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We propose a new, logical, approach to the decidability problem for the
Straubing and Brzozowski hierarchies based on the preservation theorems
from model theory, on a theorem of Higman, and on the Rabin tree theorem.
In this way, we get purely logical, short proofs for some known facts on
decidability, which may be of methodological interest.

Our approach is also applicable to some other similar situations, say to
“words” over dense orderings which is relevant to the continuous time and
hybrid systems.
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Представляем новый, логический подход к проблеме разрешимости
иерархий Страубинга и Бржозовского, основанный на теореме сохра-
нения из теории моделей, на теореме Хигмана и на теореме о дереве
Рабина. Таким образом мы получаем чисто логические краткие доказа-
тельства некоторых известных фактов о разрешимости, которые могут
представлять методологический интерес. Наш подход также применим
к некоторым другим похожим ситуациям, скажем, к “словам” над плот-
ными порядками, относящимся к непрерывному времени и гибридным
системам.
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1. INTRODUCTION

In the automata theory, several natural hierarchies of regular languages
are studied. Among the most popular are hierarchies of Brzozowski and
Straubing [Pin86], both exhausting the regular star–free languages. A nat-
ural question about these hierarchies is formulated as follows: given a level
of a hierarchy and a finite automaton, one has to decide effectively whether
or not the language of the automaton is in the given level. Till now, this
question is solved positively only for lower levels. For higher levels, the
problem is still open and seems to be hard (see, e.g., [Pin86, Pin94] for
more information and references).

In the literature one could identify at least two approaches to the de-
cidability problem, which may be called algebraic and automata–theoretic.
The first approach exploits the well-known relationship between regular lan-
guages and semigroups, the second one tries to find a property of a finite
automaton (usually in terms of so-called forbidden patterns) equivalent to
the property that the language recognized by the automaton is in the given
level.

In this paper, we propose another, logical approach to the problem.
From [Th82, PP86], it follows that the problem might be formulated simi-
larly to some traditional decidability problems of logic. Our main observa-
tion is that in this situation one can apply some old facts known as preser-
vation theorems (see, e.g., [Ro63, Ma71]), as well as a theorem of Higman
[CKa91]. Observing that the corresponding conditions are interpretable in
the Rabin tree theory, we get new, purely logical and short proofs of some
known facts on decidability. This may be of methodological interest. Our
approach is also applicable to some other similar situations and yields sev-
eral new results.

The rest of our paper is organized as follows: we consider some versions
of the Straubing hierarchy in Section 2, some versions of the Brzozowski
hierarchy in Section 3, the role of the empty word and relationships between
our versions and the "real" Straubing and Brzozowski hierarchies in Section
4, some relevant results and possible directions of future work in Section 5.

We close this introduction with reminding notation used throughout the
paper. Let A be an alphabet, i.e. a finite nonempty set. Let A∗(A+) be the
set of all words (resp., of all nonempty words) over A. As usual, the empty

0Partly supported by the Alexander von Humboldt Foundation and by a grant in
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word is denoted by ε, the length of a word u by |u|, and the concatenation of
words u and v by uv. The concatenation of languages X and Y is denoted
by XY . For u = u0 . . . un ∈ A+ and i ≤ j ≤ n, let u[i, j] denote the segment
(or factor) of u bounded by i, j (including the bounds).

2. STRAUBING-TYPE HIERARCHIES

A word u = u0 . . . un ∈ A+ may be considered as a structure u =
({0, . . . , n};<,Qa, . . .), where < has its usual meaning and Qa(a ∈ A) are
unary predicates on {0, . . . , n} defined by Qa(i) ↔ ui = a. As is well-
known (see, e.g., [MP71, Th82, PP86]), there is a close relationship be-
tween star-free languages and classes of models u of sentences of signature
σ = {<,Qa, . . .} (in this section, "sentence" means "a first-order formula
of signature σ without free variables"; the only exception is the proof of
Theorem 2.1 below where we also need sentences of another kind). Note
that the alphabet A is fixed throughout the paper, hence we do not mention
the alphabet in our notation, like σ or CLO.

Let us consider a first-order theory CLO of signature σ that is closely
related to the theory of regular languages. The axioms of CLO state that
< is a linear ordering and any element satisfies exactly one of the predicates
Qa(a ∈ A). Models of CLO are called colored (more precisely, A-colored)
linear orderings. We use letters like u,v, . . . (respectively, U,V, . . .) to
denote finite (respectively, countable) models of CLO. As usual, U ⊆ V
denote that U is a substructure of V. For a sentence φ, letMφ be the set of
all countable models of CLO satisfying φ, in a symbolic formMφ = {U|U |=
φ}. Note that any finite model of CLO is isomorphic to the structure u
from the preceding paragraph, for a unique u ∈ A+. The relation ⊆ induces
a partial ordering on A+ that will be denoted by the same symbol.

