sec ≤ 100opr, 1min = 60sec
has a solution

sec = 100, min = 6000, opr = 2, ing = 600,
and, therefore,

MSR : sec → 100, min → 6000, opr → 2, ing → 600
is a time measure in this scale. With a fixed time measure MSR, an indica-
tion of a multiple clock T is a mapping of time units into integer numbers so
that there exists an integer t such that for each time unit, we have: T (unit)

11

= [t
MSR(unit)]. Thus, in the time measure fixed above, the following map-

ping T : sec → 246, min → 4, opr → 12315, ing → 246
is an indication of a multiple clock, since there exist even two integer num-
bers t = 24630 and t = 24631 such that
T (sec) = [t

MSR(sec)] = 246, T (min) = [t
MSR(min)] = 4, T (ing) = [t

MSR(ing)]
= 41, T (opr) = [t

MSR(opr)] = 12315. The mapping
T ′ : sec → 24, min → 4, opr → 123, ing → 46

is not an indication of a multiple clock, since T ′(min)×MSR(min) > (T ′(sec)
+ 1)×MSR(sec). Thus, each time unit in the time measure is a tact of a
special clock, and the scale itself impose some synchronization for the special
clock speeds in the multiple clock in order to ensure that all the inequalities
hold.

3.3. Configurations of executional specifications

Let SYS be an executional specification the of bREAL language. Let us
fix a model with structures for channels M = (DOM, INT, CHS) and the
time measure MSR. According to the syntax, SYS finally consists of the
processes combined into (sub)blocks. Let PR1, ... PRk be all processes of
SYS. An extended name (of a variable, state or channel) is the name itself
preceded by the “path” of subblock names in accordance with the nesting.
For example, if a system contains a subblock b1 which in turn contains a
subblock b2 which contains a process p with a variable v, then the extended
name of this variable in the system is b1.b2.p.v.

A configuration CNF of an executional specification SYS is a quadruple
(T, V, C, S), where

• T is the indication of the multiple clock;
• V is the valuation of variables;
• C is the current contents of the channels;
• S is the current state of the control flow.

The valuation of variables is a mapping that maps each extended name of
each variable of the processes PR1, ..., PRk to its current value from DOM .
The current state of the control flow is a pair of mappings (ACT, DEL)
that maps each extended name of each state of the processes PR1, ..., PRk

to the Boolean characteristic of its current activity and the current delay
(the indication of a special local multiple clock associated with each state).
For an individual process, the Boolean characteristic of the control state
activity is a characteristic function of a one-element set.

A merge operation M(CNF 1, ..., CNF k) is said to be possible for the

12

configurations CNF 1 = (T 1, V 1, C1, S1) , ..., CNF k = (T k, V k, Ck, Sk) of
the processes PR1, ..., PRk iff T 1 = . . . = T k and for each channel
and for all processes PRi and PRj , if channel is their common channel (an
input channel for one of the processes and an output one for the other) then
Ci(channel) = Cj(channel). If the merge is possible, then the result of the
merge is a configuration CNF = (T, V, C, S) of the executional specification
SYS such that for each 0 ≤ i ≤ k

• T = T i;
• the current value V i of the variables of the process PRi coincides
with the value V of its extended name;

• the contents Ci of the channels of the process PRi coincides with the
contents C of its extended name;

• the activity characteristic and the current delay Si for the states of
the process PRi coincides with the activity characteristic and the
current delay for its extended name.

When the subblocks are considered instead of the processes, the merge is
defined in a similar way.

If BLK is a subblock of an executional specification SYS, and CNF =
(T, V, C, S) is the configuration of SYS, then the projection of CNF to BLK
(denoted by CNF/BLK) is a configuration CNF ′ = (T ′, V ′, C′, S′) of the
subblock BLK such that

• T ′ = T ;
• for each variable V ′(variable) = V (BLK.variable);
• for each channel C′(channel) = C(BLK.channel);
• for each state S′(state) = S(BLK.state).

It is easy to prove by induction over the specification structure that a
configuration of an executional specification is a merge of its projections to
all its processes, i.e., CNF = M(CNF/PR1, ..., CNF/PRk).

3.4. The semantics of executional specifications

The semantics of the executional specifications is defined in terms of
events and step rules. There are six kinds of events:

• sending a signal with parameters into a channel (WRiTing),
• receiving a signal with parameters from a channel (ReaDiNg),
• cleaning an input channel (CLeaNing INput),
• cleaning an output channel (CLeaNing OUTput),
• program execution (EXEcution),
• invisible event (INVisible).

13

A firing is a triple CNF1 < EV N > CNF2. If EV N �= INV , then the
firing is said to be active. Otherwise, it is called passive. A step rule has the
form CND |= CNF1 < EV N > CNF2, where CNF1 < EV N > CNF2 is
a firing while CND is a condition on the configurations CNF1, CNF2 and
the event EV N . An intuitive semantics of the step rule is as follows: if the
condition CND holds, then the executional specification can transform the
configuration CNF1 into the configuration CNF2 by means of the event
EV N . In total, there exist twelve step rules for executional specifications.
A countable sequence of configurations is a behaviour of a specification
iff, for each successive pair of configurations CNF1 and CNF2 of this
sequence, there exists an event EV N and a condition CND, such that CND
|= CNF1 < EV N > CNF2 is an instance of a corresponding step rule.
A behaviour of an executional specification is said to be fair iff each of the
specification’s fairness conditions holds infinitely often in the configurations
of this behaviour.

For blocks there is a unique step rule, namely, the composition rule.
Informally, a behaviour of a block is an interleaving merge of consistent
behaviours of its subblocks. Let us fix a model with channel structures
M = (DOM, INT, CHS) and a scale MSR. Then the composition rule for
the block B, consisting of the subblocks B1, ..., Bk, is as follows.
RULE 0 (Composition)
For each i = 1, . . ., k, CNF1/Bi < EV N/Bi > CNF2/Bi

|= CNF1 < EV N > CNF2.
The other eleven step rules deal with individual processes and the en-

vironment. They are given in Appendix 2 while an informal survey and
examples are given below. For simplicity of presentation, let us use meta-
variables state, state′, nextstate, signal, variable, variable′, channel, channel′,
interval, program and jumpset (for sets of states). Let us fix values of state,
nextstate, signal, variable, channel, program and jumpset so that nextstate
∈ jumpset.

The first rule for a process is a stutter rule. Informally, it concerns the
case when nothing changes in the process. This rule is essential for the
interleaving merge of consistent behaviours of some processes with shared
channels into a behaviour of a block.

The second rule deals with stabilization and it means that a process is in
a state which does not mark any transition on the process diagram. Thus,
the process stabilizes forever, and the configuration of the process cannot
change and is called a stable configuration.

14

The third and fourth rules deal with a process reading a signal with a
parameter from an input channel and writing a signal with a parameter into
an output channel, respectively.

Let us fix a process and the two configurations, CNF1 = (T 1, V 1, C1, S1)
and CNF2 = (T 2, V 2, C2, S2). For simplicity let us consider the case when
each signal has the only parameter whose name is not used explicitly.
RULE 4 (Writing a signal)
The diagram has the transition
state WRITE signal(variable) INTO channel interval JUMP jumpset,
T 1 = T 2, ∀state′DEL2(state′) = 0, V 1 = V 2,
PUT (C1(channel), signal, V 1(variable)) = C2(channel),
∀ channel′ �= channel: C1(channel′) = C2(channel′),
state ∈ ACT 1, nextstate ∈ ACT 2, DEL1(state) ∈ interval
|= CNF1 < WRT (channel , signal , variable) > CNF2.

