Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

V. E. Kozura

UNFOLDINGS OF COLOURED PETRI NETS

Preprint
80

Novosibirsk 2000

In this paper the unfolding technique is applied to coloured Petri nets (CPN)
[8,9]. The technique is formally described, two algorithms and three finitization
criteria are considered. It is also shown how to use the unfolding technique tak-
ing into consideration symmetry or equivalence specifications presented in [9].
We require CPN to be finite, n-safe and containing only finite sets of colours.

© A. P. Ershov Institute of Informatics Systems, 2000

Poccuiickasn akageMus HayK
Cubupckoe otTaejieHue
HucruTyT cucreM MHGOPMATUKHU
uMm. A. II. EpmioBa

B.E. Ko3ropa

PA3BEPTKHM PACKPAILIEHHBIX CETEM IETPU

IIpenpunrt
80

HoBocuoupck 2000

B nanHOM paboTe MeTO pa3BepTKH MPUMEHEH K pacKpalleHHBIM ceTsM [let-
pu (PCII) [8,9]. Meron ¢hopmaibHO Om¥ICaH, IPUBEACHBI JBa aJTOPUTMA M TPH
Kputepusi GUHUTH3AMH. Takke MOKa3aHO Kak MPHUMEHSTh METO]| Pa3BepTKH,
UCTIONB3Ys CHEUU(PHUKAIHA CUMMETPHH WJIM SKBUBAJIEHTHOCTH, OTMCAaHHbBIE B [9].
Ha PCII nakmagpIBaloTCs OrpaHUYCHUS] KOHEYHOCTH, N-0€301MacCHOCTH M KOHEd-
HOCTH MHO>KECTB, IIPEICTaBILIOIINX IBETA.

© Uncturyt cucrem nnpopmatuku uM A. I1. Epmosa CO PAH, 2000

1. INTRODUCTION

The state space exploring in Petri net (PN) analysis is one of the most impor-
tant approaches. Unfortunately, it faces the state explosion problem. Among the
approaches which are used to avoid this problem are the stubborn set method,
symbolic binary decision diagrams (BDD), methods based on partial orders,
methods using symmetry and equivalence properties of the state space, etc. [13].

McMillan in [11] has proposed an unfolding technique for PN analysis. In his
works, instead of the reachability graph, a finite prefix of maximal branching
process, large enough to describe a system, has been considered.

The size of unfolding is exponential in the general case and there are few
works which improve in some way the unfolding definitions and the algorithms
of unfolding construction [6,10].

Initially McMillan has proposed his method for the reachability and deadlock
analysis (which has also been improved in the later work [12]). J.Esparsa has
proposed a model-checking approach to unfolding of 1-safe systems analysis [5].
In [1] the model-checking technique has been applied to timed PN. In [3,7,15]
LTL-based model-checking has been developed.

Unfolding of CPN has been considered in the general case in [14] for using it
in the dependence analysis needed by the Stubborn Set method. In this paper the
unfolding method, as it was developed in later works for ordinary PN, is applied
to CPN (as they are described in [8,9]). Three types of unfoldings and two algo-
rithms for unfolding generation are considered.

In [9] symmetry and equivalence specifications for CPN are introduced. In
this paper it is shown how to use the unfolding technique taking into considera-
tion symmetry or equivalence specifications.

The paper is organized as follows: chapter 2 gives the main definitions of the
CPN’s theory and the subclass we are interested in, chapters 3 and 4 introduce
the unfolding theory, chapter 5 gives two algorithms of the unfolding generation,
chapter 6 gives the net examples, chapter 7 describes the deadlock checking
technique that uses net unfoldings, chapter 8 describes how to work with net un-
foldings in the presence of symmetry or equivalence specifications.

2. INTRODUCTION TO COLOURED PETRI NETS

In this section we briefly give the basic definitions related to CPN and de-
scribe the subclass of colours we will use in the paper. More detailed description
of coloured Petri nets can be found in [8,9].

Definition 2.1. A multi-set is a function m: S—N, where S is a usual set and N
is the set of natural numbers.

In the natural way we can define operations such as m;+m,, n-m, m;-m,, and
relations m;<m, m;<m,. Also |m| can be defined as |ml| =2 sesm(s).

Let Var(expression) define the set of wvariables of expression and
Type(expression) define the type of expression.

Definition 2.2. A coloured Petri net CPN is the net

N = (S,P,T,A,N,C,G,E,D),
where S,P,T,A are the sets of colours, places, transitions, and arcs such that
PAT = PnA = TNA=, N is a mapping N: A>PxTUTxP, C is a colour func-
tion C: P—S, G is a guard function such that for all teT Type(G(t))=bool and
Type(Var(G(t))) < S, E is the function defined on arcs with Type(E(a)) = C(p)ums,

where p is the place from N(a) and Type(Var(E(a))) < S and I is the initial func-
tion defined on places, such that for all peP Type(I(p)) = C(p)wms -

A(t), Var(t), A(x,y), E(x,y) can be defined in the natural way.

Definition 2.3. A binding b is a function from Var(t) such that b(v)eType(v)
and G(t). The set of bindings for t will be denoted by B(t)

Definition 2.4. A token element is a pair (p,c) where peP and ceC(p). The set of
all token elements is denoted by TE.

Definition 2.5. A binding element is a pair (t,b) where te T and be B(t). The
set of all binding elements is denoted by BE.

Definition 2.6. A marking M is a multi-set over TE.
Definition 2.7. A step Y is a multi-set over BE.

