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The polymodal logic based on A-spaces is considered. Modalities connected
with A-spaces are interpreted as tense ones. The nearest and detached future
or past are considered, i.e. four modalities are used. The tense modalities
are especially important for studying the parallel computations and for a
verification of programs. A set of axioms is described and a theorem of
correctness is formulated for these axioms relative to frames based on A
- spaces. Logic calculus L’ is introduced, for that some theorem about a
canonical model is formulated. A connection between fragments of L’ and
the well known logic Sy is established. The proofs are omitted in view of
their cumbersomity.
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Paccmarpusaercs mosimMoaibHas JIOIMKA Ha OCHOBE A-TIPOCTPAHCTB.
MopabHOCTH, CBsI3aHHBIE ¢ A-TIPOCTPAHCTBAMH, WHTEPIPETUPYIOTCS KakK
BpeMennble. Peunb mmer o OmKaifimeM u OTJAJeHHOM OyAyIeM WU IPO-
IIIJIOM, T.€. UCTIOJIB3YIOTCS YeThIpe MOJIAJILHOCTH. BpeMeHHbIe MOIAILHOCTH
O0CODEHHO Ba)KHBI IIPU HM3YyUYEHUH IMapaJLIEbHBIX BBIYUC/IEHUN U Bepudu-
karmuu mporpamM. ONnucaHo MHOXKECTBO aKCHOM U C(OPMYJIMPOBaHA TeO-
peMa KOPPEKTHOCTH JJIsi 3TUX aKCHOM OTHOCHUTEJBHO IIKAJ Ha OCHOBe A-
IpoCTPaHcTB. BBeJEHO HEKOTOPOE JIOTMYEeCKOe UCYucaeHue L' 1y KoTopo-
ro copMyIrpOBaHA TEOPEMA O KAHOHUYECKON MOJEIN. YCTAHABINBAETCSI
cBsI3b Mexkay dbparmentamu L' m mssectnoit jorukit Sy. JJokazaTenancTsa
OIIYIIE€HBbI BBUJLY UX I'POMO3IKOCTH.
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INTRODUCTION

The polymodal logic based on A-spaces is considered. The conception
of A-space was introduced by Ershov Yu.L. [1] with the purpose to develop
the theory of computable functionals [2] and investigate continuous lattices
considered by Scott D. [3] in connection with the analysis of data types.

Various modalities having a form of necessity or capability are studied
in modal logics [4]. In other words, a formalization of some reasonings
present in the natural language and thinking of the people is carried out.
Doubtlessly, it is very interesting. Note in addition, that in researches on
nonclassical logics, including the modal ones, topological methods [S5] are
widely used.

Recently, investigations on modal logics are developing, the source of
which are problems arising in computer science. Here, it is possible to
mention various works connected with methods of representation of the
knowledges [6], logics of arrows [7], a refinement of conception of choice [§]
and tense logics [9].

The last theme is especially important in connection with development
of parallel computations [10]. Various subsystems of computing system can
use different timers (it is possible to tell that each subsystem exists in the
own time). There are appeared the various problems of synchronization. A
relativity of time and the tight connection of time with the information is
revealed in the full measure.

Note that modalities connected with A-spaces investigated in the paper
are interpreted as tense ones. The tense operators of nearest and remote
future or past, i.e. four modalities are used.

In the paper, a set of axioms is described and a correctness theorem
is formulated for these axioms relative to frames based on A-spaces. Logic
calculus L' is introduced, for that some theorem about a canonical model is
formulated. A connection between fragments of L’ and the well known logic
Sy is established. The proofs are omitted in view of their cumbersomity.

1. DEFINITIONS AND NOTATIONS

Let (X, 7) be a topological top-space where 7 is a class of all open sets.
A topological space X is called a tg-space, if there exists an open set for
each pair of different elements in X containing only one of them [5].



We shall introduce a partial order < on X defined as follows [1]
Ve,ye X (x<y+«— VU et (xelU—yecl)).

For elements x,y € X let x Uy denote the least upper bound. We do not
require that x Uy allways exist.

For any x € X let * denote the interior of the set & (i.e., * = Int¥ )
where 2 ={y: ye X,z <y} .

We say y is strongly less than x written y < x if = € y*.

Notice some simple properties [1] of the relations < and <.

Remark 1.1

a) r<y&y<z=z<z;

b) r<y&y<z= <z
) r<y=x<y;
d) 2<z2&y<z& (t=2Uy)=1<z
e) o<y &x1 <y1 &tz =z0Uz1) & (ty =yoUy1) =tz < 1ty.