For n > 0, let Σ0
n denote the set of all sentences in the prenex normal

form starting with the existential quantifier and having n − 1 quantifier
alternations. Let Sn be the set of sentences equivalent to a Σ0

n-sentence
(modulo theory CLO). In other words, Sn = {ψ|∃φ ∈ Σ0

n(Mψ = Mφ)}. Let
Šn be the dual set for Sn, i.e. the set of sentences equivalent to negations
of Sn-sentences. Let B(Sn) be the set of sentences equivalent to a Boolean
combination of Σ0

n-sentences. Then we have the following assertions.
Lemma 2.1. (i) For any n > 0, B(Sn) = Sn+1 ∩ Šn+1.
(ii) φ ∈ S1 iff ∀U |= φ∀V ⊇ U(V |= φ).
(iii) φ ∈ Š2 iff the union of an arbitrary chain U0 ⊆ U1 ⊆ · · · of models
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of φ is a model of φ.
(iv) φ ∈ S2 iff ∀U |= φ∃u ⊆ U∀V(u ⊆ V ⊆ U → V |= φ).
Proof. (i)—(iii) are well-known results of logic (see, e.g., [Ro63, Ma71,

Sh67]), while (iv) easily follows from (iii). Namely, if a sentence
φ = ∃x̄∀ȳψ(x̄, ȳ), where ψ is a quantifier-free formula, is true in U, then
let u be the substructure of U with the universe {x1, . . . , xn}, where x̄ =
(x1, . . . , xn). Then u clearly satisfies the condition ∀V(u ⊆ V ⊆ U → V |=
φ). Conversely, assume the righthandside condition of (iv) and prove that
φ ∈ S2. Suppose the contrary; then, by (iii), there is a chain U0 ⊆ U1 ⊆ · · ·
of models of ¬φ the union U of which satisfies φ. Let u be a finite substruc-
ture of U satisfying ∀V(u ⊆ V ⊆ U → V |= φ). Choosing a number i with
u ⊆ Ui, one gets a contradiction (take Ui in place of V).�

Let {Dk}k≥0 be the difference hierarchy (known also as the Boolean hier-
archy) over S1. Hence, D0 is the set of false sentences, D1 = S1, D2(D3, D4)
is the set of sentences equivalent to sentences of the form φ0 ∧¬φ1 (respec-
tively, (φ0 ∧ ¬φ1) ∨ φ2, (φ0 ∧ ¬φ1) ∨ (φ2 ∧ ¬φ3)) and so on, where φi ∈ Σ0

1

(for more information on the difference hierarchy see e.g. [Ad65, Se95]). An
alternating chain for a sentence φ is by definition a sequence U0 ⊆ · · · ⊆ Uk

of CLO-models such that Ui |= φ iff Ui+1 |= ¬φ; k is called the length of
such a chain. Such a chain is called a 1-alternating chain, if U0 |= φ. One
could consider also infinite alternating chains (with the order type ω).

The next assertions are also known in a more general form [Ad65, Se91].
Lemma 2.2. (i) For any k, Dk ∪ Ďk ⊆ Dk+1.
(ii) ∪kDk = B(S1).
(iii) φ ∈ Dk iff there is no 1-alternating chain for φ of length k.
We are ready to prove one of our main results on the decidability of

some classes of sentences introduced above.
Theorem 2.1. The classes of sentences S1, S2, B(S1), Dk(k ≥ 0) are

decidable.
Proof. Let T = {0, 1}∗ and let r0, r1 be unary functions on T defined

by ri(u) = ui(i ≤ 1). According to the celebrated theorem of M. Rabin
[Ra69], the monadic second-order theory S2S of the structure (T ; r0, r1)
is decidable. We shall use this fact in the following way: for any set
C ∈ {S1, S2, B(S1), Dk|k ≥ 0} and for any σ-sentence φ one can effectively
construct a monadic second-order sentence φ̃ of signature {r0, r1} such that
φ ∈ C iff φ̃ ∈S2S. This is rather obviously.

We will use some well-known facts on definability (by monadic second-
order formulas) in (T ; r0, r1) established in [Ra69]. First recall that the
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lexicographical ordering � on T is definable. Let B ⊆ T be the set of all
sequences x101 having no subsequence 101 except one at the end. Then
B is definable and (B;�) has the order type of rationals. This implies
that any countable linear ordering is isomorphic to an ordering of the form
(U ;�) with U ⊆ B. Hence, any countable model of CLO is isomorphic to a
structure of the form U = (U ;�, Qa, . . .) with U ⊆ B and Qa ⊆ U for a ∈ A
(in this proof, we call such structures inner structures). In the monadic
logic, one can use variables for subsets of T and even quantify over them.
Hence, it is possible to speak about arbitrary inner structures. We can also
speak about substructures because, for any abstract models U and V of
CLO, U is embeddable in V iff there are inner models (U ;�, Qa, . . .) and
(V ;�, Q′

a, . . .) isomorphic to U and V, respectively, and satisfying U ⊆ V
and Qa ⊆ Q′

a(a ∈ A).
Note also that, for any fixed σ-sentence ψ, the set of all inner structures

U satisfying ψ is definable (i.e., if ψ is ∀x∃y(x ≤ y ∧Qa(y)) then U |= ψ iff
∀x ∈ U∃y ∈ U(x � y ∧Qa(y))). In particular, the set of all inner models of
CLO is definable.