Definition 2.8. A step Y is enabled in the marking M if for all peP
ZabeyE(p,t) < M(p) and a new marking M; is given by

M;(p) = M(p) - L)y E(,) + X n)eyE(t,p).

6

Now we can define a subclass of colored Petri nets which is large enough to de-
scribe many interesting systems and still allows us to build a finite prefix of its
branching process. In the description we follow the CPN ML notation given in
[8]. The main idea is to consider only finite color domains seS.

The set of basic color domains is obtained from the four basic types of Standard

ML (SML):

color A=intwithm.n //m<n
color B = bool

color C = unit

color D1 = string with "x".."y" and m..n//x <yandm <n
color D2 = string with s1|s2]|...sn // the explicit enumeration.

Also the explicit specifications of finite colors are possible, such as:
color E = with X1|X2]...|Xn

color F = index expr with m..n,

and the sets obtained by the renaming procedure

color G = bool with (yes,no)

color H = unit with e.

From already defined color sets we can declare new color sets using constructor
operators, such as:

color | = product ALxA2xA3 x...xAn

color J = record i:Al, j:A2, ... k:An

color K = list A with m..n

color L = color A

All functions defined in [8] and having the above described classes as their do-
mains are allowed in our subclass. The same can be told about the variables, con-
stants, operators and net expressions. Below we give some examples:

Fun F1(n:A) = if n>2 then 1 else 2

Fun F2(x:E) = case xof p =2’e | q =€

Definition 2.9. The CPN satisfying all the above-mentioned requirements is
called S-finite.

Definition 2.10. The marking M of a CPN is n-safe if [M(p)|< n for all peP. A
CPN is called n-safe if all of its reachable markings are n-safe. 1-safe net is also
called safe.

Definition 2.11. A preset of an element xePUT denoted by °x is the set
*x = {ye PUT | Ja: N(a) = (y,X) }. A postset of x denoted by x° is the set

7

x"= {ye PUT | Ja: N(a) = (x,y) }.
The CPN considered in this paper are the CPN satisfying three additional prop-
erties:

1. The number of places and transitions is finite.
2. The CPN is n-safe.
3. The CPN is S-finite.

If the opposite is not mentioned, the term CPN has the meaning of a CPN,
satisfying these three properties.

3. BRANCHING PROCESS OF COLOURED PETRI NETS.

Let N be a Petri net. We will use the term nodes for both places and transi-
tions.

Definition 3.1. The nodes x; and x, are in conflict, denoted by x,# x,, if there
exist transitions t; and t, such that °t; N°t, # & and (t;,x;) and (t,,x,) belong to the
transitive closure of N (which we denote by R;). The node x is in self-conflict if
x#x. We will write x;< X, if (x1,X) € R and X< X, if X< X; and x;# X,.

Definition 3.2. We say that x CO y, or x || y, or x concurrent y if neither x <y
nor X >y nor x#y.

Definition 3.3. An Occurrence Petri Net (OPN) is a usual Petri net N = (P,T,N),
where

(1) P,T are the sets of places and transitions,

(2) N c PxTUTxP gives us the incidence function,
satisfying the following properties:

(a) Forall peP |°pl<1,

(b) N is acyclic, i.e., the (irreflexive) transitive closure of N is a partial or-

der.

(c) N is finitely preceded, i.e. for all xePUT the set { yePUT |y < x} is fi-

nite which gives us the existence of Min(N), the set of minimal elements of

N with respect to R¢ (which is considered to contain only the elements from

P).

(d) no transition is in self conflict.

Every place peP may have some tokens. The initial marking of an OPN M,
of N is defined by My(p) = 1 if p € Min(N) and empty otherwise. If for transition

teT we have M(p)>0 for all pe’t, then t may occur and the obtained marking
M, is given by M; =M - M(°t) + M(t").

Proposition 3.1. OPN is a 1-safe net.

Proof. The initial marking is 1-safe by definition. Using the restriction | p <1
from the OPN definition, we have that, from the 1-safe marking by the occur-
rence of any teT, we can obtain only 1-safe marking. Otherwise we have a con-
tradiction either with the property (b) in the case of p € Min(N) or with the
above mentioned property (a) from the OPN definition.]

Definition 3.4. Let N; = (P;,T;,N,) and N, = (P,,T,,N,) be two Petri nets. A ho-
momorphism h from N, to N is a mapping h: P, UT,—PUT; such that
(@) h(Py) c Prand h(T,) = T
(b) forall te Ty h| ="t — °h(t).
forallteT,h| .= t"— h(t)".

Now we give the main definition of the chapter. This is the first novelty of
the paper, a formal definition of a branching process for coloured Petri nets. Af-
ter the following definition, the existence result is proven.

Definition 3.5 : A branching process of a CPN N; = (S;, Py, T, Aj, Ny, Cy, Gy,
E;, 1)) is a tuple (Np, h, @, 1), where N, = (P,, T», N,) is an OPN, h is a homo-
morphism from N; to N;, ¢ and 1 are the functions from P, and T,, respectively,
such that

(@) ¢(p) € C(h(p)).
(b) n(t) € B(h()).
Other requirements are listed bellow:
(c) Min(N,) == M.
Here and further the double equality operator means two equal multi-sets of to-
ken elements. This also can be written in the following way: for all p;e P,
Zpea@(p) = My(p1), where A = { pe Min(Ny) [h(p) = p:}.
(d) G(h(t))<n(t)> for all teT,.
(e) Vt'eT,|(JacA: Ni(a)=(p,t) and h(t’)=t) =
E(@)<n(t')>=2en@(p’), where I={p’€"t’ | h(p’) = p}.
vt’eT, | (JaeA;: Ni(a)=(t,p) and h(t’)=t) =
E(a)< n(t)>=Xqen®(p’), where I={p’(t,b)" | h(p’) = p}.
() If (h(t)=h(t)) and ((t)=n(t)) and ('t; = ") then t;=t,.