The fifth and the sixth rules deal with appearance of a new signal with
a parameter in an input channel and with disappearance of a signal with
a parameter from an output channel. The environment ENV is responsible
for those actions. The process itself can only observe the appearance of
a new signal in an input channel or that some signal disappears from an
output channel. In accordance with the composition rule, if a process is
combined with other process(es) into a block then appearance of a new sig-
nal in its input channel corresponds to writing this signal into this channel
by the partner process. Similarly, if a process is combined with other pro-
cess(es) into a block, then disappearance of a signal from its output channel
corresponds to reading this signal from this channel by the partner process.
RULE 5 (Appearance of a signal)
The diagram has the transition
state WRITE signal(variable) INTO channel interval JUMP jumpset,
T 1 = T 2, V 1 = V 2, ACT 1 = ACT 2,
PUT(C1(channel), signal, V1(variable)) = C2(channel),
∀ channel′ �= channel: C1(channel′) = C2(channel′),
DEL1(state) ∈ interval, ∀ state′ DEL2(state′)=0
|= CNF1 < INV > CNF2

The seventh and the eighth rules are the rules of cleaning the input and
the output channels, respectively.

The ninth rule for a process is the rule of program execution.

15

RULE 9 (Program Execution)
The diagram has the transition state EXE program interval JUMP jumpset,

T 1 = T 2, C1 = C2, (V 1, V 2) ∈ IO(program),
state ∈ ACT 1, nextstate ∈ ACT 2,
DEL1(state) ∈ interval, ∀ state′: DEL2(state′)=0
|= CNF1 < EXE(program) > CNF2

The tenth rule deals with time progress. It concerns the case when noth-
ing has changed except the value of the multiple clock and the synchronous
local multiple clock of each current delay, and there is a transition marked
by the active state such that its current delay has not exceeded the right
bound of the corresponding time interval.

The eleventh rule deals with a so called starvation. It is similar to the
time-progress rule, but in this case all transitions marked by the active state
have their current delays exceeded the right bound of the corresponding time
interval. It means that the process failed to read or write a signal during
the specified time interval.

3.5. The semantics of logical specifications

The semantics of logical specifications is defined in terms of validity in
the configurations. For each configuration CNF and each logical specifica-
tion SPC, CNF|= SPC means that the configuration CNF belongs to the
truth set of the logical specification SPC, and CNF�|= SPC means the nega-
tion of this fact. In order to shorten the description of the semantics, let
us fix a model with channel structures M = (DOM, INT, CHS), a scale
MSR, and a configuration CNF=(T, V, C, S). Let the relation CNF |= be
defined by induction on structure of the diagram of a logical specification
SPC.
Induction basis: SPC is a predicate.
If SPC is a relation, then its diagram has the form R(t1, . . . , t2), where

R is a relation symbol, and t1, . . . , t2 are terms constructed from the op-
eration symbols, variables and parameters of channels. Then CNF |=
SPC ⇔ (V ALCNF (t1), . . . , V ALCNF (t2) ∈ INT (R), where the values
V ALCNF (t1), . . . , V ALCNF (t2) are determined according to the ordinary
rules.

If SPC is a locator, then its diagram has the form AT state. Then
CNF |= SPC ⇔ S(state) = true.

If SPC is a controller, then its diagram has the form EMP channel
or FUL channel. Then CNF|= SPC ⇔ EMP(C(channel)), CNF|= SPC ⇔
FUL(C(channel)), respectively.

16

If SPC is a checker, then its diagram has the form signal IN channel or
signal RD channel. Then CNF|= SPC iff there exists a value from DOM ,
such that there exists a vertex (signal, value) in C(channel); CNF|= SPC
⇔ there exists a graph from DAT and a value from DOM , such that
GET (C(channel)) = (graph, signal, value), respectively.
Induction step. If the diagram of SPC is a name of a predicate, then

CNF |= SPC ⇔ CNF |= PRD, where PRD is the predicate with this
name. If the diagram of SPC is a propositional combination, then its value
is determined in a natural way. For example, if the diagram of SPC has
the form ¬ A, where A is the diagram of a formula, then CNF|= SPC ⇔
CNF�|= SPA, where SPA is a formula differing from SPC with the diagram
only, which is A.

If the diagram of SPC is ∀ variable A (∃ variable A), where A is a
formula diagram, then CNF |= SPC iff for each (some, respectively) config-
uration CNF ′ differing from CNF at most with the evaluation of variable,
the following holds: CNF ′ |= SPA, where SPA is a formula differing from
SPC with the diagram only, which is A.

If the diagram of SPC is M1 SYS M2 IT A, where M1 is a modality AB
or EB, SYS is an executional specification, M2 is a modality AT or ET, IT
is a time interval, and A is a formula diagram, then we have the following.
Modality AB means “for All Behaviours” and EB means “there Exists a Be-
haviour”. In general, M1 SB ranges over a set of behaviours SB and, in
particular, this set consists of all fair behaviours of SYS. AT means “for All
Time moments” and ET means “there Exists a Time moment”. In general,
M2 ST they range over a set of time moments ST and, in particular, this
set consists of all time moments of IT.

For example: CNF |= AB SY S ET IT A iff each fair behaviour of SYS
starting with CNF , for some moment of time T ′ ∈ IT, CNF ′ |= SPA, where
CNF ′ is a configuration from the behaviour with T ′ as the multiple clock
and SPA is a formula differing from SPC with the diagram only, which is
A.

If a logical specification has a diagram ⇒ EACH SYS ♦FROM NOW TILL
∞ where SYS is the only element of a system list of the specification, then
let us use the following logical macro leadsto (�→) for presentation of the
diagram of the specification. That is, CNF |= (A �→ B) iff CNF |= A implies
that for each fair behaviour of the executional specification SYS that starts
from CNF , there exists a configuration CNF ′ from this behaviour such
that CNF ′|= B.

17

4. THE PROPERTIES OF THE BREAL SEMANTICS

4.1. Invariance under stuttering

In [17] a property of invariance under stuttering was introduced. It
means that the value of a formula is not affected when a finite number of
copies of the elements of the sequence are added. The bREAL specification
has a similar property.

Let us fix the model M with structures for channels and the time mea-
sure MSR. For all behaviours SEQA and SEQB, SEQB is said to be ob-
tained from SEQA by copying configurations (or SEQB is a copy-extension
of SEQA) iff
SEQA = CNF0 ... CNFi,
SEQB = CNF0...CNF0 ... CNFi...CNFi,
i.e., when some (possibly none) configurations from SEQA can be repeated
several times in SEQB. For all sets of behaviours SETA and SETB, SETB
is said to be obtained from SETA by copying configurations iff
• each behaviour in SETB is obtained from a behaviour from SETA by
copying configurations,
• for each behaviour from SETA there exists a behaviour in SETB which is
obtained from the behaviour from SETA by copying configurations.

