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The polymodal logic based onA-spaces is considered. Modalities connected
with A-spaces are interpreted as tense ones. The nearest and detached future
or past are considered, i.e. four modalities are used. The tense modalities
are especially important for studying the parallel computations and for a
verification of programs. A set of axioms is described and a theorem of
correctness is formulated for these axioms relative to frames based on A
- spaces. Logic calculus L′ is introduced, for that some theorem about a
canonical model is formulated. A connection between fragments of L′ and
the well known logic S4 is established. The proofs are omitted in view of
their cumbersomity.
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Рассматривается полимодальная логика на основе A-пространств.
Модальности, связанные с A-пространствами, интерпретируются как
временные. Речь идет о ближайшем и отдаленном будущем или про-
шлом, т.е. используются четыре модальности. Временные модальности
особенно важны при изучении параллельных вычислений и верифи-
кации программ. Описано множество аксиом и сформулирована тео-
рема корректности для этих аксиом относительно шкал на основе A-
пространств. Введено некоторое логическое исчисление L′, для которо-
го сформулирована теорема о канонической модели. Устанавливается
связь между фрагментами L′ и известной логикй S4. Доказательства
опущены ввиду их громоздкости.
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INTRODUCTION

The polymodal logic based on A-spaces is considered. The conception
of A-space was introduced by Ershov Yu.L. [1] with the purpose to develop
the theory of computable functionals [2] and investigate continuous lattices
considered by Scott D. [3] in connection with the analysis of data types.
Various modalities having a form of necessity or capability are studied

in modal logics [4]. In other words, a formalization of some reasonings
present in the natural language and thinking of the people is carried out.
Doubtlessly, it is very interesting. Note in addition, that in researches on
nonclassical logics, including the modal ones, topological methods [S5] are
widely used.
Recently, investigations on modal logics are developing, the source of

which are problems arising in computer science. Here, it is possible to
mention various works connected with methods of representation of the
knowledges [6], logics of arrows [7], a refinement of conception of choice [8]
and tense logics [9].
The last theme is especially important in connection with development

of parallel computations [10]. Various subsystems of computing system can
use different timers (it is possible to tell that each subsystem exists in the
own time). There are appeared the various problems of synchronization. A
relativity of time and the tight connection of time with the information is
revealed in the full measure.
Note that modalities connected with A-spaces investigated in the paper

are interpreted as tense ones. The tense operators of nearest and remote
future or past, i.e. four modalities are used.
In the paper, a set of axioms is described and a correctness theorem

is formulated for these axioms relative to frames based on A-spaces. Logic
calculus L′ is introduced, for that some theorem about a canonical model is
formulated. A connection between fragments of L′ and the well known logic
S4 is established. The proofs are omitted in view of their cumbersomity.

1. DEFINITIONS AND NOTATIONS

Let 〈X, τ〉 be a topological t0-space where τ is a class of all open sets.
A topological space X is called a t0-space, if there exists an open set for

each pair of different elements in X containing only one of them [5].
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We shall introduce a partial order ≤ on X defined as follows [1]

∀x, y ∈ X (x ≤ y ←→ ∀U ∈ τ (x ∈ U −→ y ∈ U)).

For elements x, y ∈ X let x∪y denote the least upper bound. We do not
require that x ∪ y allways exist.
For any x ∈ X let x∗ denote the interior of the set x̌ (i.e., x∗ = Intx̌ )

where x̌ = {y : y ∈ X, x ≤ y} .
We say y is strongly less than x written y ≺ x if x ∈ y∗.
Notice some simple properties [1] of the relations ≤ and ≺.
Remark 1.1
a) x ≤ y & y ≺ z =⇒ x ≺ z;
b) x ≺ y & y ≤ z =⇒ x ≺ z;
c) x ≺ y =⇒ x ≤ y;
d) x ≺ z & y ≺ z & (t = x ∪ y) =⇒ t ≺ z;
e) x0 ≺ y0 & x1 ≺ y1 & (tx = x0 ∪ x1) & (ty = y0 ∪ y1) =⇒ tx ≺ ty.
Let X0 ⊆ X , then a pair 〈X0,≤〉 (i.e. a restriction of the order ≤ to

X0) is said to be subparus of 〈X,≤〉 if for any x, y ∈ X0 the existence of
their upper bound z in X (i. e., x ≤ z & y ≤ z ) implies the existence of
their least upper bound in X0.
Definition. A topological t0-space X is called a A-space, if there is

X0 ⊆ X satisfying the following conditions:
1) 〈 X0, ≤〉 is subparus;
2) the class of sets {∅}∪{x∗ : x ∈ X0} is the basis of a topology of X ;
3) ∀x0 ∈ X0 ∀x ∈ X (x0 ≺ x =⇒

∃x1 ∈ X0 (x0 ≺ x1 & x1 ≺ x ) ) .
It has been noted in the paper [1] that if the condition 1) is realized,

then conditions 2) and 3) are equivalent to the following proposition:
4) ∀U ∈ τ∀x ∈ U∃x0 ∈ X0 ∩ U(x0 ≺ x).