Important Note: Using the first two properties, we can associate a token ele-
ment (p,c) of N; with every place in N, and the binding element (t,b) of N; with

9

every transition in N,. So we can further consider the net N, as containing the
places which we identify with token elements of N;, and transitions which we
identify with binding elements of N;. So we sometimes use them instead, like
h((t,b))=t means h(t’)=t and n(t")=b or pe®(t,b) means pe’t’ and h(t’)=t and
Nn(t")=b. Analogously, we can consider (p,c)eP, as p’eP, and h(p’)=p and
¢(p)=c. Also, h(p,c)=p and h(t,b)=t.

It can be shown that any finite CPN has a maximal branching process (MBP)
up to isomorphism (proposition 3.2). We can declare existence of the maximal
branching process when considering the algorithm of its generation. As such an
algorithm we choose the algorithm of unfolding generation proposed by
McMillan [11] and applied to coloured Petri nets.

Maximal Branching Process generation algorithm

var: P5,T),Ny;

// Places and transitions are natural numbers, N, is the set of pairs (m,n).

H Table = {Ph_table[], Th_table[]}

// This is a table for storing a homomorphism and functions ¢ and n

/I Ph: n—>(p,c), Th: m—(t,b).

T Fired;

// The list of waiting binding elements.

m, n : integer;

// ' The place and transition under construction.

// Using H_Table for simplification of the algorithm, we sometimes write
/l(p,c) and (t,b) instead of the corresponding n and m.

begin
H_Table:=empty;
No=(P,,Tp,N,): = &; ni=1;m:=1;
for all peP; such that [I(p)|>0 do
for all cel(p) do
begin
add(n, P,);
n:=n+l;
GenTr({n-1});
end;
While (T_Fired # &) do
begin
my: = head(T_Fired) = (t,b);

10

delete(my,T_Fired);
for all acA; such that Ny(a) = (t,p) do
for all ceE(a) do
begin
Ph_table[n]:=(p,c);
add((mg,n), Ny);
add(n,P,);
n:=n+1;
GenTr({n-1})
end;
end;
return No= (P,,T5,N,);
end.

procedure GenTr(N);
begin
if (=3teT, | NC't) then return
if Predecessors(N) has forward conflict then return
for all (t,b)e TE such that h(N)="t do
if (t,b) is enabled in M==N then
// i.e M = Ph_table[N]
begin
add((N;m), No);
insert m = (t,b) in T_Fired in order of |LocalConfig(m)|
Th_table[m]:=(t,b);
add(m,T,);
m:=m-+1;
end;
for all neP, \ N do
GenTr(Nu{n});
end.

Proposition 3.2. The algorithm gives us the maximal branching process
MBP(N]) Ole.
Proof:

(1) No= (P,,T,,N,) is an Occurence Petri Net (OPN).

(a) |'pI<l. We can come to a situation of having N,(m,n) only when calling
add((m,n),N,). It is called together with add(n,P,) and the increasing of n by
one.

11

(b) The obtained net is acyclic. While the value of n grows monotonically, the
cycle is impossible.

(c) The net is finitely preceded. Since the initial CPN is finite and S-finite, I(p)
is also finite.

(d) No transition is in self-conflict. This is checked directly in GenTr(N).

(2) A homomorphism h is given by H_Table.

(a) h(P,)Py, h(T,)<T;. This can be seen directly from the H_Table.

(b) forallteT, h|.="t — ‘h(t). This means °(t,b) — °t, which follows from
the condition h(N)="t in GenTr(N).
forall teT,h | = t* — h(t)’. This follows from the condition N;(a) = (t,p)
followed by the procedure add((my,n), N,), where my=(t,b) and
Ph_table[n]=(p,c) in the main part of the algorithm.

(3) The algorithm gives us the Branching Process of N,= (P,,T»,N»).
(a,b) The functions @(p) € C(h(p)) and n(t) € B(h(t)) are given by the
H Table[] .
(¢) Min(N,) == M,.
Mo(p)=I(P)=Zceip) C-
By the algorithm construction:
M == Min(Ny) = 2cp1 ()02 (cclp)) (P5C)-
If (I(p) 2) M(p) = z(cel(p)) c= MO(p)
(d) The fact G(h(t,b)) follows from the way we choose (t,b) to be added to
T Fired. (t,b) is enabled = G(t) = G(h(t,b)).
(e) V(tb)eT:|(Ja: Ni(a)=(p,t)) = E(@)=2cn@(p’),
where I={p’e*(t,b) | h(p’) = p}.
(t,b) is included in T_Fired iff (t,b) is enabled in M==N where h(N)="t.
= E(p,t) < M(p). In our case E(a) = E(p,t) = M(p), since the argu-
ment N in GenTr(N) is increased monotonically by one.
M(P) = z((p,c)eN) c= Z(p’el)(p(p’)
V(t,b)eT, | (Ja: Ni(a)=(t,p)) = E(a)=Xcno(p’),
where [={p’e(t,b)’ | h(p’) = p}.
When constructing the output places of (t,b), we do the following:
for all ac A, such that Ny(a) = (t,p) do
for all ce E(a) do
begin
Ph_table[n]:=(p,c);
add((mo,n), Ny);
add(n,P,);

12

end;
Here my=(t,b), s0 E(a)= > (ccp@)b>)C = 2 en®(D’).
(0 If (h(t)=h(t)) and (n(t)=n(t)) and ('t; = "), then t;=t,.
The fact follows from the impossibility of N; = N», such that
GenTr(N,) and GenTr(N,) both are called.
The algorithm GenTr(N) starts with {n} and increases this set by passing through
the subsets of {1..n-1} and adding them to {n}.