Let Xo C X , then a pair (Xo, <) (i.e. a restriction of the order < to
Xp) is said to be subparus of (X, <) if for any x,y € X, the existence of
their upper bound z in X (i. e., x < z & y < 2z ) implies the existence of
their least upper bound in Xj.

Definition. A topological tp-space X is called a A-space, if there is
Xo C X satisfying the following conditions:

1) { Xo, <) is subparus;

2) the class of sets {§}U{x* : x € Xy} is the basis of a topology of X ;

3)Vag € Xo Ve € X (19 <z =

dz, € X ($0<$1&$1<$)).

It has been noted in the paper [1] that if the condition 1) is realized,
then conditions 2) and 3) are equivalent to the following proposition:

) VU € Ve € UTzg € XoNU (20 < ).

2. MODALITIES INDUCED BY ORDERS

Let X be a tg-space with the relation < and < introduced above. A
3-tuple (X, <, <) will be called the frame of ty-space. If X is A-space, then
(X, <, <) will be called the frame of A-space.

Our goal is the description and the investigation of the modal logic
using the frame of the given form for building the semantics analogous to
the Kripke models. In this work, the propositional calculus is considered.

The language of a modal propositional logic contains :



a) propositional variables p1, po,...;
b) logical connectives &, V, —, —;

c¢) modal operators C<, ¢, Oc, O, OL, OF, O%, O%;

d) constant . - -

The formulas of the language are then defined inductively as usually [4].
One additional rule for constructing the formulas is added:

if Ais a formula, then G<cA, OLA, O<A, OLA,

OLA, OLA, OZA, O%A are formulas.

Modalities ¢<, ¢, O<, O interpret as a necessity and a possibility
in a future.

Modalities &%, &%, OL, O% interpret as a necessity and a possibility
in a detached future. a

Thus the nearest and detached future or past are considered, i.e. four
modalities are used.

3. ON THE SEMANTICS

For modal logics, we will consider models analogous to the Kripke models.
We will say about the truth in the given moment of time, where moments
of time are points of some ordered set.

Let us consider a model

M = <X7 XO; Sv =, ':>

where (X, <, <) is a frame of to-space, Xo C X, |=is a binary relation of
truth between X and a set of formulas.

Such model M will be called the tg-model if X is a tg-space. If X is a
A-space then M will be called the A-model.

The truth value of a formula A at a moment z (a notation z = A will
be used) is defined by induction according to the following clauses:

We suppose z |= p; or not x |= p; for any propositional variable p; and
for any =z € X,

0) x =8 < z € X,

1)z E-A <= not x = A,

2)x = A&B <= z|=Aand z = B,

3)xr =EAVB <= xk=Aorzx =B,
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4)rEA—B << zE A=z B,
5)zF O<A < Jy (z<yandyf A4),
6) r =OiA <= Ty (r<yandy = A),
NerEOA = Yy (@<y=yF4),
8) x EUA <= Wy (z <y=yF A),
9)xEOLA < Ty (y<zandyf A4),
10) x EORA < Jy (y<zand y | A),
I zEOZA <= Vy (y<z =y A),
12) 2 EONA <= Vy (y<z=y [ A).

A formula A is said to be hold in the model M, if for all x € X there
is z = A. A formula A is said to be valid in the frame, if it is hold in any
model on the underlying this frame . A formula A is said to be valid, if it is
valid in all frames.

Remark. The formulas A — 0704, A — 0,07 A,

0,(A — B) — (0;A — 0;B), 0;(A — B) — (O0A — O/ B),
where i € {<, <}, are valid [9].

Proposition 3.1. Let M = (X, Xy, <, <, =) be a tp-model, z € X.
Then:

1)z |EO<OLA — OLA,

)z EOLO<A — OLA,

3) xT ': <><A — OSA,

x ': DSA — 0OLA.

Proposition 3.2. Let M be a ty - model. If for all z,y € X there exists
x Uy then

x| OLO4A&O OB — O 0, (A&B).

Proposition 3.3. Let M = (X, X, <, <, ) be atg - model, x € X.
Then

1) 2 b (D<A — A),

2 (A— OcA),

2) 2 |- (B<A — O<0<A),

z = (0<O<A — O<A),

3) € ': (D<A — D-<|:|-<A)a

(OO0 A — OLA) .
The proof is given in [4].



