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In this paper the unfolding technique is applied to coloured Petri nets (CPN)  
[8,9]. The technique is formally described, two algorithms and three finitization 
criteria are considered. It is also shown how to use the unfolding technique tak-
ing into consideration symmetry or equivalence specifications presented in [9]. 
We require CPN to be finite, n-safe and containing only finite sets of colours. 
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В данной работе метод развертки применен к раскрашенным сетям Пет-
ри (РСП) [8,9]. Метод формально описан, приведены два алгоритма и три 
критерия финитизации. Также показано как применять метод развертки, 
используя спецификации симметрии или эквивалентности, описанные в [9]. 
На РСП накладываются ограничения конечности, n-безопасности и конеч-
ности множеств, представляющих цвета.  
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1. INTRODUCTION 

The state space exploring in Petri net (PN) analysis is one of the most impor-
tant approaches. Unfortunately, it faces the state explosion problem. Among the 
approaches which are used to avoid this problem are the stubborn set method, 
symbolic binary decision diagrams (BDD), methods based on partial orders, 
methods using symmetry and equivalence properties of the state space, etc. [13]. 

McMillan in [11] has proposed an unfolding technique for PN analysis. In his 
works, instead of the reachability graph, a finite prefix of maximal branching 
process, large enough to describe a system, has been  considered.  

The size of unfolding is exponential in the general case and there are few 
works which improve in some way the unfolding definitions and the algorithms 
of unfolding construction [6,10]. 

Initially McMillan has proposed his method for the reachability and deadlock 
analysis (which has also been improved in the later work [12]). J.Esparsa has 
proposed a model-checking approach to unfolding of 1-safe systems analysis [5]. 
In [1] the model-checking technique has been applied to timed PN. In [3,7,15] 
LTL-based model-checking has been developed. 

Unfolding of CPN has been considered in the general case in [14] for using it 
in the dependence analysis needed by the Stubborn Set method. In this paper the 
unfolding method, as it was developed in later works for ordinary PN, is applied 
to CPN (as they are described in [8,9]). Three types of unfoldings and two algo-
rithms for unfolding generation are considered. 

In [9] symmetry and equivalence specifications for CPN are introduced. In 
this paper it is shown how to use the unfolding technique taking into considera-
tion symmetry or equivalence specifications. 

The paper is organized as follows: chapter 2 gives the main definitions of the 
CPN’s theory and the subclass we are interested in, chapters 3 and 4 introduce 
the unfolding theory, chapter 5 gives two algorithms of the unfolding generation, 
chapter 6 gives the net examples, chapter 7 describes the deadlock checking 
technique that uses net unfoldings, chapter 8 describes how to work with net un-
foldings in the presence of symmetry or equivalence specifications. 
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2. INTRODUCTION TO COLOURED PETRI NETS 

In this section we briefly give the basic definitions related to CPN and de-
scribe the subclass of colours we will use in the paper. More detailed description 
of coloured Petri nets can be found in [8,9]. 

Definition 2.1.  A multi-set is a function m: S→N, where S is a usual set and N 
is the set of natural numbers. 

In the natural way we can define operations such as m1+m2, n⋅m, m1-m2, and 
relations m1≤m2, m1<m2. Also ⎪m⎪ can be defined as ⎪m⎪=∑s∈Sm(s). 

Let Var(expression) define the set of variables of expression and 
Type(expression) define the type of expression. 

Definition 2.2.  A coloured Petri net CPN is the net  

N = (S,P,T,A,N,C,G,E,I),  

where S,P,T,A are the sets of colours, places, transitions, and arcs such that   
P∩T = P∩A = T∩A=∅, N is a mapping N: A→P×T∪T×P, C is a colour func-
tion C: P→S, G is a guard function such that for all t∈T Type(G(t))=bool and  
Type(Var(G(t))) ⊆ S, E is the function defined on arcs with Type(E(a)) = C(p)MS, 
where p is the  place from N(a) and Type(Var(E(a))) ⊆ S and I is the initial func-
tion defined on places, such that for all p∈P Type(I(p)) = C(p)MS .  

A(t), Var(t), A(x,y), E(x,y) can be defined in the natural way. 

Definition 2.3.  A binding b is a function from Var(t) such that b(v)∈Type(v) 
and G(t)<b>. The set of bindings for t will be denoted by B(t) 

Definition 2.4. A token element is a pair (p,c) where p∈P and c∈C(p). The set of 
all token elements is denoted by TE. 

Definition 2.5.  A binding element is a pair (t,b) where t∈ T and  b∈ B(t). The 
set of all binding elements is denoted by BE. 

Definition 2.6. A marking M is a multi-set over TE. 

Definition 2.7.  A step Y is a multi-set over BE.  

Definition 2.8. A step Y is enabled in the marking M if for all p∈P 
∑(t,b)∈YE(p,t)<b> ≤ M(p) and a new marking M1 is given by   

 M1(p) = M(p) - ∑(t,b)∈YE(p,t)<b> + ∑(t,b)∈YE(t,p)<b>. 
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Now we can define a subclass of colored Petri nets which is large enough to de-
scribe many interesting systems and still allows us to build a finite prefix of its 
branching process. In the description we follow the CPN ML notation given in 
[8]. The main idea is to consider only finite color domains s∈S. 
The set of basic color domains is obtained from the four basic types of Standard 
ML (SML): 
 color A = int with m..n  // m < n 
 color B = bool 
 color C = unit 
 color D1 = string with "x".."y" and m..n // x < y and m < n  
 color D2 = string with s1|s2|...sn // the explicit enumeration. 
Also the explicit specifications of finite colors are possible, such as: 
 color E = with X1|X2|…|Xn 
 color F = index expr with m..n,   
and the sets obtained by the renaming procedure 
 color G = bool with (yes,no) 
 color H = unit with e. 
From already defined color sets we can declare new color sets using constructor 
operators, such as: 
 color I = product A1×A2×A3×…×An 
 color J = record i:A1, j:A2, … k:An 
 color K = list A with m..n 
 color L = color A  
All functions defined in [8] and having the above described classes as their do-
mains are allowed in our subclass. The same can be told about the variables, con-
stants, operators and net expressions. Below we give some examples: 
 Fun F1(n:A) = if n>2 then 1 else 2 
 Fun F2(x:E) = case x of p ⇒ 2’e | q ⇒ e  

Definition 2.9. The CPN satisfying all the above-mentioned requirements is 
called S-finite. 

Definition 2.10. The marking M of a CPN is n-safe if |M(p)|≤ n for all p∈P. A 
CPN is called n-safe if all of its reachable markings are n-safe. 1-safe net is also 
called safe. 

Definition 2.11. A preset of an element x∈P∪T  denoted by •x is the set 
•x = {y∈ P∪T | ∃a: N(a) = (y,x) }. A postset of x denoted by x• is the set  
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x• = {y∈ P∪T | ∃a: N(a) = (x,y) }. 
The CPN considered in this paper are the CPN satisfying  three additional prop-
erties: 
1. The number of places and transitions is finite. 
2. The CPN is n-safe. 
3. The CPN is S-finite. 

If the opposite is not mentioned, the term CPN  has the meaning of a CPN, 
satisfying these three properties.  

3. BRANCHING PROCESS OF COLOURED PETRI NETS. 

Let N be a Petri net. We will use the term nodes for both places and transi-
tions.  