(4) The obtained Branching Process is maximal.

It is sufficient to prove that we cannot add one more transition (t,b) to N,. After
adding additional places or arcs, we obtain direct contradictions to definition 3.5
(c) or (e).

If the transition (t,b) was added, then consider the set N="(t,b).

Let n be the maximal element in N. Then, when adding n to P,,we should call
GenTr({n}) which should find the set N and generate the transition (t,b).]

This branching process can be infinite even for the finite nets if they are not
acyclic. We are interested to find a finite prefix of a branching process large
enough to represent all the reachable markings of the initial CPN. This finite
prefix will be called an unfolding of the initial CPN. In the next section we give
the definitions of a configuration, cutoff points and the definition of unfolding of
CPN.

4. UNFOLDINGS OF CPN

Definition 4.1. A configuration C of an OPN N = (P,T,N) is a set of transitions
satisfying the following two conditions:

(HhteC=forallty<t: teC

(2) for all tl,tzeC . ﬂ(tl#tz)

Definition 4.2. A set X,c X of nodes is called a co-set, if for all t;, t,eXy: (t;
co tp).

Definition 4.3. A set X,cX of nodes is called a cut, if it is a maximal co-set
with respect to the set inclusion.

Finite configurations and cuts are closely related. Let C be a finite configuration
of an occurrence net, then Cut(C) = (Min(N)UC®)\ °C is a cut.

Definition 4.4. Let Nl = (S],PI,TI,AI,NI,CI,GI, E],I]) be a CPN and MBP(N]_) =

13

(N2, h, @, n), where N, = (P,,T5,N»), be its maximal branching process. Let C be
a configuration of N,. We define a marking Mark(C) == Cut(C) which is a mark-
ing of N;. Operator == has the same meaning as in definition 3.5 Mark(C)(p) =

Zipecu©)) =pyMa(p’).

Definition 4.5. Let N be an OPN. For all teT the configuration
[t]={teT|t <t} is called a local configuration. (The fact that [t] is a configu-
ration can be easily checked).

Let us consider the maximal branching process for a given CPN. It can be no-
ticed that MBP(N) satisfies the completeness property, i.e., for every reachable
marking M of N there exists a configuration C of MBP(N) (i.e., C is the con-
figuration of OPN) such that Mark(C) = M. Otherwise we could add a necessary
path and generate a larger branching process. This would be a contradiction with
the maximality of MBP(N).

Now we are ready to define three types of cutoffs used in the definition of un-
folding. The first two definitions can be found in [5,11]. The last is the definition
given in [10].

Definition 4.6. A transition teT of an OPN is a GTy-cutoff, if there exists tyeT
such that Mark([t]) = Mark([t,]) and [to] < [t].

Definition 4.7. A transition teT of an OPN is a GT-cutoff, if there exists tyeT
such that Mark([t]) = Mark([t,]) and |[to]| < |[t]]

Definition 4.8. A transition teT of an OPN is a EQ-cutoff, if there exists toe T
such that

(1) Mark([t]) = Mark([t,])

@) [o]l = I[t]]

(3) —(tf to)
(4) there are no EQ-cutoffs among t’ such that t’|| t, and
11 <I[to]|-

Definition 4.9. For a coloured Petri net N, an unfolding is obtained from the
maximal branching process by removing all the transitions t’, such that there
exists a cutoff tand t<t’, and all the places pet’*. If Cutoff = GTo(GT)-cutoffs,
then the resulted unfolding is called GTo(GT)-unfolding. GTo(GT)-unfolding is
also called the McMillan unfolding. If Cutoff = GT-cutoffs U EQ-cutoff, then the
resulted unfolding is called EQ-unfolding.

14

It has been shown that the McMillan unfoldings are inefficient in some cases.
The resulting finite prefix grows exponentially, when the minimal finite prefix
has only a linear growth.

The following proposition can be formulated for these three types of unfold-
ings.

Proposition 4.2. EQ-unfolding < GT-unfolding < GTy- unfolding.

Proof: From the cutoff definitions, we have GTi-cutoffs — GT-cutoff. By the
definition of the McMillan unfolding, we have GT-unfolding < GTy- unfolding.
In the definition of EQ-unfolding, Cutoff = GT-cutoffs U EQ-cutoff and the
rules for the unfolding construction are stronger. So we have EQ-unfolding <
GT-unfolding. []

The following theorem presents the main result of this chapter.

Theorem 1. Let N; be a CPN. Then for its unfoldings we have:
(1) EQ-unfolding, GT-unfolding and GTy-infolding are finite.
(2) EQ-unfolding, GT-unfolding and GTy-infolding are safe, i.e.,
if C and C’ are configurations, then C < C’ = Mark(C’)e[Mark(C)).
(3 EQ-unfolding, GT-unfolding and GTy-infolding are complete, i.e.,
Me[M,) = there exists a configuration C such that Mark(C) = M.

Proof:

(1) Using proposition 4.2, we only need to prove the finiteness of GTy-infolding.
This will be done in three steps.

(a) Let d(t) denote the depth of the longest chain t;<t,<...<t in GTy-unfolding.
For all teT, d(t) < M+1, where M is the number of reachable markings in N. M
is finite because of the properties we require of the CPN used.