4. TOPOLOGICAL PROPERTIES OF FRAMES
AND CORRESPONDING AXIOMS

In this sectiom we assume that (X, <, <) is a frame of ¢y - space,
Xo C X. For any set M C X denote O M ={x: Vyla <y =y € M)}.

Proposition 4.1.

1) If M is an open set then M C O_ M.

2) Proposition M D O M is not valid in general case, even if M is an
open set.

Proposition 4.2. M C O M <= Vz € M(z* C M) .

Remark.

If furthermore Vo € M (x < z), or in other words
Vo € M(x € z*), then M is open because x € x* C M.

Proposition 4.3. If VU € 7Vz € Udzy € XoNU(zg < 2) holds in X,
i. e. the condition 4) of the definition A - space is realized, then for any x:

rEOZA — 0,05 (B&0<A).

Lemma 4.4. If X is a tg-space, Xo C X satisfies conditions 2) and 3)
of definition A-space, then X is dense in X (in topological sense), i. e. for
any open in X set U there exists zg € XoNU.

Proposition 4.5. If X is dense in X then for any z € X

xT ': D_<A — Og(ﬁ & DSA)'
Proposition 4.6. Let
Ve, ye X(z<y=3z€ X(x<2<y)).
Then for any z 2 = 0,04 — OZA, x = 05054 — 0% A .
Proposition 4.7. If X satisfies the condition 2) and 3) of the definition
of A-space, then for any x € X
rEOZA — OL(B & OZA).

Proposition 4.8. If X satisfies the condition 4) of the definition of
A-space then for any x:

r | O%A — D50 (B&OLA).



We finally establish the main result of this section.

Theorem about correctness .

1. In any A-space the following formulas are valid:

1) O<A — 0OLA;

1) OLA — DO%A;

2) DSA — DSDSA 3

2)0LA — OLO%A

3) D;A — A

3)yO0rA— A

4) OcA — 004

4') 0% A — O50% A

5) OA — O<OZA;

5) 0%A — OLO%A

6) OcA — O O<A;

6') 0% A — OL0LA

7) OcA — O<(B & O<A)

7) 0LA — OL(6 & O A) ;

8) DA — OO% (B & O<A) ;

8) 0 A — 040 (3 & OLA) .

2. In A-space, where for all z, y there exists 2 Uy, the following formula
is valid:

OO A&O OB — OO0 (A&B).

3. In A-space, if the relation < is dense then the following formulas are
valid:

O 0 A — 0O Aand OL00A4 — OFA.

5. A STRUCTURE OF A CANONICAL MODEL

Define the logical calculus Lq by sets of axioms and derivation rules. The
language Lg includes the modalities described above.

The axioms of logic Ly are:

1) All tautologies ;

2) B<(A— B) & 0<A—D<B;

2') O2(A — B) & 02A — DB ;

3)0s(A— B) & OA — 0O.B;

3) 0%(4 — B) & OLA — DB ;

4)A—DOL0LA

5) A — D;OZA ;
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5)A— O50ZA .
The derivation rules of Lg are:
1) 4

A, A>B
3) =5 .

Let L be a calculus containing all axioms and rules of the calculus L.

Denote by @, the set of formulas of the logic L.

A finite sequence of formulas A1, ..., Ar € @, is said to be a derivation
in the logic L, if for all + A; is an axiom or the immediate consequence of
previous formulas by one of rules.

For any A € &;, ' C &, let ' — A denote that there exists k >
0 and Ay,..., Ag € T, such that (A; — ... (Ax — A))...) is derived in
L.

A set I' of formulas is said to be L-contradictory iff there exists B € &,
such that I' — B and I' —, —B. Otherwise, I' is a L-noncontradictory
set.

A set T is said to be L-complete set iff for all A€ &, AT or ~AeT.

A set T is said to be a L-theory iff T' is closed under —,.

Let W1 be a set of complete L-noncontradictory theories.

Define <on Wy by Th1 <Th <= {A: O<cAeT1} CTy.

Define < on Wy, similarly, i. e. Ty < Th <= {A: OAeT 1} CTy.

If Ae®p thenlet Uy ={T €Wy : O,A€T}.

Let us introduce a topology 7 on W, having taken B, as a basis, where

By ={0}U{Us: AcdL}.

Let W2 ={T eW,: BeT}.

Thus we have the frame (W, WP, <, <). The monadic predicate f3 is
defined by the set W} .

For all T € Wy, let us introduce the notation T* = {Q € WL : T < Q}.

Denote by B, = {0} U{T§ : T, € WP}

Let us consider the model My, = (Wy,, <, <, W2, =), where we assume
T E p <= p e T for any variable p and T € Wj,. We shall call M}, the
canonical model.