Now let us return to the proof of the theorem. Let, e.g., C = S1 and φ
be a given σ-sentence. Let φ̃ be a sentence expressing that, for any inner
model U of CLO satisfying φ, and any inner model V of CLO extending
U, V satisfies φ. By Lemma 2.1 and remarks above, φ ∈ S1 iff φ̃ ∈ S2S.
This completes the proof for the set S1. The remaining cases are treated in
the same way (in the case of S2 one shall note that the class of finite subsets
of T is also definable [Ra69]). �

Remark 2.1. The proof implies the known fact that the monadic
second-order theory of countable models of CLO is decidable.

Theorem 2.1 demonstrates the ideas of our approach for a decision prob-
lem traditional for logic (though the results seem formally new). It turns
out that, due to its abstract nature, the approach is also applicable in the
context of automata theory, which we would like now to demonstrate. This
application is founded on a close relationship between star–free regular lan-
guages and the first-order definability established in [MP71].

By remarks at the beginning of this section, there is a natural one-to-one
correspondence between the subsets of A+ and the classes of finite CLO-
models closed under isomorphism. This induces some notions on words
corresponding to notions on models introduced above; we will use some
of these notions under the same names. Relate the language L+

φ = {u ∈
A+|u |= φ} to any sentence φ. By [MP71], such languages are exactly
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the regular star–free languages. Let S+
n , B(S+

n ) and D+
k be defined as the

corresponding classes above, but with L+ in place of M ; in particular,
S+
n = {ψ|∃φ ∈ Σ0

n(L
+
ψ = L+

φ )}. Then {B(S+
n )}n≥1 is the version of the

Straubing hierarchy mentioned in the introduction.
Note that there is an evident relationship between classes S+

n , . . . and
the corresponding classes without +, namely, Sn ⊆ S+

n and so on. But the
+-classes contain a lot of new sentences. E.g., we have S+

1 �⊆ B(S1) (the
sentence saying that the ordering is dense belongs to S+

1 but not to S2).
Recall [CKa96, Theorem 7.2] that a well partial ordering is a partial or-

dering such that for any nonempty subset X the set of all minimal elements
of X is nonempty and finite.
Lemma 2.3. (i) (A+;⊆) is a well partial ordering.
(ii) φ ∈ D+

k iff there is no 1-alternating chain of words for φ of length
k.

(iii) φ ∈ B(S+
1 ) iff there is no infinite alternating chain of words for φ.

(iv) φ ∈ B(S+
1 ) iff ∀U∃u ⊆ U(∀v(u ⊆ v ⊆ U → v |= φ) ∨ ∀v(u ⊆ v ⊆

U → v |= ¬φ)).
Proof. (i) is a well known result of G. Higman (see, e.g., [CKa96,

Theorem 7.2]).
(ii) From left to right, the assertion follows from Lemma 2.2.(iii). Now

assume that there is no 1-alternating chain of words for φ of length k;
we have to show φ ∈ D+

k . For simplicity of notation, consider only the
typical particular case k = 2; then there are no words u0, u1, u2 ∈ A+ with
u0 ⊆ u1 ⊆ u2 and u0 |= φ,u1 |= ¬φ,u2 |= φ. Let C0 = {u ∈ A+|∃u0 ∈
A+(u0 ⊆ u∧u0 |= φ)} and C1 = {u ∈ A+|∃u0, u1 ∈ A+(u0 ⊆ u1 ⊆ u∧u0 |=
φ∧u1 |= ¬φ)}. One easily checks that L+

φ = C0 \C1. By (i), any of C0 and
C1 is either empty or of the form {v ∈ A+|v0 ⊆ v ∨ . . . ∨ vm ⊆ v} for some
m ≥ 0 and v0, . . . , vm ∈ A+. This easily implies that Ci = L+

φi
for some

φi ∈ Σ0
1(i ≤ 1). Then L+

φ = L+
φ0∧¬φ1

. Hence, φ ∈ D+
2 , which completes the

proof.
(iii) From left to right, the assertion follows from (ii) and the equality

B(S+
1 ) = ∪kD+

k . It remains to show that for any φ �∈ B(S+
1 ) there is an

infinite alternating chain of words. By (ii), there are alternating chains of
words for φ of arbitrary finite length.

Let ω∗ be the set of all finite sequences of natural numbers, including the
empty sequence ε. We construct a partial function u : ω∗ → A∗ as follows.
Let u(ε) = ε and suppose, by induction on |σ|, that u(σ) is already defined.
If |σ| is even then find m ∈ ω and words v0, . . . , vm ∈ A+ enumerating
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without repetitions the ⊆-minimal elements in X = {v ∈ A+|u(σ) ⊆ v∧v |=
φ}. Then we set u(σi) = vi for i ≤ m and u(σi) is undefined for i > m. For
|σ| odd, the definition is similar, but we use the set X = {v ∈ A+|u(σ) ⊆
v ∧ v |= ¬φ}.

From (i) and (ii) easily follows that {σ ∈ ω∗|u(σ) is defined} is an infinite
finitely branching tree (under the relation of being an initial segment). By
König’s lemma, there is an infinite path through this tree. The image of
this path under u provides the desired infinite alternating chain for φ.