(b) For all t’ e GTy-unfolding, t’* and °t are finite. Let t” = (t,b). From the defini-
tion (e) of a branching process, we have V(tb)eT, | (Ja: N(a)=(p,t)) =
E(a)=Xcp(p’), where L={p’<"(tb) | h(p’) = p}. *t = {I,| ¥pe'r’}.
Notice that |E(a)| = | I, |. The multi-sets we consider in the paper are m such that
|m|<const. It follows that |E(a)| < const. The finiteness of |'t | follows from the
finiteness of N; and finally: [*t’| = 2,cay| I, | < const. Using definition 3.5 (e) part
2, we can prove analogously that |t’*|<const.

(c) For all natural K there exists only finite number of transitions teT such that
d(t) £ K. We prove this by induction on K. The base K =0 is true. Let Ty = { t |
d(t) <K } be a finite set. Let us prove the finiteness of Tx.;. Tx" is finite by (b)

15

and the induction hypothesis. *Tx.; € Tx" W Min(N). “Tg., is finite. Using the
property (f) in the definition of a branching process, we have the finiteness of
Tky1.

(2) The fact that the unfolding of N is safe follows immediately from the safety
of the branching process of N which can be proven by induction on |[E[=|C’\ C|.
Let us denote by C@E the fact that CUE is a configuration and CNE =& .

(a) the base: [E| =1, i.e., E={(t,b)} and C’ = C @ {(t,b)}. Cut(C) is a marking of
OPN. While C is causally closed, i.e., V(t’b”) < (t,b) such that (t’,b’)eC, we have
°(t,b) < Cut(C). In the OPN we have: Cut(C’) = Cut(C) - °(t,b) + (t,b)". Applying
definition 3.5(e) and the homomorphism definition, we obtain:

2 peayMark(C)(p)=2LpeeyMark(C)(p)-Lpe ey E(2)+2pcre)E(a).

Besides, by definition 3.5 (d), G(h(t,b)). This means that Mark(C’)e
[Mark(C)), because it is obtained by the occurrence of (t,b).

(b) If E = {(t1,by)...(t,,by)}, then choose (t;,b;)€E such that there is no (t;,b;)€E
such that (t;,b;) > (t;,b;). Consider the configuration C,=C @ (E \ {(t;,bj)}) (It’s
easy to see that it’s a configuration). Mark(C,)e[Mark(C)). Using the base step
considerations, we have Mark(C’)e[Mark(C,)) and finally Mark(C’)e[Mark(C)).

(3) Accordingly to proposition 4.2, it’s sufficient to prove that EQ-unfolding of
N is complete. Having the completeness of MBP(N), we will prove the following
result. Let C’ be a configuration of MBP(N). Then there exists a configuration C
of EQ-unfolding of N, such that Mark(C) = Mark(C’). If C’ contains no cutoffs,
then C’ is the necessary configuration.

Else let C,...C, be all configurations of MBP(N) of minimal size such that
Mark(C,) = Mark(C,) = ... = Mark(C,). This set is finite. Let for all i C; ¢EQ-
unfolding. Let us seek for a contradiction. The previous means that C; has at least
one cutoff point. Let Cj contain the cutoff t; of maximal depth. There exists
t,e EQ-unfolding, such that Mark([t;]) = Mark([t,]). We have two possibilities:

(a) t, is a GT-cutoff. This means that |[t,]| <|[t;]|. If C,c=C,, then there exists E
such that C;®E =C,. In our case C; = [t;]®E. Let C* = [t,]®E. We have
Mark(C*) = Mark(C;) and C*< C;j. So we have a contradiction, because C;j has a
minimal size.

(b) t; is an EQ-cutoff. This means that |[t,]|=|[t;]|. Choose a configuration Cy
among C,...C, containing t,. C,=[t,]®E, where E is such that C;=[t,;]®E and we
have | Cy | = | Cj|. Since —(ti|| t,), we have t;¢ Cy and Cy # C;. C contains no
cutoffs of depth n>|[t;]|, because t; is of maximal depth among C,...C,. Also Cy

16

contains no cutoffs preceding t,, because t,eEQ-unfolding. This means that all
cutoffs in C, must be concurrent with t,. Since t, is an image of EQ-cutoff t;,
then by definition 4.8(4) every cutoff t;eCy is a GT-cutoff and its image t, is
such that [[t;]]| <|[t4]| and we can apply the reasoning of the first case. [

5. ALGORITHMS FOR FINITE PREFIX GENERATION.

In this section we give two algorithms: McMillan's algorithm and EQ-
unfolding algorithm (the name doesn’t mean that we cannot construct a
McMillan unfolding by the second algorithm using the appropriate cutoff crite-
ria). All unfoldings here will be constructed by the breadth-first traversal algo-
rithms. The algorithm for generation of GT(GTy)-unfolding is taken from [11]
and the algorithm for construction of EQ-unfolding is taken from [10] and the
latter is rather efficient in the speed of unfolding generation. In the case of an
ordinary PN it gives the overall complexity O(NpN1), where Np and Ny are the
numbers of places and transitions in EQ-unfolding. In our case a close estimation
holds if we don’t take into consideration the calculation complexity of arc and
guard functions. In this case we obtain O(NpNB), where B=max{|B(t)| |
teTepn}. In the general case the first algorithm has an exponential complexity.
Although the EQ-unfolding cannot guarantee the minimal sizes of Np and Nt as
it was made for 1-safe systems in [6], the size of EQ-unfolding is still much
smaller in some cases than that of GT(GTy)-unfoldings (which may grow expo-
nentially). In the second algorithm we should store additionally two matrices
sz and NTz.