2. MODALITIES INDUCED BY ORDERS

Let X be a t0-space with the relation ≤ and ≺ introduced above. A
3-tuple 〈X, ≤, ≺〉 will be called the frame of t0-space. If X is A-space, then
〈X, ≤, ≺〉 will be called the frame of A-space.
Our goal is the description and the investigation of the modal logic

using the frame of the given form for building the semantics analogous to
the Kripke models. In this work, the propositional calculus is considered.
The language of a modal propositional logic contains :
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a) propositional variables p1, p2, . . .;
b) logical connectives &, ∨, −→, ¬;
c) modal operators �≤, �≺, �≤, �≺, �∗

≤, �∗
≺, �∗

≤, �∗
≺;

d) constant β.
The formulas of the language are then defined inductively as usually [4].

One additional rule for constructing the formulas is added:

if A is a formula, then �≤A, �≺A, �≤A, �≺A ,

�∗
≤A, �∗

≺A, �∗
≤A, �∗

≺A are formulas.

Modalities �≤, �≺, �≤, �≺ interpret as a necessity and a possibility
in a future.
Modalities �∗

≤, �∗
≺, �∗

≤, �∗
≺ interpret as a necessity and a possibility

in a detached future.
Thus the nearest and detached future or past are considered, i.e. four

modalities are used.

3. ON THE SEMANTICS

For modal logics, we will consider models analogous to the Kripke models.
We will say about the truth in the given moment of time, where moments
of time are points of some ordered set.
Let us consider a model

M = 〈X, X0, ≤, ≺, |=〉

where 〈X, ≤, ≺〉 is a frame of t0-space, X0 ⊆ X , |= is a binary relation of
truth between X and a set of formulas.
Such model M will be called the t0-model if X is a t0-space. If X is a

A-space then M will be called the A-model.
The truth value of a formula A at a moment x (a notation x |= A will

be used) is defined by induction according to the following clauses:
We suppose x |= pi or not x |= pi for any propositional variable pi and

for any x ∈ X ,
0) x |= β ⇐⇒ x ∈ X0,
1) x |= ¬A ⇐⇒ not x |= A,
2) x |= A&B ⇐⇒ x |= A and x |= B,
3) x |= A ∨B ⇐⇒ x |= A or x |= B,
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4) x |= A −→ B ⇐⇒ x |= A =⇒ x |= B,
5) x |= �≤A ⇐⇒ ∃y (x ≤ y and y |= A),
6) x |= �≺A ⇐⇒ ∃y (x ≺ y and y |= A),
7) x |= �≤A ⇐⇒ ∀y (x ≤ y =⇒ y |= A),
8) x |= �≺A ⇐⇒ ∀y (x ≺ y =⇒ y |= A),
9) x |= �∗

≤A ⇐⇒ ∃y (y ≤ x and y |= A),
10) x |= �∗

≺A ⇐⇒ ∃y (y ≺ x and y |= A),
11) x |= �∗

≤A ⇐⇒ ∀y (y ≤ x =⇒ y |= A),
12) x |= �∗≺A ⇐⇒ ∀y (y ≺ x =⇒ y |= A).

A formula A is said to be hold in the model M , if for all x ∈ X there
is x |= A. A formula A is said to be valid in the frame, if it is hold in any
model on the underlying this frame . A formula A is said to be valid, if it is
valid in all frames.
Remark. The formulas A −→ �∗

i �iA , A −→ �i�
∗
i A,

�i(A −→ B) −→ (�iA −→ �iB), �∗
i (A −→ B) −→ (�∗

i A −→ �∗
i B),

where i ∈ {≤, ≺}, are valid [9].
Proposition 3.1. Let M = 〈X, X0, ≤, ≺, |=〉 be a t0-model, x ∈ X .