The semantics of executional and logical bREAL specifications guaran-
tees the invariance under stuttering in the following sense.
Theorem 1
Let SYS and PRP be an executional and a logical bREAL specifications.
1.1 For all behaviours SEQA and SEQB, if SEQB is obtained from SEQA
by copying the configuration, then SEQA is a behaviour (fair behaviour)
of the executional specification SYS iff SEQB is a behaviour (resp., a fair
behaviour) of the same specification SYS.
1.2 For all sets of behaviours SETA and SETB, if SETB is obtained from
SETA by copying the configuration, then for all modalities M1 and M2,
each time interval DRTN (DuRaTioN) the validity sets of the logical speci-
fications M1 SETA M2 DRTN PRP and M1 SETB M2 DRTN PRP are the
same. (Let us remind that in general M1 can range over a set of behaviours
as well as M2 can range over a set of time moments.)
Proof.
1.1 Let the conditions of the theorem hold. Hence, the behaviours SEQA

and SEQB can be presented as
SEQA = CNF0 ... CNFi ,

18

SEQB = CNF0...CNF0 ... CNFi...CNFi
If SEQA is a behaviour of SYS, then there is a sequence of the events

EVN0 ... EV Ni such that the sequence
CNF0 < EV N0 > CNF1, ... CNFi < EV Ni > CNFi+1,
is a sequence of firings. But for each configuration CNF the triple CNF <
INV > CNF is a firing due to the stutter rule. Therefore, the sequence
CNF0 < INV > CNF0, ..., CNF0 < EV N0 > CNF1,
...
CNFi < INV > CNFi, ..., CNFi < EV N0 > CNFi+1,
...
is a sequence of firings. Hence, SEQB is a behaviour of SYS. If SEQA is a
fair behaviour of SYS, then, for each fairness condition CND of SYS, there
is a countable sequence of indices i0, . . . ij, such that CNFi0 |=
CND, ... CNFij |= CND,, and, therefore, SEQB is also a fair
behaviour of SYS.

If SEQB is a behaviour of SYS, then there is a sequence of events
EVN0,0 ... EV N0,k0 EV N0 EVNi,0 ... EV N0,ki EV N0
such that the sequence
CNF0 < EV N0,0 > CNF0, ... CNF0 < EV N0,k0 > CNF0,
CNF0 < EV N0 > CNF1,
... ...
CNFi < EV Ni,0 > CNFi, ... CNFi < EV Ni,ki > CNFi,
CNFi < EV Ni > CNFi+1,
...
is a sequence of firings. Then the sequence
CNF0 < EV N0 > CNF1, CNFi < EV N0 > CNFi+1,
is a sequence of firings. Therefore, SEQA is a behaviour of SYS. If SEQB is
a fair behaviour of SYS, then, for each fairness condition CND of SYS, there
is a countable sequence of indices i0, . . . ij, such that CNFi0 |=
CND, ... CNFij |= CND,, and, therefore, SEQA is also a fair
behaviour of SYS.

1.2 Let the conditions of the theorem hold. All the cases of different M1
and M2 are considered in a similar way, so, let M1 be SOME, and let M2 be
�. Let CNF = (T, V, C, S) be an arbitrary configuration.

If CNF |= SOME SETA � DRTN PRP, then in SETA there is a behaviour
SEQA = CNF0 ... CNFi, such that CNF = CNF0 and for each
configuration CNFi = (Ti, Vi, Ci, Si) in this behaviour with Ti ∈ T0 +
DRTN holds CNFi |= PRP. Since SETB is a copy-extension of SETA, then

19

in SETB there is a behaviour SEQB = CNF0...CNF0 ... CNFi...CNFi

... Since CNF = CNF0 and for each configuration CNFi =
(Ti, Vi, Ci, Si) in this behaviour with Ti ∈ T0 + DRTN holds CNFi |=
PRP, then CNF |= SOME SETB � DRTN PRP.

If CNF |= SOME SETB � DRTN PRP, and SETB is a copy-extension of
SETA, then there is a behaviour SEQB in SETB which can be represented
as CNF0...CNF0 ... CNFi...CNFi, where CNF = CNF0, for each
configuration CNFi = (Ti, Vi, Ci, Si) in this behaviour with Ti ∈ T0 +
DRTN holds CNFi |= PRP, and CNF0 ... CNFi is a behaviour
SEQA from SETA. Therefore, CNF |= SOME SETA � DRTN PRP.
�

4.2. The interleaving property of concurrency

Let us fix the model with channel structures and the time measure.
Theorem 2
Let SYS be an executional bREAL specification, CNF1 and CNF2 be a
pair of configurations of SYS, PRi, i = 1, ..., k be all the processes of SYS,
and EV N be an event.

(2.1) CNF1 < INV > CNF2 is a firing of SYS iff for each i, 1 ≤ i ≤ k,
CNF1/PRi < INV > CNF2/PRi is a firing of the process PRi.

(2.2) CNF1 < EV N > CNF2 is an active firing of SYS iff there exists
j, 1 ≤ j ≤ k, such that
CNF1/PRj < EV N/PRj > CNF2/PRj is an active firing of the process
PRj , and for each i, i �= j, 1 ≤ i ≤ k, CNF1/PRi < INV > CNF2/PRi

is a passive firing of the process PRi.
Proof is made by induction over the hierarchical structure of the executional
specifications.

Induction base: SYS is a process. Then SYS coincides with PR1, k = 1,
and the statements (2.1) and (2.2) are evident.

Induction step: SYS is a block and it consists of subblocks B1, . . ., Bm

for which the statement of the theorem holds. Let the block Bi consist of
the processes PRi,j , 1 ≤ j ≤ ki. Let us note that the set of all processes
PRi,j coincides with the set of all processes PRi, i.e., the double indexing
only distributes the processes over the topmost subblocks, and it is only a
renumeration of the processes.

(2.1) Let CNF1 < INV > CNF2 be a firing of SYS. Then the com-
position rule has been applied (since this is the only possible rule for the
blocks), and, hence, its premise is true. Therefore,

20

∀i, i = 1, ..., m, CNF1/Bi < INV > CNF2/Bi is a firing of Bi.
Due to the induction assumption, for all Bi the statement (2.1) holds, i.e.,

CNF1/Bi < INV > CNF2/Bi is a firing of Bi iff
for each l, 1 ≤ l ≤ ki,
CNF1/PRi,l < INV > CNF2/PRi,l is a firing of the process PRi,l.

On the other side, if for each i, 1 ≤ i ≤ k, CNF1/PRi < INV >
CNF2/PRi is a firing of the process PRi then, due to the induction as-
sumption (2.1), for all topmost subblocks Bi (i = 1, ..., m) of the speci-
fication SYS, CNF1/Bi < INV > CNF2/Bi is a firing of the subblock
Bi. So, the conditions of the composition rule hold, which implies that
CNF1 < INV > CNF2 is a firing of SYS.