McMillan’s algorithm of GT(GT,)-unfolding generation
var: P,,T,,Ny;
H_Table = {Ph_table[], Th_table[]}
Hash_table[];
// HashTable for storage of local configurations.
T Fired;
m, n : integer;
begin
H_Table:=empty; Hash_table:=empty;
No= (P,,To,Ny): = &; n:=1;m:=1;
for all peP; such that |I(p)[>0 do
for all cel(p) do
begin

17

add(n , Py);
n:=n+1;
GenTr({n-1});
end;
While (T_Fired # &) do
begin
my: = head(T_Fired) = (t,b);
delete(my,T_Fired);
for all acA; such that Ny(a) = (t,p) do
for all ceE(a) do
begin
Ph_table[n]:=(p,c);
add((my,n), N,);
add(n,P,);
n:=n+1;
if not cutoff(my)
GenTr({n-1})
end;
end;
return N,= (P»,T,,N,);
end.

procedure GenTr(N);
begin
if (—3teT, | Nc't) then return
if Predecessors(N) has forward conflict then return
for all (t,b)eTE such that h(N)="t do
if (t,b) is enabled in M==N then
// i.e M = Ph_table[N]
begin
add((N,m), Ny);
insert m = (t,b) in T_Fired in order of |LocalConfig(m)|
Th_table[m]:=(t,b);
add(m,T));
m:=m+1;
end;
for all neP, \ N do
GenTr(NuU{n});
end.

18

function cutoff(m): bool;

begin
M:==Cut(LocalConfig(m));
for all teHash_table[M] do
/I for GTy-unfolding : if te LocalConfig(m)

if (size(LocalConfig(t)) < size(LocalConfig(m))) return

endfor
add(m , Hash_Table[M)]);
return false;

end;

If we have (t,b) enabled in few ways at the same step, we take all the possi-
bilities into consideration, although the choice of a the unique set doesn’t spoil
the completeness of MBP. The obtained net N, is evidently the prefix of
MBP(N,), and accordingly to the definition of a cutoff function it gives us
GT(GTy)-unfolding of N,. Due to the finiteness of GTy-unfolding, the algorithm
is correct.

EQ-unfolding will be constructed by a breadth-first traversal, tier by tier. A
tier contains transitions of the same depth. We need two tiers to be stored: Cur-
rent_tier and New _tier.

We need to store an array of transitions (TFired) and two matrices of the or-
dered relations Relation T and Relation P which are constructed on-the-fly.
These matrices contain information about precedence, conflict and concurrency
relations in the part of the unfolding which is already generated. On-the-fly con-
struction of these matrices is made by inheriting the relations from the transitions
(places) that serve as direct predecessors. For example, we will write the inheri-
tance rules for transitions

- Precedence t; = tj,i.e tj < t
(Mt e ()
(2) tj =t and t € .(.ti)
- Conflict t] # t;
(1) .tj M .ti +=J
(2) t_] # t and t, € .(.ti)
(3) = tj and .tk M .ti +J

EQ-unfolding algorithm
begin
Reached = empty; TFired = empty; Current T tier = empty;
Current P tier = {My’}; // h(My’) = M.
do begin

19

Reached = Reached U Current _tier;
generate_new_tier;
Current T tier=New T tier;
Current P tier = New P_tier;
is_unfolding_correct(Current_tier);

while (Current P_tier # empty)

return Reached;

end.

procedure generate new_tier;
begin
New T tier = empty; New_P_tier = empty;
for all (p,c)eCurrent P_tier \ {(p,c) | cutoffe’(p,c)} do
for all (t,b)eTE | tep® do
if enabled((t,b)) then
// function enabled() uses the matrix Np* for choosing the possible
// sets of places containing (p,c) and having no forward conflicts.
TFired = TFired U (t,b);
New_T _tier = {tjeTFired | Vtye TFired |[]| <|[t]| }
// TFired keeped hashed by the length of [t].
TFired = TFired - New_T tier;
Update Relations T(New T tier);
Check cutoff(New T tier);
for all (t,b)eNew T tier do
begin
New_P_tier =New_P_tier U{(p;,c;) | (Upi=t") & (Z¢;=E(t,p))}
Update Relations P((t,b));
end;
end;

The cutoff checking is made using the definitions and the relation matrices
(see [10]. Here also the more detailed description of the algorithm can be found).

It takes O(N7?) steps to calculate cutoffs = GT-cutoffsu EQ-cutoffs. Instead
of O(RO,,) for ordinary PN, we call the function enabled((t,b)) for every place of
CPN O(RO,B) times (O, is the maximal fan-out set, B is the maximal set of bind-
ings, R is some constant, see[10]). The overall complexity of the algorithm for
coloured Petri nets is O(NpNtB), where B=max {|B(t)| | te Tcpn}-

Initially we put t; || t; and p; || p;.

20

Finally let us notice that, due to the symmetry of the conflict and concurrency
relations and asymmetry of the precedence relation, the matrices can be kept tri-
angle.

6. NET EXAMPLES

As an example let us consider the CPN representing the problem of dining
philosophers (Fig. 1). For this net we have

GTy-unfolding = GT-unfolding = EQ-unfolding.

Unfoldings of this net are represented on Fig.2. As it can be seen from the ta-
ble bellow, the size of unfoldings is linear in the number of philosophers while
the number of reachable markings is exponential.

valn=3

color PH = index
ph with 1.n

var p:PH

fun C(ph(i)) =

=1"p(if i=n
then 1
else it+1)

having left cs.