(iv) Let φ ∈ B(S+
1 ), then L+

φ = L+
ψ for a Boolean combination ψ of

Σ0
1-sentences. Note that ψ and ¬ψ are in S2, and any U satisfies ψ or

¬ψ. Hence, the condition on the righthandside of (iv) follows from Lemma
2.1(iii).

Conversely, suppose that φ �∈ B(S+
1 ). By (i), there is an infinite alter-

nating chain u0 ⊆ u1 ⊆ . . . for φ consisting of finite models of CLO. Then
U = ∪kuk is a countable model of CLO for which the condition on the
righthandside of (iv) is false. �

Repeating the proof of Theorem 2.1, one immediately gets
Theorem 2.2. The classes S+

1 , B(S+
1 ) and D+

k (k ≥ 0) are decidable.�
Remark 2.2. Till now, we were unable to prove (by purely logical

means) the known fact that the class S+
2 is decidable.

Note that Lemma 2.3 and theorem 2.2 provide new, shorter proofs for
several known facts from the automata theory (cf. [St85,Pin86,SW99]).
E.g., decidability of B(S+

1 ) is equivalent (using a simple observation of Sec-
tion 4 below) to the well-known result on decidability of the class of so-called
piecewise testable languages.

Our method is also applicable to some other similar situations, and now
we want to give a couple of examples. There are several natural modifica-
tions of the operation φ �→ L+

φ , among the most popular are ω-languages
Lωφ = {α : ω → A|α |= φ} and Z-languages (Z is the set of integers)
LZφ = {α : ω → A|{α |= φ}, where α is the structure defined similarly to the
case of finite words (one could even consider "words" over more exotic linear
orderings, say, rationals or ω2). Such operations induce the corresponding
classes of sentences Sωn , B(Sωn ), DZ

k , and so on. Are such classes of sentences
decidable?

Till now, we were unable to answer this question using the methods
developed above. But the methods become applicable if we add finite words
to the infinite ones, i.e. if we consider "languages" like Lω+

φ = Lωφ ∪ L+
φ ,

which are also traditional objects of automata theory, and the corresponding
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classes of sentences Sω+
n , . . .. Let us formulate the analog of Theorem 2.2

for ω-words (similar results also hold for other kinds of infinite words).
Theorem 2.3. The classes Sω+

1 , B(Sω+
1 ) and Dω+

k (k ≥ 0) are decidable.
Proofsketch. From Lemma 2.1(iii) it follows that if φ ∈ Σ0

2 then Lω+
φ

is approximable (i.e., for any ω-word α ∈ Lω+
φ there is a finite word u ⊆ α

such that v |= φ for any finite word v with u ⊆ v ⊆ α). Repeating the proof
of Lemma 1.3, one obtains analogs of assertions (ii), (iii), and (iv) for the
classes B(Sω+

1 ), Dω+
k (k ≥ 0); but one have to add the condition that both

Lω+
φ and Lω+

¬φ are approximable to the righthandsides of these assertions.
With analog of Lemma 2.3 at hand, it is also easy to adjust the proof

of Theorem 2.1 to our case. In place of the set B, we shall take now the
set B1 = {1k|k < ω}; it is definable and (B1;�) has the order type ω. It
remains to modify the notion of inner structures in such a way that their
universes are subsets of B1.�

3. BRZOZOWSKI-TYPE HIERARCHIES

Here we shall consider some versions of the well-known Brzozowski hier-
archy. Following [Th82] (with some minor changes), we enrich the signature
σ of the preceding section to the signature σ′ = σ ∪ {⊥,�, p, s}, where ⊥
and � are constant symbols, while p and s are unary function symbols (⊥,�
are assumed to denote the least and the greatest elements, while p and s
are respectively the predecessor and successor functions). Let us also add
to the axioms of CLO the following axioms:

∀x(⊥ ≤ x ≤ �),
∀x(p(x) ≤ x ∧ ¬∃y(p(x) < y < x)), ∀x(x ≤ s(x) ∧ ¬∃y(x < y < s(x))),
∀x > ⊥(p(x) < x) and ∀x < �(x < s(x)).
We denote the resulting theory by CLO′. For models U,V of this theory,

U ⊆′ V means that U is a substructure of V respecting all symbols from
σ′.

There is also a "relational" version of CLO′ defined as follows. Let
σ′′ = σ ∪ {⊥,�, S}, where S is a binary predicate symbol (⊥,� are as
above, while S denotes the successor predicate). Let CLO′′ be obtained
from CLO by adjoining the axioms

∀x(⊥ ≤ x ≤ �),
∀x, y(S(x, y) ↔ x < y ∧ ¬∃z(x < z < y)),
∀x < �∃yS(x, y) and ∀x > ⊥∃yS(y, x).
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Using the standard procedure of extending a theory by definable predi-
cate and function symbols (see, e.g., [Sh67]), one can easily see that CLO′

and CLO′′ are essentially the same theory (e.g., every model of one theory
may be, in a unique way, considered as a model of another, the natural
translations respect classes of formulas Sn and analogs of other classes from
Section 2, any of these classes modulo one theory is decidable if and only
if it is decidable modulo the other theory, and so on). For this reason our
notation will not distinguish between these theories.