(2.2) Let CNF1 < EV N > CNF2 be an active firing of SYS. Then (as
SYS is not a process) the composition rule has been applied. Therefore, the
condition of the composition rule holds, i.e., for all i = 1, . . ., m CNF1/Bi

< EV N/Bi > CNF2/Bi is a firing of Bi. Due to the definition of the
projection, there is no event EV N which could have several active projec-
tions. For example, if EV N = RDN(channel, signal, variable) or EV N =
CLNIN(channel), then there is the only process, for which the channel is
an input one, and if EV N = EXE(program), then there is the only process
to which the program belongs, since the extended names of the variables con-
tain the name of the process, and the “empty” programs (SKIP) are indexed
by the name of the process. Thus, there is the only n such that EV N/Bn

= EV N and EV N/Bi = INV (i �= n). Due to the induction assumption
for this Bn, there is j, 1 ≤ j ≤ kn, such that CNF1/PRn,j < EV N >
CNF2/PRn,j is an active firing of the process PRn,j (i.e., EV N/PRn,j

= EV N), and for each l, 1 ≤ l ≤ kn, l �= j CNF1/PRn,l < INV >
CNF2/PRn,l is a firing of the process PRn,l. Since each process belongs
to at most one subblock at every hierarchical level, then there is the only i
such that CNF1/Bi < EV N > CNF2/Bi.

On the other side, if EV N is an active event and there is j, 1 ≤ j ≤ k,
such that CNF1/PRj < EV N > CNF2/PRj is an active firing of the
process PRj , and for each i, 1 ≤ i ≤ k, i �= j CNF1/PRi < INV >
CNF2/PRi is a firing of the process PRi. Then there is an “active” topmost
subblock containing the “active” process. Let the process PRj belong to the
subblock Bn of the topmost level. For this subblock CNF1/Bn < EV N >
CNF2/Bn and CNF1/Bi < INV > CNF2/Bi (i �= n). Let us apply the
induction assumption (2.2) and the (already proven) statement (2.1). Then

21

the conditions of the composition rule hold, since EV N = EV N/Bj, INV
= EV N/Bi (i �= j).

Due to the composition rule, CNF1 < EV N > CNF2 is an active firing
of SYS. �
Corollary (The semantics of concurrency between the processes)
Let SYS be an executional bREAL specification. The set of all behaviours
of SYS coincides with the set of behaviours
CNF0 ... CNFn such that for each 1 ≤ i ≤ k, and for each n ≥ 0
there exists an event EV N i

n for which
(1) CNFn/PRi < EV N i

n > CNFn+1/PRi is a firing of the process PRi,
(2) EV N i

n �= INV ⇒ EV N j
n = INV for all j �= i.

Proof. A behaviour of an executional specification is a countable sequence
of configurations CNF0 ... CNFn, for which there exists a sequence
of events EV N0 ... EV Nnsuch that CNF0 < EV N0 > CNF1 ...
CNFn < EV Nn > CNFn+1
is a sequence of firings. Now it is sufficient to refer to the Theorem 2.
�

5. AN EXAMPLE “PASSENGER AND SLOT-MACHINE”

Let us consider the following example: a protocol of serving a good
passenger by a vending-machine. The vending-machine keeps the money
received from the passenger and has the following features:
• a keyboard with stations, return, and request buttons;
• a slot for coins;
• an indicator for showing a sum;
• a tray for change;
• a booking window.
A good passenger knows a station that he/she needs, has enough money
and can:
• press buttons on the keyboard;
• drop coins into the slot;
• see the reading of the indicator;
• get coins from the change tray;
• get a ticket from the booking window.
Informally, the protocol of serving a good passenger is as follows. The seance
begins from the passenger pressing a button corresponding to the desired
station on the keyboard. The vending-machine having received the station
name shows the price on the indicator. Then the following loop begins: the

22

passenger looks at the indicator and, if he/she sees a non-zero sum, chooses
a coin and drops it into the slot, then the vending-machine subtracts the
nominal of the coin from the sum to be received from the passenger and
shows the new value on the indicator. In general, a passenger can quit this
loop at any time by pressing the cancel button, so that the vending-machine
must return through the change tray all the coins received so far. A good
passenger, however, does not use the option and when reads zero from the
indicator he/she presses the ticket request button. The vending-machine
receives the request and prints the ticket with the station name, and the
passenger takes the ticket. The seance is over for the vending-machine when
it returns all sum to a passenger or prints out a ticket. The seance is over
for the passenger when he/she takes the money from the change tray (which
the good passenger never does) or takes the ticket that he/she needed.

Passenger Machine�Buttons

�Slot

�Booking

�Change

�Indicator

Figure 1. Block:“passenger_and_machine”

This protocol can be specified as a block which consists of two processes.
A sketch version of this executional specification is presented below. The
diagram of this block passenger_and_machine is presented on Fig. 1 on
page 23. We would like to avoid some syntactical details related to con-
texts and scales, so we will present in details the diagram and the processes
only. The context of the block consists of inner channels’ declarations and
coincides with the channels’ declarations in the context of a logical specifi-
cation presented in the next subsection. A sketch of the process machine
will consists of the diagram (in the graphical form — see Fig. 2 on page 24)
and the fairness conditions. We would like to remark that three transitions
correspond to the state getcoin in the linear form of the diagram: the first
corresponds to receiving a coin, the second corresponds to receiving the
request ticket command and the last corresponds to receiving the cancel
command. The fairness conditions for machine are:
¬AT start ; ¬AT defcount ; ¬AT showcount ; ¬AT add ; ¬AT retcoin
; ¬AT check ; ¬AT give ;
i.e., a behaviour of the process machine is fair if the process can stay for-
ever in a state other than waiting for input signals. A sketch of the process
passenger is presented by the graphical form of the diagram (see Fig. 3

23

on the page 25). In the state continue “passenger decides” what he/she
must do: to choose a coin (chcoin) or request a ticket (request). So, two
transitions correspond to this state in the linear form of the diagram. The
fairness conditions of passenger are similar to the fairness conditions of
machine: a behaviour of the process passenger is fair if the process can
stay forever in a state other than waiting for input signals. The linear forms
of both processes are presented in Appendix 3.

start ��
��

defcount

�
showcount ��

��
getcoin ��

��

�
add

check

�
give ��

��

�

retcoin ��
��

�
�

�
�finish

��

�

�

�

Figure 2. Process: “machine”

The protocol property to be specified is the following: the protocol of
serving a good passenger guarantees that the vending-maching gives a ticket
to the required station to the passenger. Let us give a logical specification
of this property.

property : FORM
INN CHN buttons FOR station WITH PAR name OF ’a’...’z’,

FOR return, FOR request ;
INN CHN slot FOR coin WITH PAR nominal OF integer ;
INN CHN indicator FOR light WITH PAR sum OF integer ;
INN CHN change FOR change WITH PAR value OF integer ;
INN CHN booking FOR ticket WITH PAR name OF ’a’...’z’ ;
QU VAR passenger.station OF ’a’..’z’ ;
QU VAR machine.expenses OF array [’a’..’z’] of integer ;

24

start
press ��

��

�
look ��

��
continue

�
chcoin
drop ��

��

request ��
��

get ��
��

��
�

�
�satisfaction

�

�

Figure 3. Process: “passenger”

passenger_and_machine
AL machine.expenses .
AL passenger.station .
((start_of_machine & start_of_passenger &
no_commands_on_buttons & no_information_on_indicator &
no_ticket_in_booking)
�→
ticket_in_booking & proper_station))
Thus, for all ticket prices, for each station that passenger may need, the

validity of the conjunction of the five conditions:
the machine is ready (start_of_machine), the passenger wants to buy a ti-
cket (start_of_passenger), no button is stuck (no_commands_on_buttons),
the indicator shows no information (no_information_on_indicator), the
booking is empty (no_ticket_in_booking),
leads to the validity of the conjunction of the two conditions: there is a
ticket in the booking window (ticket_in_booking) and the station on the
ticket is the one that the passenger needs (proper_station).