Then:
1) x |= �≤�≺A −→ �≺A,
2) x |= �≺�≤A −→ �≺A,
3) x |= �≺A −→ �≤A,

x |= �≤A −→ �≺A .
Proposition 3.2. Let M be a t0 - model. If for all x, y ∈ X there exists

x ∪ y then
x |= �≺�≺A&�≺�≺B −→ �≺�≺(A&B).
Proposition 3.3. Let M = 〈X, X0, ≤, ≺, |=〉 be a t0 - model, x ∈ X .

Then
1) x |= (�≤A −→ A),

x |= (A −→ �≤A),
2) x |= (�≤A −→ �≤�≤A),

x |= (�≤�≤A −→ �≤A),
3) x |= (�≺A −→ �≺�≺A),

x |= (�≺�≺A −→ �≺A) .
The proof is given in [4].
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4. TOPOLOGICAL PROPERTIES OF FRAMES
AND CORRESPONDING AXIOMS

In this sectiom we assume that 〈X, ≤, ≺〉 is a frame of t0 - space,
X0 ⊆ X . For any set M ⊆ X denote �≺M = {x : ∀y(x ≺ y =⇒ y ∈M)}.
Proposition 4.1.
1) If M is an open set then M ⊆ �≺M .
2) Proposition M ⊇ �≺M is not valid in general case, even if M is an

open set.
Proposition 4.2. M ⊆ �≺M ⇐⇒ ∀x ∈M(x∗ ⊆M) .
Remark.
If furthermore ∀x ∈M(x ≺ x), or in other words

∀x ∈M(x ∈ x∗), then M is open because x ∈ x∗ ⊆M .

Proposition 4.3. If ∀U ∈ τ∀z ∈ U∃x0 ∈ X0 ∩ U(x0 ≺ z) holds in X ,
i. e. the condition 4) of the definition A - space is realized, then for any x:

x |= �≺A −→ �≺�∗
≺(β&�≤A).

Lemma 4.4. If X is a t0-space, X0 ⊆ X satisfies conditions 2) and 3)
of definition A-space, then X0 is dense in X (in topological sense), i. e. for
any open in X set U there exists z0 ∈ X0 ∩ U .
Proposition 4.5. If X0 is dense in X then for any x ∈ X

x |= �≺A −→ �≤(β & �≤A).

Proposition 4.6. Let

∀x, y ∈ X(x ≺ y =⇒ ∃z ∈ X(x ≺ z ≺ y)) .

Then for any x x |= �≺�≺A −→ �≺A, x |= �∗
≺�∗

≺A −→ �∗
≺A .

Proposition 4.7. If X satisfies the condition 2) and 3) of the definition
of A-space, then for any x ∈ X

x |= �∗
≺A −→ �∗

≤(β & �∗
≤A).

Proposition 4.8. If X satisfies the condition 4) of the definition of
A-space then for any x:

x |= �∗
≺A −→ �∗

≺�≺(β&�∗
≤A).
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We finally establish the main result of this section.
Theorem about correctness .
1. In any A-space the following formulas are valid:
1) �≤A −→ �≺A ;
1′) �∗

≤A −→ �∗
≺A ;

2) �≤A −→ �≤�≤A ;
2′) �∗

≤A −→ �∗
≤�∗

≤A ;
3) �≤A −→ A ;
3′) �∗

≤A −→ A ;
4) �≺A −→ �≺�≺A ;
4′) �∗

≺A −→ �∗
≺�∗

≺A ;
5) �≺A −→ �≤�≺A ;
5′) �∗

≺A −→ �∗
≤�∗

≺A ;
6) �≺A −→ �≺�≤A ;
6′) �∗

≺A −→ �∗
≺�∗

≤A ;
7) �≺A −→ �≤(β & �≤A) ;
7′) �∗≺A −→ �∗

≤(β & �∗
≤A) ;

8) �≺A −→ �≺�∗
≺(β & �≤A) ;

8′) �∗
≺A −→ �∗

≺�≺(β & �∗
≤A) .

2. In A-space, where for all x, y there exists x∪y, the following formula
is valid:

�≺�≺A&�≺�≺B −→ �≺�≺(A&B).
3. In A-space, if the relation ≺ is dense then the following formulas are

valid:
�≺�≺A −→ �≺A and �∗≺�∗≺A −→ �∗≺A.