Definition 3.1. The nodes x1 and x2 are in conflict, denoted by x1# x2, if there 
exist transitions t1 and t2 such that •t1 ∩•t2 ≠ ∅ and (t1,x1) and (t2,x2) belong to the 
transitive closure of N (which we denote by Rt). The node x is in self-conflict if 
x#x. We will write x1≤ x2 if (x1,x2)∈Rt and x1< x2 if x1≤ x2 and x1≠ x2. 

Definition 3.2. We say that x co y,  or x || y, or x concurrent y if neither x < y 
nor x > y nor x#y.  

Definition 3.3. An Occurrence Petri Net  (OPN) is a usual Petri net N = (P,T,N), 
where  

(1) P,T are the sets of  places and transitions, 
(2) N ⊆ P×T∪T×P  gives us the incidence function, 

satisfying  the following properties: 
(a) For all p∈P   ⎢•p⎟ ≤ 1, 
(b) N is acyclic, i.e., the ( irreflexive ) transitive closure of N is a partial or-
der. 
(c) N is finitely preceded, i.e. for all x∈P∪T the set { y∈P∪T | y ≤ x} is fi-
nite which gives us the existence of Min(N), the set of minimal elements of 
N with respect to Rt (which is considered to contain only the elements from  
P). 

(d) no transition is in self conflict.    
Every place p∈P may have some tokens. The initial marking of an OPN M0 

of N is defined by M0(p) = 1 if p ∈ Min(N) and empty otherwise. If for transition 
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t∈T we have M(p)>0 for all p∈•t, then  t  may occur and the obtained marking 
M1 is given by M1 = M - M(•t) + M(t•). 

Proposition 3.1. OPN is a 1-safe net. 

Proof. The initial marking is 1-safe by definition. Using the restriction ⎜•p⎟ ≤ 1 
from the OPN definition, we have that, from the 1-safe marking by the occur-
rence of any t∈T, we can obtain only 1-safe marking. Otherwise we have a con-
tradiction either with the property (b) in the case of p ∈ Min(N) or with the 
above mentioned property (a) from the OPN definition.  

Definition 3.4.  Let N1 = (P1,T1,N1) and N2 = (P2,T2,N2) be two Petri nets. A ho-
momorphism h  from N2 to N1 is a mapping h: P2∪T2→P1∪T1 such that  

(a) h(P2) ⊆ P1 and h(T2) ⊆ T1. 
(b) for all t∈T2  h | •t = •t  → •h(t).  

for all t∈T2 h | t• =  t• →  h(t)•.  

Now we give the main definition of the chapter. This is the first novelty of 
the paper, a formal definition of a branching process for coloured Petri nets. Af-
ter the following definition, the existence result is proven.   

Definition 3.5 : A branching process of a CPN N1 = (S1, P1, T1, A1, N1, C1, G1, 
E1, I1) is a tuple (N2, h, ϕ, η), where N2 = (P2, T2, N2) is an OPN, h is a homo-
morphism from N2 to N1, ϕ and η are the functions from P2 and T2, respectively, 
such that 

(a) ϕ(p) ∈ C(h(p)). 
(b) η(t) ∈ B(h(t)).  

Other requirements are listed bellow:  
 (c) Min(N2) == M0. 

Here and further the double equality operator means two equal multi-sets of to-
ken elements. This also can be written in the following way: for all p1∈ P1  
Σ(p∈A)ϕ(p) = M0(p1), where A = { p∈ Min(N2) | h(p) = p1}. 
 (d)   G(h(t))<η(t)> for all t∈T2. 
 (e)   ∀t’∈T2 | (∃a∈A1: N1(a)=(p,t) and h(t’)=t) ⇒    

E(a)<η(t’)>=∑(p’∈I)ϕ(p’), where I={p’∈•t’ | h(p’) = p}. 
∀t’∈T2  | (∃a∈A1: N1(a)=(t,p) and h(t’)=t) ⇒  
E(a)< η(t)>=∑(p’∈I)ϕ(p’),  where I={p’∈(t,b)• | h(p’) = p}. 

(f)   If  (h(t1)=h(t2)) and (η(t1)=η(t2)) and (•t1 = •t2) then t1=t2.  

Important Note: Using the first two properties, we can associate a token ele-
ment (p,c) of N1 with every place in N2 and the binding element (t,b) of N1 with 
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every transition in N2. So we can further consider the net N2 as containing the 
places which we identify with token elements  of N1, and transitions which we 
identify with binding elements of N1. So we sometimes use them instead, like 
h((t,b))=t means h(t’)=t and η(t’)=b or p∈•(t,b) means p∈•t’ and h(t’)=t and 
η(t’)=b. Analogously, we can consider (p,c)∈P2 as p’∈P2 and h(p’)=p and 
ϕ(p)=c. Also, h(p,c)=p and h(t,b)=t. 

It can be shown that any finite CPN has a maximal branching process (MBP) 
up to isomorphism (proposition 3.2). We can declare existence of the maximal 
branching process when considering the algorithm of its generation. As such an 
algorithm we choose the algorithm of unfolding generation proposed by 
McMillan [11] and applied to coloured Petri nets. 

Maximal Branching Process generation algorithm  
var:  P2,T2,N2; 
// Places and transitions  are natural numbers, N2 is the set of pairs (m,n). 
H_Table = {Ph_table[], Th_table[]} 
 // This is a table for storing a homomorphism and functions  ϕ and η  
// Ph: n→(p,c),  Th: m→(t,b). 
T_Fired; 
// The list of waiting binding elements. 
m, n : integer; 
// The place and transition under construction. 
// Using H_Table for simplification of the algorithm, we sometimes write 

//(p,c) and (t,b) instead of the corresponding n and m. 
 
begin 
H_Table:=empty; 
N2= ( P2,T2,N2): = ∅; n:=1;m:=1; 
for all p∈P1 such that |I(p)|>0 do 
    for all c∈I(p) do 
       begin 
         add(n , P2); 
         n:=n+1; 
         GenTr({n-1}); 
       end; 
While (T_Fired ≠ ∅) do 
  begin 
    m0: = head(T_Fired) =  (t,b); 



 

11 

    delete(m0,T_Fired); 
      for all a∈A1 such that N1(a) = (t,p) do        
        for all c∈E(a)<b> do 
          begin 
            Ph_table[n]:=(p,c); 
            add((m0,n), N2); 
            add(n,P2); 
            n:=n+1;  
            GenTr({n-1})     
          end; 
   end;  
return N2= ( P2,T2,N2); 
end. 

procedure GenTr(N); 
begin 
if  (¬∃t∈T1 | N⊆•t) then return 
if Predecessors(N) has forward conflict then return 
 for all (t,b)∈TE such that h(N)=•t do  
     if (t,b) is enabled in M==N then 
      // i.e M = Ph_table[N] 
         begin 
            add( (N,m), N2); 
            insert m = (t,b) in T_Fired in order of |LocalConfig(m)| 
            Th_table[m]:=(t,b); 
            add(m,T2); 
            m:=m+1; 
          end; 
 for all n∈P2 \ N do 
   GenTr(N∪{n}); 
end.        

Proposition 3.2. The algorithm gives us the maximal branching process 
MBP(N1) of N1. 