It is clear that countable CLO′-models consist of all finite CLO-models
and all countably infinite CLO-models of the order type ω + Z · L + ω−,
where ω, ω− and Z are, respectively, the order types of positive, negative
and all integers, L is a countable (possibly empty) linear ordering, Z · L is
the linear ordering obtained by inserting a copy of Z in place of any element
of L, and + is the operation of "concatenation" of linear orderings.

For the theory CLO′ the analogs of Lemmas 2.1 and 2.2 hold true with
some evident changes in formulation (say, the righthandside of 2.1(iv) now
looks like ∀U |= φ∃u ⊆ U∀V(u ⊆ V ⊆′ U → V |= φ), where ⊆ has the
same meaning as in Section 2 and u is a finite CLO-model).

Repeating now the proof of Theorem 2.1, we immediately get the fol-
lowing assertion, where classes of sentences are defined just as in Section 2,
but modulo theory CLO′.
Theorem 3.1. The classes of sentences S1, S2, B(S1) and Dk(k ≥ 0)

modulo theory CLO′ are decidable.
Remark 3.1. As in Section 2, the proof of Theorem 3.1 implies the

decidability of the monadic second-order theory of the class of countable
CLO′-models.

We see that, for the case of all countable "words", the theory CLO′ is
treated quite similarly to the theory CLO.

Let us now turn to finite words. The classes of sentences S+
n , B(S+

n )
and D+

m are defined by analogy with Section 2. Again, as in Section 2,
these classes include the corresponding classes without +, but the converse
inclusions are far from being true. E.g., the sentence ∃xQa(x) ∧ ∀x >
⊥(Qa(x) → ∃y(⊥ < y < x ∧Qa(y))) belongs to S+

1 but not to S2.
The treatment of the +-classes modulo theory CLO′ turns out to be

more complicated, as compared with CLO. A reason is that if U ⊆′ V
and one of these CLO′-models is finite, then U = V. Hence, the analog of
Lemma 2.3 is false.

In this situation, the following notion from [St85] is of some use. Let
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u = u1 . . . um and v = v1 . . . vn be words from A+, where ui, vj ∈ A. A k-
embedding from u to v is an increasing function θ : {1, . . . ,m} → {1, . . . , n}
such that

(i) θ(j) = j, j = 1, . . . ,min(k,m),
(ii) θ(m− j) = n− j, j = 0, . . . ,min(k − 1,m− 1),
(iii) ui+j = vθ(i)+j , i = 1, . . . ,m, j = 0, . . . , k, i+ j ≤ m.
This means that u is a subword of v including the first k letters and the

last k letters of v and such that any letter used to build u is followed by the
same k letters in u and in v.

We write u ≤k v to denote that there is a k-embedding from u to v.
For finite CLO-models u and v, we write u ⊆k v to denote that u ⊆
v and the identity function is a k-embedding from u to v (u and v are
words corresponding to the models as in Section 2). With some evident
modifications, we may also apply the last relation to countably infinite CLO-
models.
Lemma 3.1. (i) If u ≤k+1 v then u ≤k v.
(ii) ≤k is a partial ordering.
(iii) ≤0 coincides with ⊆.
(iv) If u ≤k v then au ≤k av for any a ∈ A.
(v) For all u and k, there is an existential σ′-sentence φku such that

u ⊆k U iff U |= φku.
Proof. (i)—(iv) are evident. For (v), represent u as above: u =

u1 . . . um, ui ∈ A. If m < 2k, then u ≤k v if and only if u = v. Hence,
φku may be the quantifier–free σ′-sentence saying that ⊥ < s(⊥) < · · · <
sm−1(⊥) = � and the elements ⊥ < s(⊥) < · · · < sm−1(⊥) have respec-
tively the colors u1, . . . , um.

Now assume m ≥ 2k and consider the quantifier–free sentence ψ saying
that ⊥ < s(⊥) < · · · < sk−1(⊥) < pk−1(�) < . . . < p(�) < �, these
elements have respectively the colors u1, u2, . . . , uk, um−k+1, . . . , um−1, um,
and the elements sk(⊥), . . . , s2k−1(⊥) have respectively the colors uk+1, . . . ,
u2k. In the case m = 2k, it suffices to take φku = ψ.

Finally, in the case m > 2k, consider the sentence θ saying that there
are elements xk+1 < · · · < xm−k such that for any i = k + 1, . . . ,m− k the
colors of xi, s(xi), . . . , sk(xi) are, respectively, ui, ui+1, . . . , ui+k. Then we
can take φku = ψ ∧ θ. �

Let Ek be the set of sentences equivalent, in the theory CLO′, to a finite
conjunction of finite disjunctions of sentences φku(u ∈ A+). Let {Dk

n}n be

13



the difference hierarchy over Ek. Then we have the following analog of
Lemma 2.3(i)—(iii).
Lemma 3.2. (i) (A+;⊆k) is a well partial ordering.
(ii) φ ∈ Ek iff L+

φ is closed upwards under ≤k.
(iii) φ ∈ Dk

n iff there is no 1-alternating ⊆k-chain of words for φ of
length n.