5. A STRUCTURE OF A CANONICAL MODEL

Define the logical calculus L0 by sets of axioms and derivation rules. The
language L0 includes the modalities described above.
The axioms of logic L0 are:
1) All tautologies ;
2) �≤(A −→ B) & �≤A −→ �≤B ;
2′) �∗

≤(A −→ B) & �∗
≤A −→ �∗

≤B ;
3) �≺(A −→ B) & �≺A −→ �≺B ;
3′) �∗

≺(A −→ B) & �∗
≺A −→ �∗

≺B ;
4) A −→ �≤�∗

≤A ;
4′) A −→ �∗

≤�≤A ;
5) A −→ �≺�∗

≺A ;
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5′) A −→ �∗≺�≺A .
The derivation rules of L0 are:
1) A

�≤A ;

1′) A
�∗

≤A ;

2) A
�≺A ;

2′) A
�∗

≺A ;

3) A, A→B
B .

Let L be a calculus containing all axioms and rules of the calculus L0.
Denote by ΦL the set of formulas of the logic L.
A finite sequence of formulas A1, . . . , Ak ∈ ΦL is said to be a derivation

in the logic L, if for all i Ai is an axiom or the immediate consequence of
previous formulas by one of rules.
For any A ∈ Φl, Γ ⊆ ΦL let Γ −→L A denote that there exists k ≥

0 and A1, . . . , Ak ∈ Γ, such that (A1 −→ . . . (Ak −→ A)) . . .) is derived in
L .
A set Γ of formulas is said to be L-contradictory iff there exists B ∈ ΦL

such that Γ −→L B and Γ −→L ¬B. Otherwise, Γ is a L-noncontradictory
set.
A set Γ is said to be L-complete set iff for all A ∈ ΦL A ∈ Γ or ¬A ∈ Γ.
A set Γ is said to be a L-theory iff Γ is closed under −→L.
Let WL be a set of complete L-noncontradictory theories.
Define ≤ on WL by T1 ≤ T2 ⇐⇒ {A : �≤A ∈ T1} ⊆ T2 .
Define ≺ on WL similarly, i. e. T1 ≺ T2 ⇐⇒ {A : �≺A ∈ T1} ⊆ T2 .
If A ∈ ΦL then let UA = {T ∈ WL : �≺A ∈ T } .
Let us introduce a topology τ on WL, having taken Bτ as a basis, where

Bτ = {∅} ∪ {UA : A ∈ ΦL} .

Let W 0
L = {T ∈ WL : β ∈ T }.

Thus we have the frame 〈WL, W 0
L, ≤, ≺〉. The monadic predicate β is

defined by the set W 0
L .

For all T ∈WL let us introduce the notation T ∗ = {Q ∈WL : T ≺ Q}.
Denote by Bτ0 = {∅} ∪ {T ∗

0 : T0 ∈ W 0
L}.

Let us consider the modelML = 〈WL, ≤, ≺, W 0
L, |=〉 , where we assume

T |= p ⇐⇒ p ∈ T for any variable p and T ∈ WL. We shall call ML the
canonical model.
Lemma. For all T, S ∈WL

T R S ⇐⇒ {A : �∗
RA ∈ S} ⊆ T ,
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where R ∈ {≤, ≺} (See [9]).
The following Lemma is proved by induction using the previous Lemma

[9].
Lemma (about the canonical model). For all A ∈ ΦL, for all

T ∈ WL

T |= A⇐⇒ A ∈ T .

Proposition 5.1. If �≤�≺A −→ �≺A is derived in L then for all
T1, T2, T3 ∈ WL

T1 ≤ T2 ≺ T3 =⇒ T1 ≺ T3 .

Proposition 5.2. If �≺�≤A −→ �≺A is derived in L, then for all
T1, T2, T3 ∈ WL

T1 ≺ T2 ≤ T3 =⇒ T1 ≺ T3 .

Proposition 5.3. If �≤A −→ �≺A is derived in L then for all
T1, T2 ∈ WL

T1 ≺ T2 =⇒ T1 ≤ T2 .

Proposition 5.4. If (�≤A −→ A) , (�≤A −→ �≤�≤A) ,
(�≺A −→ �≺�≺A) are derived in L, then the relation ≤ is the reflexive

and the transitive relation, the relation ≺ is the transitive one (See [4]).
Proposition 5.5. If the axiom

�≺A −→ �≤(β & �≺A)

is derived in L and the relation ≺ is transitive, then the set
Bτ0 = {∅} ∪ {T ∗

0 : T0 ∈W 0
L} satisfies the following condition:
∀U ∈ τ∃V ∈ Bτ0(V ⊆ U) .