Proof: 
(1) N2= ( P2,T2,N2) is an Occurence Petri Net (OPN). 
(a) |•p|≤1. We can come to a situation of having N2(m,n) only when calling 

add((m,n),N2). It is called together with add(n,P2) and  the increasing of n by 
one.  



 

12 

(b) The obtained net is acyclic. While the value of n grows monotonically, the 
cycle is impossible.  

(c) The net is finitely preceded. Since the initial CPN is finite and S-finite, I(p) 
is also finite.  

(d) No transition is in self-conflict. This is checked directly in GenTr(N).  
(2) A homomorphism h is given by H_Table. 
(a) h(P2)⊆P1, h(T2)⊆T1. This can be seen directly from the H_Table. 
(b) for all t∈T2  h | •t = •t  → •h(t). This means   •(t,b) → •t,  which follows from 

the condition h(N)=•t in GenTr(N).  
for all t∈T2 h | t• =  t• →  h(t)•. This follows from the condition N1(a) = (t,p) 
followed by the procedure add((m0,n), N2), where m0=(t,b) and 
Ph_table[n]=(p,c) in the main part of the algorithm. 

(3) The algorithm gives us the Branching Process of N2= ( P2,T2,N2). 
(a,b) The functions ϕ(p) ∈ C(h(p)) and η(t) ∈ B(h(t)) are given by the 
 H_Table[] . 
(c) Min(N2) == M0. 
 M0(p)=I(p)=∑(c∈I(p)) c. 
By the algorithm construction: 
 M == Min(N2) = ∑(p∈P1| |I(p)|>0)∑(c∈I(p)) (p,c). 
 If (I(p) ≠ ∅ ) M(p) = ∑(c∈I(p)) c = M0(p). 
(d) The fact G(h(t,b))<b> follows from the way we choose (t,b) to be added to   
 T_Fired. (t,b) is enabled ⇒ G(t)<b> ⇒ G(h(t,b))<b>. 
(e) ∀(t,b)∈T2 | (∃a: N1(a)=(p,t)) ⇒ E(a)<b>=∑(p’∈I)ϕ(p’),    
where I={p’∈•(t,b) | h(p’) = p}. 
(t,b) is included in T_Fired iff (t,b) is enabled in M==N where h(N)=•t. 
⇒ E(p,t)<b> ≤ M(p). In our case E(a)<b> = E(p,t)<b> = M(p), since the argu-
ment N in GenTr(N) is increased monotonically by one. 
M(p) = ∑( (p,c)∈N) c = ∑(p’∈I)ϕ(p’) 
 ∀(t,b)∈T2  | (∃a: N1(a)=(t,p)) ⇒ E(a)<b>=∑(p’∈I)ϕ(p’),    
where I={p’∈(t,b)• | h(p’) = p}. 
When constructing the output places of (t,b), we do the following: 

      for all a∈A1 such that N1(a) = (t,p) do        
        for all c∈E(a)<b> do 
          begin 
            Ph_table[n]:=(p,c); 
            add((m0,n), N2); 
            add(n,P2); 
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            …     
          end; 
Here m0=(t,b), so E(a)<b>= ∑(c∈E(a)<b>)c = ∑(p’∈I)ϕ(p’). 

(f) If  (h(t1)=h(t2)) and (η(t1)=η(t2)) and (•t1 = •t2), then t1=t2. 
The fact follows from the impossibility of N1 = N2, such that  
GenTr(N1) and GenTr(N2) both are called.  
The algorithm GenTr(N) starts with {n} and increases this set by passing through 
the subsets of {1..n-1} and adding them to {n}. 
(4) The obtained Branching Process is maximal. 
It is sufficient to prove that we cannot add one more transition (t,b) to N2. After 
adding additional places or arcs, we obtain direct contradictions to definition 3.5 
(c) or (e). 
If the transition (t,b) was added, then consider the set N=•(t,b). 
Let n be the maximal element in N. Then, when adding n to P2,we should call 
GenTr({n}) which should find the set N and generate the transition (t,b).  

This branching process can be infinite even for the finite nets if they are not 
acyclic. We are interested to find a finite prefix of a branching process large 
enough to represent all the reachable markings of the initial CPN. This finite 
prefix will be called an unfolding of the initial CPN. In the next section we give 
the definitions of a configuration, cutoff points and the definition of unfolding of 
CPN.  

4. UNFOLDINGS OF CPN 

Definition 4.1. A configuration C of an OPN N = (P,T,N) is a set of transitions 
satisfying the following two conditions: 
(1) t ∈ C ⇒ for all t0 ≤ t :  t0∈C 
(2) for all t1,t2∈C : ¬(t1#t2). 

Definition 4.2. A  set  X0 ⊆ X of nodes is called a co-set,  if  for all t1, t2∈X0: (t1 
co t2). 

Definition 4.3.  A set X0⊆X of nodes is called a cut, if it is a maximal co-set 
with respect to the set inclusion. 
Finite configurations and cuts are closely related. Let C be a finite configuration 
of an occurrence net, then Cut(C) = (Min(N)∪C•) \ •C is a cut. 

Definition 4.4. Let N1 = (S1,P1,T1,A1,N1,C1,G1, E1,I1) be a CPN and MBP(N1) = 
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(N2, h, ϕ, η), where N2 = (P2,T2,N2) , be its maximal branching process. Let C be 
a configuration of N2. We define a marking Mark(C) == Cut(C) which is a mark-
ing of N1. Operator ”==” has the same meaning as in definition 3.5 Mark(C)(p) = 
Σ(p’∈Cut(C) ⎢h(p’) = p)M2(p’).   
Definition 4.5. Let N be an OPN. For all t∈T the configuration  
[t] = {t’∈T ⎢t’ ≤ t } is called a local configuration. (The fact that [t] is a configu-
ration can be easily checked).  

Let us consider the maximal branching process for a given CPN. It can be no-
ticed that MBP(N) satisfies the completeness property, i.e., for every reachable 
marking M of N there exists a configuration C of MBP(N) ( i.e., C is the con-
figuration of OPN) such that Mark(C) = M. Otherwise we could add a necessary 
path and generate a larger branching process. This would be a contradiction with 
the maximality of MBP(N).  

Now we are ready to define three types of cutoffs used in the definition of un-
folding. The first two definitions can be found in [5,11]. The last is the definition 
given in [10].  

Definition 4.6.  A transition t∈T of an OPN is a GT0-cutoff, if there exists t0∈T  
such that Mark([t]) = Mark([t0]) and [ t0] ⊂ [t]. 

Definition 4.7. A transition t∈T of an OPN is a GT-cutoff, if there exists t0∈T  
such that Mark([t]) = Mark([t0]) and |[ t0]| < |[t]|.  

Definition 4.8. A transition t∈T of an OPN is a EQ-cutoff, if there exists t0∈T  
such that 
(1)  Mark([t]) = Mark([t0]) 
(2) |[ t0]| = |[t]| 
(3)  ¬(t || t0) 
(4) there are no EQ-cutoffs among t’ such that t’|| t0 and 
 |[t’]| ≤|[ t0]|. 