(iv) φ ∈ B(Ek) iff there is no infinite alternating ⊆k-chain of words for
φ.
Proof. (i) Suppose the contrary. Then, as in the proof of [CKa96,

Theorem 7.2], one can construct an infinite sequence {fi}i≥0 of words such
that fi �≤k fj for i < j and for any sequence {f ′

i} with the same property
it holds that |fi| ≤k |f ′

i |(i ≥ 0). From finiteness of A, it follows that there
is an infinite sequence of numbers i0 < i1 < · · · satisfying the condition
fij = abgj for some a, b ∈ A and gj ∈ A∗(j ≥ 0).

Choose wordsw0, . . . , wi0−1 starting with a letter c ∈ A\{b} and pairwise
incomparable under ≤k. Let {hi} denote the sequence of words

w0, . . . , wi0−1, bg0, bg1, . . . .

From Lemma 3.1(iv) and the choice of w0, . . . , wi0−1, it follows that hi �≤k hj
for i < j and |hi0 | < |fi0 |, contradicting the property of {fi}.

(ii) Let φ ∈ Ek. The class of subsets of A+ closed upwards under ≤k
is closed under ∪,∩, hence it suffices to prove that L+

φk
u
is closed upwords.

But this follows immediately from Lemma 3.1(ii),(v). Conversely, let L+
φ be

closed upwards. By (i), L+
φ is a finite union of sets of the form {v|u ≤k v}

for some u ∈ A+. By Lemma 3.1(v), {v|u ≤k v} = L+
φk

u
, hence L+

φ = L+
ψ ,

where ψ is a finite disjunction of sentences of the form φku.
(iii) and (iv) are proved similarly to Lemma 2.3(ii),(iii); one has only

to keep in mind that, by the preceding paragraph, any φ ∈ Ek is a finite
disjunction of sentences of the form φku. �

The analog of Lemma 2.3(iv) is more intricate. In the following assertion
the boldface letters have the same meaning as in Section 2.
Lemma 3.3. (i) If u ⊆ v ⊆k U and u ⊆k U then u ⊆k v.
(ii) φ ∈ B(Ek) iff ∀U∃u ⊆ U(∀v(u ⊆ v ⊆k U → v |= φ) ∨ ∀v(u ⊆

v ⊆k U → v |= ¬φ)).
Proof. (i) is straightforward.
(ii) From right to left, the proof is the same as in Lemma 2.3(iv), hence

we consider only one direction. Let φ ∈ B(Ek), then φ ∈ Dk
n for some n,

14



say n = 2. Let φ0, φ1 ∈ Ek satisfy φ ≡ φ0∧¬φ1, and φ1 implies φ0. For any
CLO-model U we have to find u ⊆ U satisfying the disjunction from (ii).
In the case U |= ¬φ0, we can take any u ⊆ U (use 3.2(iii) to show that the
second disjunction in (ii) holds true). In the case U |= φ, represent φ0 as a
disjunction of the sentences φku; so U satisfies one of these φku. Then u ⊆ U,
and from (i) it follows that the first member of the disjunction from (ii)
holds true. The remaining case U |= φ1 is treated similarly to the previous
one; in this case the second member of the disjunction from (ii) holds true.
�

Repeating now the argument from Section 2, we get the following gen-
eralization of Theorem 2.2 (by Lemma 3.1.(iii), Theorem 2.2 is obtained if
one takes k = 0).
Theorem 3.2. For all k and n, the classes Dk

n and B(Ek) are decidable.
Now let us show that Ek+1 contains many new sentences as compared

with Dk
n.

Lemma 3.4. If the alphabet A contains at least two letters then Ek+1 �⊆
B(Ek) for any k.
Proof. Let a, b ∈ A, a �= b. For k = 0, consider the sentence φ =

Qa(�), φ ∈ E1, L+
φ = A∗a. The sequence a, ab, aba, abab, . . . is an infinite

alternating ≤0-chain for φ, hence φ �∈ B(E0).
For k > 0, consider the sentence φ saying that the last k + 1 letters are

a, so L+
φ = A∗ak+1. Of course, φ ∈ Ek+1. Define words ui(i ≥ 0) as follows:

u0 = akak, u2i+1 = u2iba
k, u2i+2 = u2i+1a

k. It is easy to see that {ui} is an
infinite alternating ≤k-chain for φ. Hence, φ �∈ B(Ek). �

Now we shall relate the classes Dk
n and D+

n . Let n ≥ 1, w1, . . . , wn ∈
A+, li = |wi| and w1 . . . wn = a1 . . . am(aj ∈ A,m = l1 + · · · + ln). Let
φ(w1, . . . , wn) be a Σ0