6. VERIFICATION OF PROGRESS PROPERTIES

6.1. Proof principles

We consider the verification of bREAL specifications as a “proving” of
properties presented by logical specifications for associated systems pre-
sented by executional specifications. Our approach is close to the one of

25

[16] and it consists of
— the classification of logical specifications according to their syntactical

structure to the problem classes,
— the development of correspondent proof metaprinciples for each prob-

lem class,
— the design of proof outlines in terms of proof principles in accordance

with the syntactical structure of properties and systems.
It is necessary to note that the proof principles differ from the inference

rules, since the inference rules are purely syntactical and they are applied
in the framework of a fixed axiomatic theory, while the proof principles are
used in the framework of a metatheory which usually includes set theory or
arithmetics.

We would like to illustrate our approach by the class of time-free progress
properties, i.e., the class of the properties which can be presented in the
bREAL logical specification by means of formulae whose diagrams have
the form A �→ B, where A and B are subdiagrams. To formulate the
proof principles, let us fix the executional specification SYS which is the
only element of the system list of the formula. Let SET ′ and SET ′′ (with
possible subscripts) denote sets of configurations of the system SYS. The
semantics of the expression SET ′ �→SET ′′ is as follows: for each configura-
tion CNF ′ ∈ SET ′ and each fair behaviour of the executional specification
SYS, if this behaviour begins from CNF ′, then it contains the configuration
CNF ′′ ∈ SET ′′. Thus, if SET ′ and SET ′′ are the truth sets of logical
specifications with the diagrams A and B, respectively, then SET ′ �→ SET ′′

is equivalent to
A �→ B. When formulating the proof principles, the concept of a fair firing
is used. A fair firing is a firing that begins a fair behaviour of the system.
1. Subset principle.

SET ′ ⊆ SET ′′ � SET ′ �→SET ′′ or in the logical form A → B � A�→B.
2. Union principle.

{SET ′
i �→SET ′′

i |i ∈ I} � (Ui∈ISET ′
i)�→(Ui∈ISET ′′

i)
or in the logical form
∀i ∈ I.(Ai �→Bi) � (∃i ∈ I.Ai)�→(∃i ∈ I.Bi) for each finite set of indices I.
3. Single step principle.

� {CNF ′}�→ {CNF ′′| there exists a fair firing CNF ′ < EV N > CNF ′′}.
4. Transitivity principle.

SET ′ �→SET ′′
1 , SET ′′

1 �→SET ′′

� SET ′ �→SET ′′

26

or in the logical form A�→B, B �→C � A�→C.
5. Principle of mapping to a well-founded set.

Let WFS be a well-founded set, i.e., a set with a partial order without
infinite descending chains. Let MIN be the set of minimal elements of the
set WFS. Let f be a partial function from the set of configurations SET
to the well-founded set WFS. Let us denote by f− a function such that
for C2 ∈ WFS holds f−(C2) = {C1|C1 ∈ SET and f(C1) = C2}. For an
arbitrary function g(x) and a set S of its arguments, let g(S) = {g(s)|s ∈ S}.
Then the principle of mapping to a well-founded set is as follows:
∀v ∈ WFS \ MIN.f−(v)�→f−({u|u < v}) � f−(WFS)�→f−(MIN).

6.2. Verification of the example

Let us, for simplicity in this section, use the abbreviations “p” for “pas-
senger” and “m” for “machine”, respectively. Thus, we are proving the fol-
lowing:
AL m.expenses, p.station
((AT p.start) & (AT m.start) &
(buttons IS EMPTY) & (indicator IS EMPTY) & (booking IS EMPTY) �→
�→ ((ticket IN booking) & booking.ticket.name = p.station))
With respect to a standard inference rule GEN(eralization), A |= ∀x.A, it is
sufficient to prove the following progress property: P �→ Q, where P and Q
are obvious from the above. We would like to point out that it is a property
of a finite but parametrised system.

For a finite set S of states, let AT S = ∨s∈SAT s. Let us introduce the
following denotations.
S0 = {p.look, p.continue, p.chcoin, p.drop},
S1 = {m.showcount, m.getcoin, m.add},
P1: AT S0 & AT S1 & m.station = p.station& m.sum ≤p.sum& buttons
IS EMPTY & booking IS EMPTY & (AT m.showcount ∨
m.sum ≤indicator.light.sum ≤p.sum),
P2: AT p.continue & AT S1 & m.station = p.station & p.sum ≤0 &
m.sum ≤0 & buttons IS EMPTY & booking IS EMPTY,
P3: AT p.get & m.station = p.station & buttons IS EMPTY & ticket
IN booking & booking.ticket.name = p.station.

According to the transitivity principle, to prove this progress property,
it is sufficent to prove the correctness of all “local” progress properties.
P �→P1 �→P2 �→P3 �→Q. But the property P3 �→Q is obvious, since it is a
particular case of the subset principle. The properties P �→P1 и P2 �→P3 are

27

easy to prove using the proof principles, or model-checking[4]. But the step
P1 �→P2 is essentially inductive, since it has an uninterpreted parameter,
viz., the price of the required ticket.

Let us consider the proof of the progress property P1 �→P2, using the
principle of mapping to a well-founded set. As a well-founded set, let us take
the set of pairs of natural numbers with the following partial order: (a1,b1)
< (a2,b2) iff either a1≤a2 and b1<b2, or a1<a2 and b1≤b2. Then MIN
= {(0,0)}. Let SET be the set of configurations such that CNF |= P2.
Let POS mean the operation of getting the positive part of a number, i.e.,
POS(c) = c, if > 0, and 0 otherwise. Let the partial function f : SET →
WFS be the following: f(CNF) = (POS(m.sum), POS(p.sum)), if CNF |=
P2, and undefined otherwise. Let us prove that f−(WFS)�→f−(MIN).

Let us choose v = (a, b) ∈ WFS \ MIN and a fair firing CNF ′ <
EV N > CNF ′′ such that f(CNF ′) = v. Since CNF ′ |= P2, then CNF ′ |=
AT S0 and CNF ′ |= AT S1. Thus, in the configuration CNF ′ the fol-
lowing events are possible: RDN(indicator, light, p.sum), EXE(IF p.sum
≤0 THEN SKIP ELSE ABORT), EXE(IF p.sum >0 THEN SKIP ELSE ABORT),
EXE(“choosing the value of p.nominal”), WRT(slot, coin, p.nominal),
WRT(indicator, light, m.sum), RDN(slot, coin, m.nominal), EXE(“decre-
menting the value of m.sum”). Since CNF ′ |= P2, in the configuration
CNF ′ holds m.sum ≤p.sum and