Definition 4.9. For a coloured Petri net N, an unfolding is obtained from the 
maximal branching process by removing all the transitions t’, such that there 
exists a cutoff  t and t < t’, and all the places p∈t’•. If Cutoff = GT0(GT)-cutoffs, 
then the resulted unfolding is called GT0(GT)-unfolding. GT0(GT)-unfolding is 
also called the McMillan unfolding. If Cutoff = GT-cutoffs ∪ EQ-cutoff, then the 
resulted unfolding is called  EQ-unfolding. 
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It has been shown that the McMillan unfoldings are inefficient in some cases. 
The resulting finite prefix grows exponentially, when the minimal finite prefix 
has only a linear growth.  

The following proposition can be formulated for these three types of unfold-
ings. 

Proposition 4.2. EQ-unfolding ≤ GT-unfolding ≤ GT0- unfolding.   

Proof: From the cutoff definitions, we have GT0-cutoffs ⊂ GT-cutoff. By the 
definition of the McMillan unfolding, we have GT-unfolding ≤ GT0- unfolding. 
In the definition of EQ-unfolding, Cutoff = GT-cutoffs ∪ EQ-cutoff and the 
rules for the unfolding construction are stronger. So we have EQ-unfolding ≤ 
GT-unfolding.  

The following theorem presents the main result of this chapter. 

Theorem 1. Let N1 be a CPN. Then for its unfoldings we have: 
(1)  EQ-unfolding, GT-unfolding and GT0-infolding are finite.    
(2)  EQ-unfolding, GT-unfolding and GT0-infolding are safe, i.e., 
 if C and C’ are configurations, then  C ⊆ C’ ⇒ Mark(C’)∈[Mark(C)〉. 
(3)  EQ-unfolding, GT-unfolding and GT0-infolding are complete, i.e.,    
 M∈[M0〉 ⇒ there exists a configuration C such that Mark(C) = M.  

Proof: 
(1) Using proposition 4.2, we only need to prove the finiteness of GT0-infolding. 
This will be done in three steps. 
(a) Let d(t) denote the depth of the longest chain  t1<t2<...<t in GT0-unfolding. 
For all t∈T, d(t) ≤ M+1, where M is the number of reachable markings in N. M 
is finite because of the properties we require of the CPN used.  

(b) For all t’∈GT0-unfolding, t’• and  •t’ are finite. Let t’ = (t,b). From the defini-
tion (e) of a branching process, we have ∀(t,b)∈T2 | (∃a: N(a)=(p,t)) ⇒ 
E(a)<b>=∑(p’∈Ip)ϕ(p’),  where  Ip={p’∈•(t,b) | h(p’) = p}.  •t’ = { Ip | ∀p∈•t’}. 
Notice that |E(a)| = | Ip |. The multi-sets we consider in the paper are m such that 
|m|<const. It follows that |E(a)| < const.  The finiteness of |•t | follows from the 
finiteness of N1 and finally: |•t’| = ∑(p∈•t)| Ip | < const. Using definition 3.5 (e) part 
2, we can prove analogously that   |t’•|<const.  

(c) For all natural K there exists only finite number of transitions t∈T such that 
d(t) ≤ K. We prove this by induction on K. The base K = 0 is true. Let TK = { t | 
d(t) ≤ K } be a finite set. Let us prove the finiteness of TK+1.  TK

•
  is finite by (b) 
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and the induction hypothesis. •TK+1 ⊆ TK
•
  ∪ Min(N). •TK+1 is finite. Using the 

property (f) in the definition of a branching process, we have the finiteness of 
TK+1.  

(2) The fact that the unfolding of N is safe follows immediately from the safety 
of  the branching process of N which can be proven by induction on |E|=|C’\ C|. 
Let us denote by C⊕E the fact  that C∪E is a configuration and C∩E = ∅ . 
(a) the base: |E| = 1, i.e., E={(t,b)} and C’ = C ⊕ {(t,b)}. Cut(C) is a marking of 
OPN. While C is causally closed, i.e., ∀(t’b’) < (t,b) such that (t’,b’)∈C, we have 
•(t,b) ⊆ Cut(C). In the OPN we have: Cut(C’) = Cut(C) - •(t,b) + (t,b)•. Applying  
definition 3.5(e) and the homomorphism definition, we obtain: 

∑(p∈•t)Mark(C’)(p)=∑(p∈•t)Mark(C)(p)-∑(p∈•t)E(a)<b>+∑(p∈t•)E(a)<b>. 
Besides, by definition 3.5 (d), G(h(t,b))<b>. This means that Mark(C’)∈ 
[Mark(C)〉, because it is obtained by the occurrence of (t,b). 

(b) If E = {(t1,b1)...(tn,bn)}, then choose (ti,bi)∈E such that there is no  (tj,bj)∈E 
such that (tj,bj) > (ti,bi). Consider the configuration  C1=C ⊕ (E \ {(tj,bj)} ) (It’s 
easy to see that it’s a configuration). Mark(C1)∈[Mark(C)〉. Using the base step 
considerations, we have Mark(C’)∈[Mark(C1)〉 and finally Mark(C’)∈[Mark(C)〉.  

(3) Accordingly to proposition 4.2, it’s sufficient to prove that EQ-unfolding of 
N is complete. Having the completeness of MBP(N), we will prove the following 
result. Let C’ be a configuration of MBP(N). Then there exists a configuration C 
of EQ-unfolding of N, such that Mark(C) = Mark(C’). If C’ contains no cutoffs, 
then C’ is the necessary configuration. 
Else let C1...Cn be all configurations of MBP(N) of minimal size such that 
Mark(C1) = Mark(C2) = ...  = Mark(Cn). This set is finite. Let for all i Ci ∉EQ-
unfolding. Let us seek for a contradiction. The previous means that Ci has at least 
one cutoff point. Let Cj contain the cutoff t1 of  maximal depth. There exists 
t2∈EQ-unfolding, such that Mark([t1]) = Mark([t2]). We have two possibilities:  

(a) t2 is a GT-cutoff. This means that |[ t2]| < |[ t1]|. If C1⊂C2, then there exists E 
such that C1⊕E =C2. In our case Cj = [t1]⊕E. Let C* =  [t2]⊕E. We have 
Mark(C*) = Mark(Cj) and C*< Cj. So we have a contradiction,  because Cj has a 
minimal size. 

(b) t2 is an EQ-cutoff. This means that |[t2]|=|[t1]|. Choose a configuration Ck 
among C1...Cn containing t2. Ck=[t2]⊕E, where E is such that Cj=[t1]⊕E and we 
have | Ck | = | Cj|. Since ¬( t1|| t2), we have t1∉ Ck and Ck ≠ Cj. Ck contains no 
cutoffs of depth n>|[ t1]|, because t1  is of maximal depth among C1...Cn. Also Ck 
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contains no cutoffs preceding  t2, because t2∈EQ-unfolding. This means that all 
cutoffs in Ck must be concurrent with t2. Since t2  is an image of EQ-cutoff t1, 
then by  definition 4.8(4) every cutoff t3∈Ck is a GT-cutoff and its image t4 is 
such that |[t3]| < |[t4]| and we can apply the reasoning of the first case.  