PH

| begin eating |

p

P

| stop eating |

C(p) p)

Fig.1. The Dining Philosophers Example

21

GTo,GT,EQ-Unfoldings

Fig. 2. Unfolding of the Dining Philosophers Example

the unfolding sizes Reachable
N (the numbers of transitions) Markings
GT,,GT,EQ-unfoldings
2 10 22
3 15 100
4 20 466
5 25 2164

We measure the unfolding size by the number of transitions, because when
storing the information about each place in every reachable marking, we have the
analogy with storing the fan-out places for every transition. (Anyway, the num-
ber of fan-out places is restricted by some constant and doesn’t spoil the linear
growth of the unfolding size).

As can be seen from the table, the sizes of all unfoldings are equal. In the
next example we have the exponential growth of GT, and GT-unfoldings O(2"),
when the EQ-unfolding has only the linear growth O(n). The net is shown on
Fig.3.

22

H
color H=
H A A

= unit with e
| T11 | | T12 |
<
(ot)
€ (S
| T21 | | T22 |

Fig. 3. An example of exponential growth of the McMillan unfolding

The last example is taken from [9] and represents the producer-consumer sys-
tem (Fig.4). We consider the case when nb=1. The number of reachable mark-
ings is N= (1+ct+2*c*d+2*c*d?)P (1+p+2*p*d+2*p*d*)‘(1+p*c*d?).

The unfolding with np=nc=nd=1 is represented in Appendix. The unfolding con-
sists of four parts. When a producer initially produces data, the part labelled PA
is working (see Appendix). Part PB may work after a producer laid the first data
to the buffer, but a consumer still cannot begin his part. Finally, PC is the part
when a consumer definitely begins his work and a producer fulfills the buffer
again. A consumer has the unique part CA. We have [PA|=|PB|=|CA|=5 and
[PC|=4. The whole size is 19.

When adding either one more producer or one more consumer, we come to the
situation of doubling of |[PA|, |PB-1| and |CA| and adding the square of the num-
ber of parts [PC+1|. Adding one more data acts as adding the square number of
possibilities. Finally the size of the unfolding is UnfSize = [PA|*np*nc*nd” +
+CA[*np*nc*nd® + [PB-1|*np*nc*nd?® + [PC+1|*(np*nc*nd?)’.

23

(P,

() ProdxCons

val np=5; val nc=5; val nb=2; val nd=5;
color Prod = index with 1..np

color Cons = index with 1..nc

color Data = index with 1..nd

color ProdxCons = product Prod*Cons
color HalfPack = product Prod*Cons*Data
color FullPack = product Prod*Cons*Data*
color ListFullPack = list FullPack

var p:Prod; var c:Cons; var d1,d2:Data
var List:ListPack

Data

Prod

Prod

(p,c,d1,d2)::List

)
(OProdxCons

’ Producel ‘ ’ Produce2 ‘

(p,c,dl)i

(p,c,dl)

FullPack .
(p.c,dl,d2)

. HalfPack . HalfPack

(p.c.dl,d2)

p List™\(p,c,d1,d2)

(pc,d2) (pic,dl)

(p.c,d2) < a (p,c,dl
y ListFullPAC

HalfPack . HalfPack .

Cons

Receive

(pc,d2)

(pc,d2)

’ Consumel ‘ ’ Consume2 ‘

[Length(List) < nb]

The table below demonstrates the growth of the occurrence graph and the respec-
tive growth of the unfolding’s size. In Chapter 8 we give the same numbers for

Consume

Fig. 4. Producer/Consumer system

the occurrence graph and unfolding with a consistent equivalence.

24

p c d O-graph Unfolding’s
Size

1 1 1 72 19

2 2 2 9.03 * 10° 1.4 *10°
3 3 3 1.58 % 10" 3.3 * 10
5 5 5 4.5%10% 1.95 * 10°
10 10 5 1.32 % 10% 3.1 %10’
10 10 10 7.8%107° 5.0 * 10°
20 20 20 1.73 * 10" 1.28 * 10"
50 50 20 2.11 * 10 5.0 % 10"

The table for the producer/consumer system (Fig.4)

7. DEADLOCK CHECKING USING NET UNFOLDING

In this part we describe a deadlock detection technique based on unfoldings
of Petri nets. It’s easy to see from Theorem 1 that we have a deadlock in a col-
oured Petri net if and only if we have the corresponding deadlock in its occur-
rence net which doesn’t contain any cutoff point. The same can be told about the
reachability property considering the occurrence net as an acyclic and 1-safe net
system, where all places of Min(N) are initially marked. Since in this case the
occurrence net is an acyclic and 1-safe net system, we obtain the results proposed
in [12] for an ordinary n-safe net to be true also for CPN.

McMillan in [11] has also proposed the technique of deadlock checking. In
this paper this technique will not be considered. The comparative study of these
two methods can be found in [12].

In an ordinary PN, if the marking M is reachable from the initial marking M,
by firing of the sequence ¢ of transitions, then we can write the following equa-
tion: M(p) = Mo(p) + Zcap)V(O)F(L,p) - 21cpayV(0,H)E(p,t), where the number of
occurrences of a transition t in ¢ is denoted by v(o,t). This can be written in the
matrix form: M = M, + No, where o=(v(o,t;) ...v(c,ty)) is called the Parikh vec-
tor of o, and N denotes the incidence matrix PxT given by N(p,t) = F(p,t) -
F(t,p). The following system is called a marking equation.