AT m.showcount ∨m.sum ≤indicator.light.sum ≤p.sum.
Let c be the value of m.nominal in CNF ′, and d, the value of

indicator.light.sum in CNF ′. Then

f(CNF ′′) ∈ {(a, b), (a, d), (a − c, b)},
i.e., f(CNF ′′)≤(a, b). According to the rules of the structural operational se-
mantics we have: {CNF 0|f(CNF 0) = v} �→SET 1 = {CNF 1| f(CNF 1)≤v
& CNF 1 |= AT m.getcoin}. Let SET 2 = {CNF 2| f(CNF 2)≤v& CNF 2 |=
AT m.getcoin & CNF 2 |= slot IS FULL}, SET 3 = {CNF 3|f(CNF 3)≤v &
CNF 3 |= AT m.getcoin & CNF 3 |= slot IS EMPTY},
SET 4 = {CNF 4 | f(CNF 4)≤v & CNF 4 |= AT m.add}. Then SET 1 =
SET 2

⋃
SET 3 and SET 2 �→SET 4. We have

SET 3 �→{CNF 5|f(CNF 5)≤v & CNF 5 |= (slot IS EMPTY & AT m.getcoin
& AT p.drop)}
�→SET 2. Therefore, SET 1 �→ SET 4. But SET 4 �→{CNF 6|f(CNF 6) < v}.
Therefore, for each fair behaviour CNF0 ... CNFi ..., if f(CNF0) = v, then
∃ i > 0 such that f(CNFi) < v. Thus, according to the principle of partial

28

mapping to a well-founded set, f−(WFS)�→f−(MIN). Now it is sufficient
to apply the transitivity principle:
P1 �→f−(WFS), f−(WFS)�→f−(MIN), f−(MIN)�→ P2 � P1 �→P2.

7. CONCLUSION

In distinction to other specification languages, bREAL is a combined
language which allows us to represent both distributed real-time systems
and their properties.

The distinctive features of bREAL are
• a simple syntax allowing the graphic presentation of executable spec-
ifications in SDL style;

• a complete structural operational semantics in a close to Plotkin style
[26] allowing important semantical properties of executable specifi-
cations to be proved;

• a new time concept based on uninterpreted time units which extends
expressiveness of the language;

• the logical specification language which is an extension of CTL with
time intervals and first-order dynamic logic constructs.

When compared to SDL, bREAL has the following advantages:
• timed intervals related to transitions allow us to overcome the lacks
of the timer concept in SDL [6];

• nondeterministic transitions are widely used;
• local interactions are done by means of bounded/unbounded channels
with a variety of data structures which are defined like abstract data
structures and can represent queues, stacks, and bags.

The project REAL is rapidly progressing. It includes CASE systems for
translation from a SDL subset to bREAL, and for modelling of the exe-
cutable bREAL specifications, as well as a model-checker oriented to inter-
active verification of properties expressed by logical bREAL specifications.
We intend to extend our verification method to logical bREAL specifications
with nondegenerated timed intervals.

A challenging Object-Oriented advance of Formal Description Tech-
niques in 90-ies (ex., SDL-92) and a recent emergence of industrial quasi-
standard languages for specification, visualization, design and documenta-
tion of artifacts of software systems without a well-defined observable sound
formal semantics (the Unified Modelling Language (UML) [28] and Object
Constraint Language (OCL) [23]) lead to an urgent necessity of further

29

development of specification and verification languages with well-defined
formal semantics and proof-search methodology toward capturing basic fea-
tures of Object-Oriented Programming, i.e. encapsulation, inheritance, and
polymorphism. We consider an extension of formal syntax and semantics
of Basic level toward capturing several of these OO features, as well as
an extension of bREAL toward the compatibility with UML and OCL as a
perspective of further development of REAL.

REFERENCES

1. Alur R., Henzinger T.A. Logics and Models of Real Time: A Survey. Lecture Notes
in Computer Science, 1992, 600, 74–106.

2. Alur R., Henzinger T.A. Real-time logics: complexity and expressiveness. - Informa-
tion and Computation, 1993, v.104, N1, 35–77.

3. Bodin E.V. Approaches to the verification of Basic-REAL specifications. Problems of
specifications and verifications of concurrent systems. Novosibirsk, Inst. of Inf. Syst.,
1995. (in Russian)

4. Bodin E.V., Kozura V.E., Shilov N.V. Experiments with Model Checking for µ-
Calculus in specification and verification project REAL. - Proc. of the Fifth New
Zealand Formal Program Development Colloquium, IIMS Technical Report 99-1,
1999, p. 1–18.

5. Broy M. (1991) Towards a formal foundation of the specification and description
language SDL. Formal Aspects of Computing, 3, n.1, 21–57.

6. Broy M., Grosu R. Klein C. Reconciling real-time with asynchronous message
passing.-Lect. Notes in Computer Sci., 1997, 1313, 182-200.

7. Cavalli A.R., Horn F. Proof of specification properties by using finite state machines
and temporal logic. Proc. of 7-th IFIP Conf. on Protocol Specifications, Testing, and
Verification, 1987, 221–233.

8. Chandy K.M., Misra J. (1988) Parallel program design, Addison-Wesley.
9. Clarke E.M., Emerson E.A., Sistla A.P. Automatic verification of finite state con-

current systems using temporal logic specifications. ACM Trans. Programming Lan-
guages & Systems, 1986, 8, n. 2, 244–263.

10. Clarke E.M., Grumberg O., Long D.E. Model checking and abstraction. - ACM Trans.
Progr. Languages & Systems, 1994, V.16, N5, 1512–1542.

11. Definition of the Temporal Ordering Specification Language LOTOS. ISO/TC 97/SC
16/WG 1 n.229, 1984, 50 p.

12. A Formal Description Technique Based on an Extended State Transition Model.
ISO/TC 97/SC 21 177, 1983, 120 p.

13. Gammelgaard A., Kristensen J.E. A correctness proof of a translation from SDL to
CRL, Proc. of the 6th SDL Forum, 1993, 205–219.

14. Gibson P., Mery D. Telephone feature verification: translating SDL to TLA+. -
Report CRIN, Nancy, Dec. 1996.

15. Harel D. First-order dynamic logic. Lecture Notes in Computer Science, 1979, 68.
16. Henzinger A., Manna Z., Pnueli A. Temporal proof metodologies for real-time sys-

tems. Proc. of Symp. on POPL, 1991, 353–366.
17. Lamport L. Verification and specification of concurrent programs. - Lect. Notes in

30

Comp. Sci., 1994, v.803, 347–374.
18. Leue S. Specifying real-time requirements for SDL specifications — A temporal logic-

based approach. Proc. 15-th IFIP Intern. Symp. on Protocol Spec. Test. and Verif.,
1995, Warsaw, p.19–34.

19. Mery D., Mokkedem A. CROCOS: An integrated environment for interactive verifi-
cation of SDL specifications. Lecture Notes in Computer Science, 1993, 663, 343–356.

20. Nepomniaschy V.A., Shilov N.V. A specification language for systems and properties
of real-time communicating processes. Methods of theoretical and system program-
ming. Novosibirsk, 1991, 32–45. (in Russian)

21. Nepomniaschy V.A., Shilov N.V. Real92: A combined specification language for
systems and properties of real-time communicating processes. "Programmirovanie",
1993, N6, P. 64–80. (in Russian)

22. Nepomniaschy V.A., Shilov N.V., Bodin E.V. A concurrent systems specification
language based on SDL & CTL. Proc. of Workshop on Concurrency, Specifications
& Programming, Berlin, 1994, Humboldt University, Informatik-Bericht Nr.36, 1994,
15–26.