5. ALGORITHMS FOR FINITE PREFIX GENERATION. 

In this section we give two algorithms: McMillan's algorithm and EQ-
unfolding algorithm (the name doesn’t mean that we cannot construct a 
McMillan unfolding by the second algorithm using the appropriate cutoff crite-
ria). All unfoldings here will be constructed by the breadth-first traversal algo-
rithms. The algorithm for generation of GT(GT0)-unfolding is taken from [11] 
and the algorithm for construction of EQ-unfolding is taken from [10] and the 
latter is rather efficient in the speed of unfolding generation. In the case of an 
ordinary PN it gives the overall complexity O(NPNT),  where NP and NT are the 
numbers of places and transitions in EQ-unfolding. In our case a close estimation 
holds if we don’t take into consideration the calculation complexity of arc and 
guard functions. In this case we obtain O(NPNTB), where B=max{|B(t)| | 
t∈TCPN}. In the general case the first algorithm has an exponential complexity. 
Although the EQ-unfolding cannot guarantee the minimal sizes of NP and NT as 
it was made for 1-safe systems in [6], the size of EQ-unfolding is still much 
smaller in some cases than that of GT(GT0)-unfoldings (which may grow expo-
nentially). In the second algorithm  we should store  additionally two matrices 
NP

2 and NT
2.  

McMillan’s algorithm of GT(GT0)-unfolding generation 
var:  P2,T2,N2; 
H_Table = {Ph_table[], Th_table[]} 
Hash_table[]; 
// HashTable for storage of local configurations. 
T_Fired; 
m, n : integer; 
begin 
H_Table:=empty; Hash_table:=empty; 
N2= ( P2,T2,N2): = ∅; n:=1;m:=1; 
for all p∈P1 such that |I(p)|>0 do 
    for all c∈I(p) do 
       begin 
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         add(n , P2); 
         n:=n+1; 
         GenTr({n-1}); 
       end; 
While (T_Fired ≠ ∅) do 
  begin 
    m0: = head(T_Fired) =  (t,b); 
    delete(m0,T_Fired); 
      for all a∈A1 such that N1(a) = (t,p) do        
        for all c∈E(a)<b> do 
          begin 
            Ph_table[n]:=(p,c); 
            add((m0,n), N2); 
            add(n,P2); 
            n:=n+1;  
            if not cutoff(m0)  
             GenTr({n-1})     
          end; 
   end;  
return N2= ( P2,T2,N2); 
end. 

procedure GenTr(N); 
begin 
if  (¬∃t∈T1 | N⊆•t) then return 
if Predecessors(N) has forward conflict then return 
 for all (t,b)∈TE such that h(N)=•t do  
     if (t,b) is enabled in M==N then 
      // i.e M = Ph_table[N] 
         begin 
            add( (N,m), N2); 
            insert m = (t,b) in T_Fired in order of |LocalConfig(m)| 
            Th_table[m]:=(t,b); 
            add(m,T2); 
            m:=m+1; 
          end; 
 for all n∈P2 \ N do 
   GenTr(N∪{n}); 
end.        
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function cutoff(m): bool; 
  begin 
    M:==Cut(LocalConfig(m)); 
    for all t∈Hash_table[M] do      
    // for GT0-unfolding : if t∈ LocalConfig(m) 
       if (size(LocalConfig(t)) < size(LocalConfig(m)) ) return 
    endfor 
     add(m , Hash_Table[M]); 
     return false; 
  end;  

If we have (t,b) enabled in few ways at the same step, we take all the possi-
bilities into consideration, although the choice of a the unique set doesn’t spoil 
the completeness of MBP. The obtained net N2 is  evidently the prefix of 
MBP(N2), and accordingly to the definition of a cutoff function it gives us 
GT(GT0)-unfolding of N2. Due to the finiteness of GT0-unfolding, the algorithm 
is correct. 

EQ-unfolding will be constructed by a breadth-first traversal, tier by tier. A 
tier contains transitions of the same depth. We need two tiers to be stored: Cur-
rent_tier and New_tier. 

We need to store an array of transitions (TFired) and two matrices of the or-
dered relations Relation_T and Relation_P which are constructed on-the-fly. 
These matrices contain information about precedence, conflict and concurrency 
relations in the part of the unfolding which is already generated. On-the-fly con-
struction of these matrices is made by inheriting the relations from the transitions 
(places) that serve as direct predecessors. For example, we will write the inheri-
tance rules for transitions 

- Precedence tj ⇒ ti, i.e tj ≤ ti  
(1) tj ∈ •(•ti) 
(2) tj ⇒ tk and tk ∈ •(•ti) 

  - Conflict tj # ti 
      (1) •tj ∩ •ti ≠ ∅ 
      (2) tj # tk and tk ∈ •(•ti) 

   (3) tk ⇒ tj and •tk ∩ •ti ≠ ∅ 

EQ-unfolding algorithm      
 begin 
   Reached = empty; TFired = empty; Current_T_tier = empty; 
   Current_P_tier = {M0’};  // h(M0’) = M0. 
     do begin  
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         Reached = Reached ∪ Current_tier; 
         generate_new_tier; 
         Current_T_tier = New_T_tier; 
         Current_P_tier = New_P_tier; 
         is_unfolding_correct(Current_tier); 
     while (Current_P_tier ≠ empty) 
     return Reached; 
 end. 

procedure generate_new_tier; 
  begin 
    New_T_tier = empty; New_P_tier = empty; 
    for all (p,c)∈Current_P_tier \ {(p,c) | cutoff∈•(p,c)} do 
      for all (t,b)∈TE | t∈p• do  
         if enabled((t,b)) then 
          // function enabled() uses the matrix NP

2 for choosing the possible              
          // sets of places containing (p,c) and having no forward conflicts.     
          TFired = TFired ∪ (t,b);  
     New_T_tier = {tj∈TFired | ∀tk∈TFired  |[ tj]| ≤ |[ tk]| } 
      // TFired keeped hashed by the length of [t]. 
     TFired = TFired - New_T_tier; 
     Update_Relations_T(New_T_tier); 
     Check_cutoff(New_T_tier); 
     for all (t,b)∈New_T_tier do 
        begin 
      New_P_tier = New_P_tier ∪{(pi,cj) | (∪pi = t•) & (∑cj =E(t,p)<b>)} 
          Update_Relations_P( (t,b) );  
        end;      
  end; 

The cutoff checking is made using the definitions and the relation matrices 
(see [10]. Here also the more detailed description of the algorithm can be found).  

It takes O(NT
2) steps to calculate cutoffs = GT-cutoffs∪ EQ-cutoffs. Instead 

of O(ROp) for ordinary PN, we call the function enabled((t,b)) for every place of 
CPN O(ROpB) times (Op is the maximal fan-out set, B is the maximal set of bind-
ings, R is some constant, see[10]). The overall complexity of the algorithm for 
coloured Petri nets is O(NPNTB), where B=max{|B(t)| | t∈TCPN}. 

Initially we put tj || ti and pj || pi. 
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Finally let us notice that, due to the symmetry of the conflict and concurrency 
relations and asymmetry of the precedence relation, the matrices can be kept tri-
angle.    

6. NET EXAMPLES 

As an example let us consider the CPN representing the problem of dining 
philosophers (Fig. 1). For this net we have 

GT0-unfolding = GT-unfolding = EQ-unfolding.  
Unfoldings of this net are represented on Fig.2. As it can be seen from the ta-

ble bellow, the size of unfoldings is linear in the number of philosophers while 
the number of reachable markings is exponential.  

decide to eat

take left cs. take right cs.

begin eating

stop eating

val n = 3
 color PH = index
   ph  with 1..n
 var p:PH

 fun C(ph(i)) =
  =1’p(if i=n
            then 1
            else i+1)

Think PH 

PH

p

Ready 1

p p

Ready 2

PH

 PHunused
chopsticks

PH

pC(p)

p        p
PH

guard [ch=p]
p

p

having left cs. having right cs.