1-sentence of signature σ′′ saying that there exist x1 <
· · · < xm such that x1 = ⊥, xm = �, Qai(xi) for i = 1, . . . ,m and S(xi, xi+1)
for i ∈ {1, . . . ,m} \ {l1, l1 + l2, . . . , l1 + · · · + ln−1}.
Lemma 3.5. (i) u |= φ(w1, . . . , wn) iff u = w1v1w2v2 . . . wn for some

v1, . . . , vn−1 ∈ A∗.
(ii) For any φ ∈ Σ0

1, L
+
φ �= ∅, there is a disjunction ψ of sentences of the

form φ(w1, . . . , wn) satisfying L+
ψ = L+

φ .
Proof. (i) holds by definition of φ(w1, . . . , wn).
(ii) Let φ be ∃ȳψ(ȳ), where ψ is a quantifier–free formula of signature

σ′′. We may assume that ψ is a conjunction of atomic formulas and of
negated atomic formulas (otherwise convert ψ to the disjunctive normal
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form and distribute ∃ through ∨; this standard algorithm is used below
as well). As observed in [Th82], we may assume that ψ is equivalent to
⊥ = z1 ≤ · · · ≤ zm = � ∧ ψ(z̄), for some permutation (z1, . . . , zm) of
the variables ȳ. It is clear that φ is further reducible to a disjunction of
sentences of the form

∃x1, . . . , xm(⊥ = x1 < · · · < xm = � ∧ θ), (1)

where θ is again a conjunction of atomic formulas and of negated atomic
formulas.

The negated atomic formulas may be eliminated as follows. If θ contains
a formula ¬(xi = xi) then (1) is false. Formulas ¬(xi = xj) for i �= j are
true, hence they may be omitted from θ. Formulas ¬(xi < xj) are eliminated
in the same fashion. The formula ¬Qa(xi) is replaced by disjunction of
formulas Qb(xi), b ∈ A \ {a} (with the subsequent distribution of ∃ through
∨). Formulas ¬S(xi, xj) for j �= i+ 1 are true, hence they may be omitted
from θ. Finally, the formula ¬S(xi, xi+1) is replaced by the equivalent
formula ∃z(xi < z < xi+1), for a new variable z, with the subsequent move
of ∃z to the prefix (note that the last operation reduces the number of
formulas ¬S(xi, xi+1) in θ, hence we may use the induction).

In this way, we get a disjunction of sentences (1), where θ is a conjunction
of atomic formulas. Note that the formula

∨
a∈AQa(xi) is true, hence we

may assume that θ is of the form Qa1(x1)∧ . . .∧Qam(xm)∧θ′, where ai ∈ A
and θ′ is a conjunction of formulas S(xi, xj), xi < xj and xi = xj . The two
last types of formulas, as well as formulas S(xi, xj) for j �= i+ 1, are again
eliminated in the obvious way.

Hence, we may assume that θ′ is a conjunction of formulas S(xi, xi+1)
for several i ∈ {1, . . . ,m − 1}. Let m1 < · · · < mn−1 be all numbers
i ∈ {1, . . . ,m− 1} for which the formula S(xi, xi+1) is not a member of the
conjunction θ′. Define the words

w = a1 . . . am, w1 = w[1,m1], w2 = [m1 + 1,m2], . . . , wn = [mn−1 + 1,m].

Then (1) is equivalent (over finite words) to φ(w1, . . . , wn) completing the
proof. �

Now we can state the desired relationship.
Lemma 3.6. (i) S+

1 = ∪kEk.
(ii) For any n, D+

n = ∪kDk
n.

(iii) B(S+
1 ) = ∪n,kDk

n.
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Proof. (ii) and (iii) easily follow from (i), hence we check only (i).
By definition of Ek, Ek ⊆ S+

1 , hence it remains to check the inclusion
S+

1 ⊆ ∪kEk. By Lemma 3.5(ii), it suffices to show that φ = φ(w1, . . . , wn) ∈
∪kEk for all n ≥ 1 and w1, . . . , wn ∈ A+. We claim that φ ∈ Ek, where
k = max{|w1|, . . . , |wn|}. By Lemma 3.2(ii), it suffices to check that L+

φ

is closed upwards under ≤k. Assume that u |= φ and u ≤k v, By Lemma
3.5(i), u = w1v1w2v2 . . . wn for some v1, . . . , vn−1 ∈ L∗. From the definition
of u ≤k v and the choice of k, it follows that v = w1y1w2y2 . . . wn for some
y1, . . . , yn−1 ∈ A∗. Hence, v |= φ. �

Theorem 3.2 together with a result from [St85] implies
Corollary 3.1. The class B(S+

1 ) is decidable.
Proof. From [St85, Theorem 1.7] and Lemma 3.2, it follows that, given

a σ′-sentence φ, one can effectively find k and n such that φ ∈ B(S+
1 ) if and

only if φ ∈ Dk
n. It remains to apply Theorem 3.2. �

Corollary is equivalent to the well-known result that the class of so-called
languages of dot-depth one is decidable.
Remark 3.2. Unfortunately, the results of this section are not so com-

plete and elegant as those of Section 2. The proof of the corollary is not
completely satisfactory from the viewpoint of methodology of our paper,
because it uses an automata–theoretic argument (in the proof of the cited
result from [St85]).