23. The Object Constraint Language. http://www.software.ibm.com/ad/ocl/
24. Orava F. Formal semantics of SDL specifications. Proc. of 8-th IFIP Intern. Symp.

on Protocol Spec. Test., and Verif., 1988, 143–157.
25. Ostroff J.S. Automated verification of timed transition models. Lecture Notes in

Computer Science, 1990, 407, 247–256.
26. Plotkin G.D. A structure approach to operational semantics. 1981, Technical report

FN-19, Aarhus University, DAIMI, Denmark.
27. Specification and Description Language. - CCITT, Recommendation Z.100, 1988.
28. Unified Modelling Language Resource Center.

http://www.rational.com/uml/index.jtmpl

APPENDIX 1. BREAL SYNTAX

specification:: executional-specification | logical-specification
executional-specification:: process | block
logical-specification:: predicate| formula
process:: process-head scale context fairness-conditions process-diagram
block:: block-head scale context fairness-conditions block-diagram subblocks
predicate:: predicate-head scale context systems predicate-diagram
formula:: formula-head scale context systems formula-diagram subformulae
process-head:: name : PROCESS
block-head:: name : BLOCK
predicate-head:: name : PREDICATE
formula-head:: name : FORMULA
scale:: {linear-equality-over-time-units | linear-inequality-over-time-units }∗

context:: {type-definition | object-declaration }∗

type-definition:: TYPE type IS type-expression

31

type-expression:: predefined-type | enumerated-type | type-expression ARRAY
OF type-expression | type-expression QUEUE OF type-expression | type-expression
STACK OF type-expression | type-expression BAG OF type-expression
predefined-type:: INT | STR
enumerated-type::name | name, enumerated-type | name; enumerated-type
subblocks:: { executional-specification }∗

subformulae:: { logical-specification }∗

object-declaration:: variable-declaration | channel-declaration
variable-declaration:: location appointment VAR variable OF type
appointment:: QU | PR
channel-declaration:: location role organization CHN channel FOR signal {WITH
PAR parameter OF type-expression }∗

role:: INP | OUT | INN
organization:: capacity structure | ELEMENTARY
capacity:: number-ELM | UNB
structure:: QUE | STACK | BAG
process-diagram:: { transition }∗

transition:: state [:] body interval jump
body:: EXE program |

READ signal-with-parameters-1 FROM channel |
WRITE signal-with-parameters-2 INTO channel |
CLEAN channel

program:: operator {; operator }∗

operator:: variable :=expression | SKIP | ABRT | IF condition THEN program
[ELSE program] FI | WHILE condition DO program OD | CASE program [ALT
program] ESAC | LOOP program POOL
signal-with-parameters-1:: signal [(variable-list)
variable-list:: variable {, variable }∗

signal-with-parameters-2:: signal [(value-list)
value-list:: expression {, expression }∗

expression :: constant | variable | (expression) |expression operation-sign
expression
operation-sign:: + | - | ∗ | / | APPLY | UPDATE
interval:: left-bound linear-time-expression right-bound linear-time-expression
left-bound:: AFTER | FROM |
right-bound:: UNTIL | UPTO |
jump:: JUMP state-list.
state-list:: state {, state }∗.

32

block-diagram:: { route }∗

route:: source CHN channel destination
source:: name | ENV
destination:: name | ENV
predicate-diagram:: relation | locator | controller | checker
relation:: expression relation-sign expression
locator:: AT state |
controller:: EMP channel | channel IS EMPTY | FUL channel | channel IS OVERFULL
checker:: signal IN channel | signal RD channel
formula-diagram:: name | (propositional-combination) | (quantifier variable
formula-diagram) | (behavioural-modality system temporal-modality interval
formula-diagram)
quantifier:: ∀ | ∃
behavioural-modality:: EACH | SOME | AB | EB
temporal-modality � | ♦ | AT | ET
state:: name
channel:: name
parameter:: name

APPENDIX 2. BREAL SEMANTICS

Conditions

Let CNF1 = (T 1, V 1, C1, S1 = (ACT 1, DEL1)) and
CNF2 = (T 2, V 2, C2, S2 = (ACT 2, DEL2)) be a pair of configurations.

TIME.CONST T 1 = T 2
TIME.STEP T 1 < T 2

VAR.CONST ∀x.V 1(x) = V 2(x).
VAR.STEP(x) ∀y �= x.V 1(y) = V 2(y).
VAR.IO(prog) (V 1, V 2) ∈ IO(prog).

CHAN.CONST ∀chan.C1(chan) = C2(chan).
CHAN.STEP(chan) ∀ chan′ �= chan: C1(chan′) = C2(chan′).
CHAN.HEAD(chan, sig, x) GET (C1(chan)) = (C2(chan), sig, V 2(x)).
CHAN.PUT(chan) ∃sig, val.PUT (C1(chan), sig, val) = C2(chan).
CHAN.GET(chan) ∃sig, val.GET (C1(chan)) = (C2(chan), sig, val).
CHAN.WR(chan, sig, x) PUT (C1(chan), sig, V 1(x)) = C2(chan).

33

CHAN.CLEAN(chan) EMPC2(chan).

CHAN.INPUT(chan) chan is input.

CHAN.OUTPUT(chan) chan is output.

DEL.CONST ∀state.DEL1(state) = DEL2(state).
DEL.ZER ∀state.DEL2(state) = 0.
DEL.OUT ∀state, transition if state ∈ ACT 1 and state marks the tran-
sition, then DEL1(state) exceeds the right bound of the interval of the
transition.
DEL.NOT-OUT

∀state. if state ∈ ACT 1, then there exists a transition marked by state
in the process such that DEL1(state) does not exceed the right bound of
the transition interval.
DEL.IN(state, interval) DEL1(state) ∈ interval.
DEL.PROGR ∀state. if state ∈ ACT 1, то DEL2(state) = DEL1(state)+
T 2 − T 1, иначе DEL2(state) = 0.

ACT.CONST ∀state.state ∈ ACT 1 ⇔ state ∈ ACT 2.
ACT.ACT(state) state ∈ ACT 1.
ACT.NEXT(next) next ∈ ACT 2.
STATE.FIN ∀state. if state ∈ ACT 1, then in the process there is no
transition marked by the state.

RTR(state, sig, x, chan, interval, next)
the process diagram contains a transition state READ sig(x) FROM chan

interval JUMP Set where Set is a set of states such that next ∈ Set.

WTR(state, sig, x, chan, interval, next)
the process diagram contains a transition state WRITE sig(x) INTO chan

interval JUMP Set where Set is a set of states such that next ∈ Set.

CTR(state, chan, interval, next)
the process diagram contains a transition state CLEAN chan JUMP Set

where Set is a set of states such that next ∈ Set.

PTR(state, prog, interval, next)

34

the process diagram contains a transition state EXE prog interval JUMP
Set where Set is a set of states such that next ∈ Set.