Lemma. ForallT, S e W

TRS<—{A: ORAe€S}CT,
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where R € {<, <} (See [9]).
The following Lemma is proved by induction using the previous Lemma
[9]-
Lemma (about the canonical model). For all A € @, for all
Te Wy
TEA—= AecT.

Proposition 5.1. If <0 A — O A is derived in L then for all
Ty, Ty, T3 € Wy,
T <Ty T3 ="1T7 <15 .

Proposition 5.2. If 0«4 — O A is derived in L, then for all
T, T, Ts e Wi
T1<T2§T3:>T1-<T3 .

Proposition 5.3. If 0<A — O_ A is derived in L then for all
Ty, To € Wy,
Ty Ty =T, <15 .

Proposition 5.4. If (O<A — A), (O<A — O<0O<A) ,

(O4A — 0402 A) are derived in L, then the relation < is the reflexive
and the transitive relation, the relation < is the transitive one (See [4]).

Proposition 5.5. If the axiom

O4A — O (B & OZA)

is derived in L and the relation < is transitive, then the set
By, = {0} U{Tg : Tp € W} satisfies the following condition:

YU €73V € B, (VCU) .

Let L' be a calculus obtained by adding to Lg the following axioms:
1) DSA — D_<A 3

1"y OLA— O%A;

2) DgiA — DSDSA 3
2') 0L A — OLOLA
3) DS_A — A
3)yO0LA— A,

4) OcA — 004
4') 0% A — O50%A
5) 0iA — O<0OZA;
5)0%A — OL0% A4,
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6) OsA — O,0<A ;

6') 0% A — O50LA

7) OcA — O<(B & O<A)

7) O%A — OL(3 & OLA) ;
Proposition 5.6. For all Ty, T, € Wy,

N <Th=VUer(TheU=TeU).

We finally establish the main results of this section.
Theorem on the canonical model. The canonical model for L'
possesses the following properties:
1)T1§T2-<T3$T1-<T3;
2)T1-<T2§T3:>T1-<T3;
3) Th<Ty, =T, <Ty;
HT<T,;
) <Th <Tz3 =T, <Tj;
)T1-<T2-<T3:>T1-<T3;
YVU € 73V € B, ,(V CU);
8) T1§T2:>VUET(T1€U—>TQEU).
The following Theorem is obtained by standard reasoning [4] from Lemma
and Theorem about the canonical model.
Theorem 5.7. If a formula A is valid in the frames, where the following
conditions hold:
1)T1§T2-<T3$T1-<T3;
2)T1-<T2§T3:>T1-<T3;
3) Ty Ty =T, <15 ;
4H)T<T,;
5)Th <Th <Ty3 =T, < T3;
6)T1-<T2-<T3:>T1-<T3,
then it is derived in L.
Examples.
Let us consider the partially ordered set (X, <, <) where
(X, <)isatree,i.e. (r<yandez<z= (y<zorz<y)).
Assume < = <, and U is an open set if Va(x € U and 2 <y =y € U).
Let Xg = X, then (X, X, <, <) be A-space.
Now consider poset (X, >, =) where
(X, >)isatree,i.e. (z>yande>z= (y>zorz>y)).
Assume > = >, and U is an open set if Ve(x € U and x >y = y € U).
Let Xg = X, then (X, Xy, >, ») will be A-space too.

)
6
7
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Since Sy is complete over tree — like models [4], then we obtain:
Theorem 5.8.
1) A formula containing modalities of form O< only is valid

in all A-spaces iff it is derived in Sy.

2) A formula containing modalities of form 0% only is valid
in all A-spaces iff it is derived in Sy. a

3) If a formula containing modalities of form O~ only is valid
in all A-spaces then it is derived in Sy.

4) If a formula containing modalities of form 0% only is valid
in all A-spaces then it is derived in Sy.

6. TOPOLOGICAL PROPERTIES OF THE CANONICAL MODEL

Let L be any extension of the logic Lg. Let us present two more interesting
results.
Proposition 6.1. For the canonical model:

B, = {0} U{T; : To € WP} is a basis <=

VAe O VT e Wi (DA e T = O5(B&DOLA) € T).

Proposition 6.2. If the formulas 0,04 — O_A |
O A — 0,05 (B & OLA) are derived in L, and the set
{0}y U{T§ : To € WP} is a basis of topology 7, then

YU € VT € UITy e WP NU(To < T).
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