4. THE EMPTY WORD

Here we relate the hierarchies considered above to the "real" Straubing
and Brzozowski hierarchies which classify subsets of A∗ (rather than A+).
We state a simple relationship that aims to avoid annoying discussions (and
sometimes even confusions) caused by the role of the empty word ε in this
context.

The Straubing hierarchy is defined as follows (see [PP86]): B0 = A0 =
{∅, A∗}; let Bn+1 be the closure of An under ∩,∪, and the operation which
relates the concatenation language XaY to languages X,Y and a letter
a ∈ A; finally, let An+1 = B(Bn+1) be the Boolean closure of Bn+1. The
sequence {Bn} is known as Straubing hierarchy.

In [PP86], a natural logical description of the introduced classes of lan-
guages was established. Namely, the classes of sentences Σn and Γn were
found such that Bn = {Lφ|φ ∈ Σn} and An = {Lφ|φ ∈ Γn}. Here Lφ
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is defined similarly to the language L+
φ of Section 2, but now the empty

structure is also admitted (with a natural notion of satisfaction).
Let Sn = {L+

φ |φ ∈ S+
n }, where S+

n is the class from Section 2. For
X ⊆ P (A+), let X ε = {X ∪ {ε}|X ∈ X}. Then the desired relationship
between the introduced classes is as follows.
Theorem 4.1. For any n > 0, Bn = Sn∪Sεn and An = B(Sn)∪B(Sn)ε.
Proofsketch. First note that Sn ⊆ Bn (if X ∈ Sn, then X = L+

φ for a
sentence φ ∈ S+

n ⊆ Σn starting with the existential quantifier; hence ε �|= φ
and X = Lφ ∈ Bn.)

The desired equalities are checked by induction on n. We have already
proven that S1 ⊆ B1. Note that {ε} = Lφ, where φ is ∀x(x �= x), hence
{ε} ∈ B1. But B1 is closed under ∪, so Sε1 ⊆ B1 and S1 ∪ Sε1 ⊆ B1.

For the converse, recall that B1 is a closure of A0, hence, to prove the
inclusion B1 ⊆ S1∪Sε1 , it suffices to show that the class S1∪Sε1 contains A0

and is closed under ∪,∩, and the operation XaY . Only the last assertion
is not evident, so let us deduce XaY ∈ S1 ∪ Sε1 from X,Y ∈ S1 ∪ Sε1 . By
the cited result from [PP86], X = Lφ and Y = Lψ for some φ, ψ ∈ Σ1.
Let θ be ∃x(Qa(x) ∧ φ(<x) ∧ ψ(>x)), where φ(<x) and ψ(>x)) are evident
relativizations of φ and ψ, respectively. By definition of Σ1 [PP86], θ ∈ S+

1 ,
hence XaY ∈ S1.

The equalityA1 = B(S1)∪B(S1)ε is easy, which completes the induction
basis. The argument of induction step is almost the same as for the basis.
�

Let {Dn,k}k be the difference hierarchy over Sn and {D′
n,k}k be the dif-

ference hierarchy over Bn. Using Theorem 4.1 and an evident set-theoretic
argument, we get
Corollary 4.1. For all n and k, D′

n,k = Dn,k ∪ Dε
n,k.

There is a similar relationship between the Brzozowski hierarchy and
the corresponding classes from Section 3.

5. CONCLUSION

We see that some problems of the automata theory not only may be
formulated in a logical form, but they can even be solved by logical means. It
is natural to ask a general logical question generalizing problems considered
in Sections 2 and 3. For a given theory T , let Sn be the set of sentences
equivalent, in the theory T , to a Σ0

n-sentence. Let S+
n be defined similarly

but using the equivalence in finite structures. One can also define the classes
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Dn,k(D+
n,k) of the difference hierarchy over Sn (respectively, over S+

n ), and
even the classes of the fine hierarchy over {Sn} (see [Se91, Se95]).

The general question is to determine in what cases the introduced classes
of sentences are decidable. The problems considered in Sections 2 and 3 are
obtained when one considers the theories CLO and CLO′ in place of T .

The question is quite traditional for mathematical logic, hence one could
hope to find some relevant information in the corresponding literature. In-
deed, in [Ma71] we find (with the reference to source papers) the following
result: if T is undecidable, then so are Sn for all n > 0. But what about
the more interesting case of a decidable theory T (which is the case for
CLO and CLO′)? It seems that, strangely enough, there is almost nothing
known about this natural problem. From the results of [Se91a, Se92] (which
rely upon the Tarski elementary classification of Boolean algebras), one can
easily deduce the following result.
Theorem 5.1. Modulo theory T of Boolean algebras, all classes Dn,k

(and even all classes of the fine hierarchy) are decidable.
Proof. In [Se91a, Se92] we have described an effective sequence of

sentences φ0, φ1, . . . such that any sentence φ is equivalent (modulo theory
of Boolean algebras) to exactly one of φi, and the position of any φi in
the hierarchy {Dn,k} is completely determined. This evidently implies the
desired algorithm. �

It seems interesting to consider analogs of Theorem 5.1 for other popular
decidable theories, say, for abelian groups.

We hope that the methods developed in this paper may be used in some
other similar situations, say, for the case of tree languages.
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