Rules

RULE 1 (Stuttering)
TIME.CONST, VAR.CONST, CHAN.CONST, ACT.CONST,
DEL.PROGR, DEL.NOT-OUT |= CNF1 < INV > CNF2
RULE 2 (Stabilization)
TIME.STEP, VAR.CONST, CHAN.CONST, ACT.CONST, DEL.PROGR,
STATE.FIN |= CNF1 < INV > CNF2
RULE 3 (Reading of a signal)
TIME.CONST, DEL.ZER, ∃ state, sig, x, chan, interval, next: VAR.STEP(x),
CHAN.HEAD(chan, sig, x), CHAN.STEP(chan), ACT.ACT(state),
ACT.NEXT(next), DEL.IN(state, interval), RTR(state, sig, x, chan, in-
terval, next) |= CNF1 < RDN(chan, sig, x) > CNF2
RULE 4 (Writing of a signal)
TIME.CONST, DEL.ZER, VAR.CONST, ∃ state, sig, x, chan, interval,
next : CHAN.WR(chan, sig, x), CHAN.STEP(chan), ACT.ACT(state),
ACT.NEXT(next), DEL.IN(state, interval), WTR(state, sig, x, chan, in-
terval, next) |= CNF1 < WRT(chan, sig, x) > CNF2
RULE 5 (Appearance of a signal)
TIME.CONST, VAR.CONST, ACT.CONST, DEL.CONST, ∃ state, sig, x,
chan, interval, next : CHAN.PUT(chan), CHAN.STEP(chan), RTR(state,
sig, x, chan, interval, next) |= CNF1 < INV > CNF2
RULE 6 (Disappearance of a signal)
TIME.CONST, DEL.ZER, VAR.CONST ∃ state, sig, chan, interval, next :
CHAN.GET(chan), CHAN.STEP(chan), ACT.ACT(state),
ACT.NEXT(next), DEL.IN(state, interval), WTR(state, sig, x, chan, in-
terval, next) |= CNF1 < INV > CNF2
RULE 7 (Cleaning input channel)
TIME.CONST, DEL.ZER, VAR.CONST, ∃ state, chan, interval, next :
CHAN.INPUT(chan), CHAN.CLEAN(chan), CHAN.STEP(chan),
ACT.ACT(state), ACT.NEXT(next), DEL.IN(state, interval), CTR(state,
chan, int erval, next) |= CNF1 < CLNIN > chanCNF2
RULE 8 (Cleaning output channel)
TIME.CONST, DEL.ZER, VAR.CONST, ∃ state, chan, interval, next :
CHAN.OUTPUT(chan), CHAN.CLEAN(chan), CHAN.STEP(chan),
ACT.ACT(state), ACT.NEXT(next), DEL.IN(state, interval), CTR(state,

35

chan, interval, next) |= CNF1 < CLNOUT > chanCNF2
RULE 9 (Program Execution)
TIME.CONST, CHAN.CONST, DEL.ZER, ∃ state, prog, interval, next :
VAR.IO(prog), ACT.ACT(state), ACT.NEXT(next), DEL.IN(state, inter-
val), PTR(state, prog, interval, next) |= CNF1 < EXE(prog) > CNF2
RULE 10 (Clock)
TIME.STEP, VAR.CONST, CHAN.CONST, ACT.CONST, DEL.PROGR,
DEL.NOT-OUT |= CNF1 < INV > CNF2
RULE 11 (Starvation)
TIME.STEP, VAR.CONST, CHAN.CONST, ACT.CONST, DEL.PROGR,
DEL.OUT |= CNF1 < INV > CNF2

APPENDIX 3. SPECIFICATION OF THE PROCESSES AND
PREDICATES OF THE SYSTEM “PASSENGER AND MACHINE”

Specification of the process slot-machine

start
READ station(station) FROM buttons
JUMP defcount

defcount
EXE sum := expenses[station]
JUMP showcount

showcount
WRITE light(sum) INTO indicator
JUMP getcoin

getcoin
READ coin(nominal) FROM slot
JUMP add

getcoin
READ return FROM buttons
JUMP retcoin

getcoin
READ request FROM buttons
JUMP check

add
EXE sum := sum - nominal ;
JUMP showcount

36

retcoin
WRITE change(expenses[station] - sum) INTO change
JUMP finish

check
EXE
(sum <= 0)? ;
JUMP give

check
EXE (sum > 0)?
JUMP showcount

give
WRITE ticket(station) INTO booking
JUMP finish

{Comment. In the specifcation, the following construction was used:
check

EXE (sum <= 0)?
JUMP give

check
EXE (sum > 0)?
JUMP showcount

Further, the similar “forks” will be denoted by the macro:
check

IF (sum <= 0)
THEN JUMP give
ELSE JUMP showcount }

Specification of the process “passenger”

passenger : PROCESS
OUT CHN buttons FOR station WITH PAR name OF ’a’...’z’,

FOR return, FOR request ;
OUT CHN slot FOR coin WITH PAR nominal OF integer ;
INP CHN indicator FOR light WITH PAR sum OF integer ;
INP CHN change FOR change WITH PAR value OF integer ;
INP CHN booking FOR ticket WITH PAR name OF ’a’...’z’ ;
PR VAR sum, nominal OF integer ;
PR VAR decision OF ’a’..’z’ ;
PR VAR gottenstation OF ’a’..’z’ ;
QU VAR station OF ’a’..’z’ ;

37

¬AT start ; ¬AT press ; ¬AT continue ;
¬AT request ; ¬AT chcoin ; ¬AT drop ;
{the diagram of the process passenger in the graphical form is given in

Fig. 3, page 25) }
start

EXE decision := station JUMP press
press

WRITE station(decision) INTO buttons JUMP look
look

READ light(sum) FROM indicator JUMP continue
continue

IF (sum <= 0)
THEN JUMP request
ELSE JUMP chcoin

chcoin
EXE
nominal := 1 ;
LOOP nominal := nominal + 1 POOL ; JUMP drop

drop
WRITE coin(nominal) INTO slot JUMP look

request
WRITE request INTO buttons JUMP get

get
READ ticket(gottenstation) FROM booking JUMP satisfaction

Specification of predicates

{specification of the predicate start_of_machine}
start_of_machine : PRED
{locator} AT machine.start
{end of specification of the predicate start_of_machine}

start_of_passenger : PRED
AT passenger.start

no_commands_on_buttons: PRED
{controller of emptiness} buttons IS EMPTY

no_information_on_indicator: PRED

38

indicator IS EMPTY

no_ticket_in_booking: PRED
booking IS EMPTY

ticket_in_booking: PRED
{checker of presence} ticket IN booking

proper_station: PRED
{relation} booking.ticket.name = passenger.station

39

В. А. Непомнящий, Н. В. Шилов, Е. В. Бодин

НОВЫЙ ЯЗЫК BASIC-REAL ДЛЯ СПЕЦИФИКАЦИИ И
ВЕРИФИКАЦИИ МОДЕЛЕЙ РАСПРЕДЕЛЕННЫХ

СИСТЕМ

Препринт
65

Рукопись поступила в редакцию 12.05.1999
Рецензент Ф. А. Мурзин
Редактор А. А. Шелухина

Подписано в печать 28.08.1999
Формат бумаги 60×84 1/16 Объем 2,3 уч.-изд.л., 2,4 п.л.
Тираж 50 экз.

ЗАО РИЦ "Прайс-курьер" 630090, г. Новосибирск, пр. Акад. Лаврентьева, 6