Let L′ be a calculus obtained by adding to L0 the following axioms:
1) �≤A −→ �≺A ;
1′) �∗

≤A −→ �∗≺A ;
2) �≤A −→ �≤�≤A ;
2′) �∗

≤A −→ �∗
≤�∗

≤A ;
3) �≤A −→ A ;
3′) �∗

≤A −→ A ;
4) �≺A −→ �≺�≺A ;
4′) �∗≺A −→ �∗≺�∗≺A ;
5) �≺A −→ �≤�≺A ;
5′) �∗

≺A −→ �∗
≤�∗

≺A ;
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6) �≺A −→ �≺�≤A ;
6′) �∗

≺A −→ �∗
≺�∗

≤A ;
7) �≺A −→ �≤(β & �≤A) ;
7′) �∗≺A −→ �∗

≤(β & �∗
≤A) ;

Proposition 5.6. For all T1, T2 ∈WL

T1 ≤ T2 =⇒ ∀U ∈ τ(T1 ∈ U =⇒ T2 ∈ U) .

We finally establish the main results of this section.
Theorem on the canonical model. The canonical model for L′

possesses the following properties:
1) T1 ≤ T2 ≺ T3 =⇒ T1 ≺ T3 ;
2) T1 ≺ T2 ≤ T3 =⇒ T1 ≺ T3 ;
3) T1 ≺ T2 =⇒ T1 ≤ T2 ;
4) T ≤ T ;
5) T1 ≤ T2 ≤ T3 =⇒ T1 ≤ T3 ;
6) T1 ≺ T2 ≺ T3 =⇒ T1 ≺ T3 ;
7) ∀U ∈ τ∃V ∈ Bτ0(V ⊆ U);
8) T1 ≤ T2 =⇒ ∀U ∈ τ(T1 ∈ U −→ T2 ∈ U) .
The following Theorem is obtained by standard reasoning [4] from Lemma

and Theorem about the canonical model.
Theorem 5.7. If a formula A is valid in the frames, where the following

conditions hold:
1) T1 ≤ T2 ≺ T3 =⇒ T1 ≺ T3 ;
2) T1 ≺ T2 ≤ T3 =⇒ T1 ≺ T3 ;
3) T1 ≺ T2 =⇒ T1 ≤ T2 ;
4) T ≤ T ;
5) T1 ≤ T2 ≤ T3 =⇒ T1 ≤ T3 ;
6) T1 ≺ T2 ≺ T3 =⇒ T1 ≺ T3 ,
then it is derived in L′.
Examples.
Let us consider the partially ordered set 〈X, ≤, ≺〉 where

〈X, ≤〉 is a tree, i. e. (x ≤ y and x ≤ z =⇒ (y ≤ z or z ≤ y)) .
Assume ≺ = ≤, and U is an open set if ∀x(x ∈ U and x ≤ y =⇒ y ∈ U).
Let X0 = X , then 〈X, X0, ≤, ≺〉 be A-space.
Now consider poset 〈X, ≥, �〉 where

〈X, ≥〉 is a tree, i. e. (x ≥ y and x ≥ z =⇒ (y ≥ z or z ≥ y)) .
Assume � = ≥, and U is an open set if ∀x(x ∈ U and x ≥ y =⇒ y ∈ U).
Let X0 = X , then 〈X, X0, ≥, �〉 will be A-space too.
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Since S4 is complete over tree — like models [4], then we obtain:
Theorem 5.8.
1) A formula containing modalities of form �≤ only is valid

in all A-spaces iff it is derived in S4.

2) A formula containing modalities of form �∗
≤ only is valid

in all A-spaces iff it is derived in S4.

3) If a formula containing modalities of form �≺ only is valid
in all A-spaces then it is derived in S4.

4) If a formula containing modalities of form �∗≺ only is valid
in all A-spaces then it is derived in S4.

6. TOPOLOGICAL PROPERTIES OF THE CANONICAL MODEL

Let L be any extension of the logic L0. Let us present two more interesting
results.
Proposition 6.1. For the canonical model:

Bτ0 = {∅} ∪ {T ∗
0 : T0 ∈W 0

L} is a basis⇐⇒

∀A ∈ ΦL∀T ∈WL(�≺A ∈ T =⇒ �∗
≺(β&�≺A) ∈ T ).

Proposition 6.2. If the formulas �≺�≺A −→ �≺A ,
�≺A −→ �≺�∗

≺(β & �≺A) are derived in L, and the set
{∅} ∪ {T ∗

0 : T0 ∈ W 0
L} is a basis of topology τ , then

∀U ∈ τ∀T ∈ U∃T0 ∈W 0
L ∩ U(T0 ≺ T ).
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