PH

PH

p

p

p

Eat

p

C (p) p                  p

 
Fig.1. The Dining Philosophers Example 
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Th.1 Th.2

Un.CS 2

R 1,1 R 2,1 R 1,2 R 2,2

Un.CS 1

HL 1 HR 1 HL 2 HR 2

Eat 1

Th 1

Eat 2

UnCS 1UnCS 2 Th 2 UnCS 2

UnCS 1

GT0,GT,EQ-Unfoldings  
Fig. 2. Unfolding of the Dining Philosophers Example  

 
      
N 

the unfolding sizes 
(the numbers of transitions) 

GT0,GT,EQ-unfoldings 

Reachable 
Markings 

 2 10 22 
 3 15 100 
 4 20 466 
 5 25 2164 

 
We measure the unfolding size by the number of transitions, because when 

storing the information about each place in every reachable marking, we have the 
analogy with storing the fan-out places for every transition. (Anyway, the num-
ber of fan-out places is restricted by some constant and doesn’t  spoil the linear 
growth of the unfolding size). 

As can be seen from the table, the sizes of all unfoldings are equal. In the 
next example we have the exponential growth of GT0 and GT-unfoldings O(2n), 
when the EQ-unfolding has only the linear growth O(n). The net is shown on 
Fig.3.  
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T 1,1 T 1,2

T 2,1 T 2,2

T n,1 T n,2

 color H =
  = unit with e

First H  

H  e e

e e
H     Second

e e

......

Last
H

 

Fig. 3. An example of exponential growth of the McMillan unfolding 

The last example is taken from [9] and represents the producer-consumer sys-
tem (Fig.4). We consider the case when nb=1. The number of reachable mark-
ings is N= (1+c+2*c*d+2*c*d2)p (1+p+2*p*d+2*p*d2)c(1+p*c*d2). 

The unfolding with np=nc=nd=1 is represented in Appendix. The unfolding con-
sists of four parts. When a producer initially produces data, the part labelled PA 
is working (see Appendix). Part PB may work after a producer laid the first data 
to the buffer, but a consumer still cannot begin his part. Finally, PC is the part 
when a consumer definitely begins his work and a producer fulfills the buffer 
again. A consumer has the unique part CA. We have |PA|=|PB|=|CA|=5 and 
|PC|=4. The whole size is 19. 
When adding either one more producer or one more consumer, we come to the 
situation of doubling of |PA|, |PB-1| and |CA| and adding the square of the num-
ber of parts |PC+1|. Adding one more data acts as adding the square number of 
possibilities. Finally the size of the unfolding is UnfSize = |PA|*np*nc*nd2 + 
+|CA|*np*nc*nd2 + |PB-1|*np*nc*nd2 + |PC+1|*(np*nc*nd2)2. 
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Divide

Produce1 Produce2

Produce

Send

Receive

Disassemble

Consume1 Consume2

Consume

val np=5; val nc=5; val nb=2; val nd=5;
color Prod = index  with 1..np
color Cons = index with 1..nc
color Data = index  with 1..nd
color Prod×Cons = product Prod*Cons
color HalfPack = product Prod*Cons*Data
color FullPack = product Prod*Cons*Data*Data
color ListFullPack = list FullPack
var p:Prod;  var c:Cons;  var d1,d2:Data
var List:ListPack

Prod Cons    

Prod Cons
p c

(p,c,d1,d2)::List

(p,c) (p,c)

Prod×Cons Prod×Cons List FullPack

(p,c) (p,c)

(p,c,d1) (p,c,d2) [] (p,c,d1) (p,c,d2)  
ListFullPACK

HalfPack HalfPack HalfPack HalfPack

(p,c,d1) (p,c,d2) (p,c,d1) (p,c,d2)

List

FullPack Prod×Cons Prod×Cons
 (p,c,d1,d2)

 (p,c,d1,d2)

(p,c) (p,c) [Length(List) < nb]

 p List^^(p,c,d1,d2) c

 

Fig. 4. Producer/Consumer system 

The table below demonstrates the growth of the occurrence graph and the respec-
tive growth of the unfolding’s size. In Chapter 8 we give the same numbers for 
the occurrence graph and unfolding with a consistent equivalence.   
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p c  d  O-graph Unfolding’s     
      Size 

1 1 1      72        19 
2 2 2 9.03 * 106   1.4 * 103 
3 3 3 1.58 * 1013   3.3 * 104 
5 5 5   4.5 * 1027 1.95 * 106 
10 10 5  1.32 * 1059   3.1 * 107 
10 10 10   7.8 * 1070   5.0 * 108 
20 20 20 1.73 * 10174  1.28 * 1011 
50  50 20 2.11 * 10469   5.0 * 1012 

The table for the producer/consumer system (Fig.4) 

7.  DEADLOCK CHECKING USING NET UNFOLDING 

In this part we describe a deadlock detection technique based on unfoldings 
of Petri nets. It’s easy to see from Theorem 1 that we have a deadlock in a col-
oured Petri net if and only if we have the corresponding deadlock in its occur-
rence net which doesn’t contain any cutoff point. The same can be told about the 
reachability property considering the occurrence net as an acyclic and 1-safe net 
system, where all places of Min(N) are initially marked. Since in this case the 
occurrence net is an acyclic and 1-safe net system, we obtain the results proposed 
in [12] for an ordinary n-safe net to be true also for CPN.  

McMillan in [11] has also proposed the technique of deadlock checking. In 
this paper this technique will not be considered. The comparative study of these 
two methods can be found in [12].      

In an ordinary PN, if the marking M is reachable from the initial marking M0 
by firing of the sequence σ of transitions, then we can write the following equa-
tion: M(p) = M0(p) + ∑(t∈•p)ν(σ,t)F(t,p) - ∑(t∈p•)ν(σ,t)F(p,t), where the number of 
occurrences of a transition t in σ is denoted by  ν(σ,t). This can be written in the 
matrix form: M = M0 + Nσ, where σ=(ν(σ,t1) ...ν(σ,tm)) is called the Parikh vec-
tor of σ, and N denotes the incidence matrix P×T given by N(p,t) = F(p,t) - 
F(t,p). The following system is called a marking equation. 

  Variables: X: vector of integer   
  M = M0 + NX 
  X ≥ 0  
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Proposition 7.1. ( [12] ):   Let N be an acyclic net system and let M be a mark-
ing. M is reachable from the initial marking M0 if and only if the  marking equa-
tion has a nonnegative solution. 

Proposition 7.2. ( [12] ): Let N be a 1-safe and acyclic net system. A  vector M 
is a solution of the following system of inequalities if and only if M corresponds 
to a dead reachable marking of N: 

Variables M,X: integer; 
M = M0 + N⋅X 
∑ (p∈•t) M(p) ≤ ⎪•t⎪ - 1      for all t∈T 
X ≥ 0  

Theorem 2.  Let N1 = (S1,P1,T1,A1,N1,C1,G1, E1,I1) be a CPN and Unf(N1) = (N2, 
h, ϕ, η), where N2=(P2,T2,N2), be its GT0 (GT, EQ) - unfolding. N1 is deadlock-
free if and only if the following system of inequalities has no solution: 

Variables M,X : vector of integer; 
M = Min(N2) +N2⋅X 
∑ (p∈•t) M(p) ≤ ⎪•t⎪ - 1 for all t∈T2 
X(t) = 0    for all t∈Cutoffs 
X ≥ 0         

Proof:   If M is a deadlock then, accordingly  to Theorem 1(3), there exists a 
configuration C such that Mark(C) = M and C contains no  cutoffs. From Theo-
rem 1(2) we have C ⊆ C’ ⇒ Mark(C’)∈[Mark(C)〉. Therefore there is no C’ such 
that C ⊆ C’ and Cut(C) is a deadlock in the occurrence net. Cut(C) is a reachable 
marking in OPN. So, we have that existence of a deadlock in N1 implies exis-
tence of a deadlock in N2. If Cut(C) is a deadlock in OPN and C contains no cut-
offs, then Mark(C), being a reachable marking, is a deadlock in N1. Otherwise if 
Mark(C)→(t,b)M1 then, using the maximality of the considered branching process, 
we have that ∃(t,b)∈T2 | •(t,b) ⊆ Cut(C) (there are no cutoffs in C) and 
C⊂C∪{(t,b)} and we come to a contradiction. The cutoff transitions are not the 
solutions of the inequalities. 

Therefore, we can identify dead markings of N1 with the solutions of the 
above system of inequalities.  ■ 

The technique works for all three types of unfoldings because we make a 
deadlock decision using the marking and the next transitions.  
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8. UNFOLDINGS WITH SYMMETRY AND EQUIVALENCE 

In this part the technique of equivalence and symmetry specifications for col-
oured Petri nets (CPN) will be applied to the unfolding nets of CPN. It will be 
shown how to generate the maximal branching process and its finite prefixes for 
a given CPN under the equivalence or symmetry specifications. All symmetry 
and equivalence specifications are taken from [9].  

Definition 8.1. Let N be a CPN and M and BE be the sets of all markings and 
binding elements of N. The pair (≈M, ≈BE) is called an equivalence specification 
if ≈M is an equivalence on M and ≈BE is an equivalence on BE. M≈ and BE≈ are 
the equivalence classes. We say (b,M) ≈ (b*,M*) iff b≈BEb* and M≈MM*. Let us 
have X⊆M and Y⊆M≈, then we can define:  

[X] = {M∈M ⎜∃x∈X : M≈Mx } - the set of all markings equivalent to the  
markings from X. 

[Y] = {M∈M ⎜∃y∈Y : M∈y} - the set of all markings from the classes 
from Y. 

Definition 8.2. The equivalence specification is called consistent if for all 
M1,M2∈[[M0〉] we have M1≈MM2 ⇒ [Next(M1)] = [Next(M2)], where Next(M1) = 
{(b,M)∈BE×M ⎢M1[b〉 M}.    

Definition 8.3. Let a CP-net and a consistent equivalence specification (≈M, ≈BE) 
be given. The occurrence graph with equivalence classes, also called the OE-
graph, is the directed graph OEG = (V, A, N) where: 

(1) V = {C∈M≈| C∩[M0〉 ≠ ∅ }. 
(2) A = {(C1,B,C2)∈V×BE≈×V | ∃(M1,b,M2)∈C1×B×C2: M1[b〉M2}. 
(3) ∀a=(C1,B,C2)∈A: N(a) = (C1,C2). 

Proposition 8.1.( [9] ) For a consistent equivalence specification, the OE-graph 
satisfies the following properties: 

(1) Each finite occurrence sequence M1[b1〉M2[b2〉M3...Mn[bn〉Mn+1, where  
M1∈[M0〉 and bi∈BE for i∈1..n, has a matching direct path  
 [M1] ([M1],[b1],[M2]) [M2] ([M2],[b2],[M3]) [M3] ... 
     ... [Mn] ([Mn],[bn],[Mn+1]) [Mn+1]. 

(2) Each finite direct path  
C1 (C1,B1,C2) C2 (C2,B2,C3) C3 ... Cn (Cn,Bn,Cn+1) Cn+1 has, for each   
marking M1∈C1, a matching occurrence sequence  
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M1[b1〉M2[b2〉M3...Mn[bn〉Mn+1, where Mi∈Ci for all i∈2..n+1 and bi∈Bi  
for all i∈1..n. 

In the next definitions, the set of all markings is denoted by M. 

Definition 8.4. A symmetry specification for a CP-net is a set of functions 
Φ ⊆ [M ∪ BE → M ∪ BE] such that:  

(1) (Φ, •) is an algebraic group.  
(2) ∀φ∈Φ: (φ|M)∈[M → M] & (φ|BE)∈[BE → BE]. 

Each element of Φ is called a symmetry. 

Definition 8.5. A symmetry specification Φ is consistent iff the following prop-
erties are satisfied for all symmetries φ∈Φ, all markings M1,M2∈[M0〉 and all 
binding elements b∈BE: 

(1)  φ(M0) = M0. 
(2) M1[b〉M2   ⇔ φ(M1) [ φ(b) 〉 φ(M2). 

Proposition 8.2. ( [9] ) 
(1) The relation ≈M ⊆ M × M defined by  M ≈M M* ⇔ ∃φ∈Φ :  M = φ(M*) is an 
equivalence relation on the set of all markings M. 
(2) The relation ≈BE ⊆ BE × BE defined by b ≈BE b* ⇔ ∃φ∈Φ :  b = φ(b*) is an 
equivalence relation on the set of all binding elements BE. 

Proposition 8.3. ( [9] ) Each consistent symmetry specification Φ determines a 
consistent equivalence specification ( ≈M , ≈BE ). 

Now the cutoff criteria will be defined for a CPN with a symmetry specification 
Φ or equivalence specification ≈ . We call the finite prefix of the maximal 
branching process of CPN obtained by using new cutoff criteria an unfolding 
with symmetry UnfΦ or unfolding with equivalence Unf≈. Since accordingly to 
propositions 8.2 and 8.3 we can consider the symmetry specification as the case 
of equivalence specifications, we  give the cutoff definitions only for equivalence 
specifications. 

Note: Taking into consideration the consistency of the regarded equivalence, we 
can conclude that it is sufficient to consider the classes [M] in our definitions of 
cutoffs. The classes of binding elements will be obtained in a natural way.      

Definition 8.6. Let N be a coloured Petri net and MBP(N) be its maximal 
branching process. Then  

(1) a transition t∈T of an OPN is a GT≈
0 - cuttoff  if there exists t0∈T  such 

that Mark([t]) ≈ Mark([t0]) and [ t0] ⊂ [t].  
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(2) a transition t∈T of an OPN is a GT≈- cutoff if there exists t0∈T  such that 
Mark([t]) ≈ Mark([t0]) and |[ t0]| < |[t]|. 

(3) a transition t∈T of an OPN is a EQ≈- cutoff if there exists t0∈T  such that   
(a) Mark([t]) ≈ Mark([t0]) 
(b) |[ t0]| = |[t]| 
(c) ¬(t || t0) 
(d) there are no EQ-cutoffs among t’ such that t’|| t0 and     
  |[t’]| ≤ |[ t0]|. 

The notion Unf≈ is used for any type of unfoldings.  

Proposition 8.4.  EQ≈-unfolding ≤ GT≈-unfolding ≤ GT0
≈- unfolding. 

Proof: We can apply the ideas of proposition 4.2 changing the symbols “=” into 
“≈”.      

Theorem 3.  Let N be a CPN and ≈ = ( ≈M , ≈BE ) be a consistent equivalence on 
N. Then for an Unf≈(N) we have: 

(1) [M]∈[[M0]〉 ⇔ ∃C, a configuration of Unf≈(N) | Mark(C) ≈M M. 
(2)  C⊆C’ and C’ is a configuration of Unf≈(N) ⇔    
      [Mark(C’)]∈[[Mark(C)]〉 

Proof:  

(1) [M]∈[M0〉 ⇔ we have a sequence  

[M0]([M0],[b1],[M1])[M1] ([M1],[b2],[M2])[M2] ... [Mn-1]([Mn-1],[bn],[Mn])[Mn], 

where [Mn] = [M]. From proposition 8.1(2), ∃ Mi’,bi’, i=1..n, such that 
M0[b1’〉M1’[b2’〉M2’...Mn-1’[bn’〉Mn+1’, and ∀i=1..n Mi’ ≈M Mi and  bi’ ≈BE bi. 
Let us consider the configuration C’ = {b1’... bn’} | Mark(C’) = Mn’ ≈M Mn. 
Due to proposition 2.5 we only need to consider EQ≈-unfolding.  
We have 3 possibilities: 

(a) C’ contains no cutoffs (in particular, C = ∅). C’∈Conf(Unf≈(N)) and 
Mark(C’) ≈M M.  

(b,c) C’ contains a (GT- or EQ-) cutoff.  

Let us choose the set of minimal configurations {Cj | j=1..k}, such that 
∀j Mark(Cj) ≈ Mark(C’). Consider the situation when none of them belongs to 
the EQ≈-unfolding. We can apply here the considerations of  Theorem 1(3) after 
changing the symbols “=” into “≈” and applying the transitivity of “≈“ relation. 
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Thus we obtain the configuration C’’ such that Mark(C’’) ≈ M and C’’ is a con-
figuration of EQ≈-unfolding(N).  

(2) From the safety of MBP, C ⊆ C’ ⇒ Mark(C’)∈[Mark(C)〉, i.e., 
M1[b1〉M2...Mn[bn〉Mn+1, where M1 = Mark(C) and Mn+1 = Mark(C’). 

On applying the proposition 8.1(1), we get [Mark(C’)]∈[ [Mark(C)]〉. ■ 

Figures 5,6 show us the dining philosophers CPN and its unfolding with the 
symmetry specification.  

Take
Chopsticks

 Put Down
Chopsticks

 val n = 3
 color PH = index ph with 1..n
 color CS = index cs with 1..n
 var p:PH
 fun Chopsticks(ph(i)) =
  =1’cs(i)+1’cs(if i=n then 1
    else i+1)

Think PH  
PH Chopsticks(p)

p p Unused  CS  
 Chopsticks

p

Eat CS
PH

Chopsticks(p)

 
Fig. 5 The dining Philosophers 

Th,1 Th,2 Th,3 Un.CS,1 Un.CS,2 Un.CS,3

Eat,1 Eat,2 Eat,3 EQ-unfolding
with symmetry

Th,1  Th,2  Th,3

Un.CS,1  Un.CS,2  Un.CS,2  Un.CS,3  Un.CS,3  Un.CS,1

GT0,GT,EQ-unfoldings
 

Fig. 6 The unfolding with symmetry  
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As is seen from the picture, using the symmetry we obtain a much smaller 
occurrence net when constructing the EQ≈-Unfolding. 
To avoid an impression gained from this example that given an equivalence 
specification it is inefficient to use unfoldings (while the size of the state space of 
the respective OE-graph (O-graph with equivalence) is just two states), we con-
sider the following example. The next table compares these two possibilities by 
considering the producer/consumer example (see chapter 6 or [9]). As an equiva-
lence specification, the abstraction from the data d1 and d2 is considered. For a 
graph this means that we can put nd=1. In the case of unfolding we obtain the 
additional (d-1) transitions in the part PA. The whole size of EQ-unfolding with 
this equivalence is UnfSize≈ = |PA|*np*nc + |CA|*np*nc + |PB-1|*np*nc + 
|PC+1|*(np*nc)2+(d-1). 
The table below represents the results.   
   

p C d     O-graph  Consistent 
  OE-graph 

 Unfolding’s 
      Size 

EQ-
unfolding 
        with 
 equivalence 

1 1 1          72        72        19      19 
2 2 2 9.03 * 106 7.32 * 104   1.4 * 103     137 
3 3 3 1.58 * 1013 1.68 * 108   3.3 * 104     533 
5 5 5   4.5 * 1027 3.67 * 1015 1.95 * 106   3.5 * 103 
10 10 5 1.32 * 1059 1.43 * 1036   3.1 * 107 5.14 * 104 
10 10 10   7.8 * 1070 1.43 * 1036       5.0 * 108 5.14 * 104 
20 20 20 1.73 * 10174  5.97 * 1082 1.28 * 1011   8.0 * 105 
50 50 20 2.11 * 10469  2.32 * 10243   5.0 * 1012   3.1 * 107 

  
Important note: Let us notice that we should generate EQ-unfolding when using 
the symmetry specification. In the case of equivalence specifications in general 
we can use all types of unfoldings.  

The next proposition gives us the possibility to find a deadlock of N consid-
ering its unfolding with an equivalence.  

Proposition ( [9] ). Let M be a marking of a CPN, then  (M is dead)  ⇔  
( [M] is terminal i.e. ¬ ∃ M’ | [M’]∈[ [M] 〉 ). 
It follows from the proposition that we can apply the technique from  chapter 

7 to unfoldings with equivalence. 
Unfortunately we can’t say (M is reachable) ⇔ ([M] is reachable). Using an 

unfolding with equivalence, we may declare only the reachability of markings 
represented in Unf≈(N).  
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CONCLUSION 

In this paper the unfolding technique proposed by McMillan in [11] and de-
veloped in later works is applied to coloured Petri nets as they are described in 
[8, 9]. The technique is formally transferred, two algorithms and three finitization 
criteria are considered. We require a CPN to be finite, n-safe and to contain only 
finite sets of colours. 

The unfolding is a finite prefix of the maximal branching process. To trancate 
the occurrence net, we consider three cutoff criteria in the paper. To construct the 
finite prefix, two algorithms of unfolding generation are formally transferred 
from the ordinary PN’s area.  

One of the novelties of the paper is application of the unfolding technique to 
CP-nets with symmetry and equivalence specifications as they are represented in 
[9]. 

The size of unfolding is often much smaller than the size of the  reachability 
graph of a PN. Using the criteria, such as EQ-cutoff criteron, and  symmetry or 
equivalence specifications in the unfolding generation, we can (as it is shown in 
the last chapter) additionally reduce the size of unfolding. 

In the future it is planed to construct finite unfoldings of Timed CPN as they 
are described in [8, 9], using the technique of unfolding with equivalence, and 
also to make all the necessary experiments with unfoldings of coloured Petri 
nets. 
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A p p e n d i x  

Unfolding of Producer-Consumer net for np=nc=mb=nd=1 
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