Variables: X: vector of integer
M= MO + NX
X220

25

Proposition 7.1. ([12]): Let N be an acyclic net system and let M be a mark-
ing. M is reachable from the initial marking M, if and only if the marking equa-
tion has a nonnegative solution.

Proposition 7.2. ([12]): Let N be a 1-safe and acyclic net system. A vector M
is a solution of the following system of inequalities if and only if M corresponds
to a dead reachable marking of N:

Variables M, X: integer;

M =MO0 + N-X

S(pethM@p)< |t -1 forall teT
X>0

Theorem 2. Let Nl = (S],P],TI,AI,N|,C1,G|, E],I]) be a CPN and Ul’lf(Nl) = (Nz,
h, ¢, n), where N,=(P,,T,,N,), be its GT, (GT, EQ) - unfolding. N; is deadlock-
free if and only if the following system of inequalities has no solution:

Variables M, X : vector of integer;

M = Min(N,) +N,-X

SpetyM@p)< |t -1 forallteT,
X(t)=0 for all te Cutoffs
X220

Proof: If M is a deadlock then, accordingly to Theorem 1(3), there exists a
configuration C such that Mark(C) = M and C contains no cutoffs. From Theo-
rem 1(2) we have C ¢ C’ = Mark(C’)e[Mark(C)). Therefore there is no C’ such
that C < C’* and Cut(C) is a deadlock in the occurrence net. Cut(C) is a reachable
marking in OPN. So, we have that existence of a deadlock in N; implies exis-
tence of a deadlock in N,. If Cut(C) is a deadlock in OPN and C contains no cut-
offs, then Mark(C), being a reachable marking, is a deadlock in N;. Otherwise if
Mark(C)—“"’M, then, using the maximality of the considered branching process,
we have that 3(tb)eT, | *(tb) < Cut(C) (there are no cutoffs in C) and
CcCu{(t,b)} and we come to a contradiction. The cutoff transitions are not the
solutions of the inequalities.

Therefore, we can identify dead markings of N; with the solutions of the
above system of inequalities. [

The technique works for all three types of unfoldings because we make a
deadlock decision using the marking and the next transitions.

26

8. UNFOLDINGS WITH SYMMETRY AND EQUIVALENCE

In this part the technique of equivalence and symmetry specifications for col-
oured Petri nets (CPN) will be applied to the unfolding nets of CPN. It will be
shown how to generate the maximal branching process and its finite prefixes for
a given CPN under the equivalence or symmetry specifications. All symmetry
and equivalence specifications are taken from [9].

Definition 8.1. Let N be a CPN and M and BE be the sets of all markings and
binding elements of N. The pair (=, ~gg) is called an equivalence specification
if ~y is an equivalence on M and ~gg is an equivalence on BE. M. and BE. are
the equivalence classes. We say (b,M) = (b*,M*) iff brggb* and Mx~M*. Let us
have XcM and YcM.,, then we can define:

[X]={MeM | 3xeX : Mrayx } - the set of all markings equivalent to the
markings from X.

[Y]={MeM |3yeY : Mey} - the set of all markings from the classes
fromY.

Definition 8.2. The equivalence specification is called consistent if for all
M|, M, €[[My)] we have M =yM, = [Next(M;)] = [Next(M,)], where Next(M,) =
{(b,M)eBExM | M,[b) M}.

Definition 8.3. Let a CP-net and a consistent equivalence specification (=, ~gg)
be given. The occurrence graph with equivalence classes, also called the OE-
graph, is the directed graph OEG = (V, A, N) where:

(1) V={CeMCn[My) =T }.

(2) A= {(C|,B,C,)e VXBE.xV | A(M,,b,M;)eC;xBxC;: M |[b)M,}.

(3) Va=(C1,B,C2)eA: N(a) = (Cl,CQ).

Proposition 8.1.([9]) For a consistent equivalence specification, the OE-graph
satisfies the following properties:
(1) Each finite occurrence sequence M;[b;)M,[b,)M;...M, [b,)M,,+1, where
M, €[M,) and b;eBE for ie 1..n, has a matching direct path
[Mi] ([M],[b1],[M2]) [Mz] ([M2],[b2],[M5]) [Ms] ...
. [Ma] (Mo, B [Mii11) [Ma].
(2) Each finite direct path
C1 (C],B],Cz) C2 (Cz,Bz,C3) C3 Cn (Cn,Bn,CnH) Cn+1 has, for each
marking M1eCl1, a matching occurrence sequence

27

M, [b;)M;[b)M3...M,,[b,)M,+1, where M;eC; for all i€2..n+1 and b;eB;
for alliel.n.

In the next definitions, the set of all markings is denoted by M.

Definition 8.4. A symmetry specification for a CP-net is a set of functions
® < [M U BE - M U BE] such that:

(1) (P, @) is an algebraic group.

(2) Voed: (oM)e[M — M] & (¢/BE)e[BE — BE].
Each element of @ is called a symmetry.

Definition 8.5. A symmetry specification ® is consistent iff the following prop-
erties are satisfied for all symmetries ¢e®, all markings M;,M,€[M,) and all
binding elements beBE:

(1) ¢(Mo) = M.

@M M, <= ¢(My) [¢(b)) ¢(My).

Proposition 8.2. ([9])

(1) The relation =y € M x M defined by M =y M* < F¢pe® : M = (M*) is an
equivalence relation on the set of all markings M.

(2) The relation =gg < BE x BE defined by b =g b* <> D : b = ¢p(b*) is an
equivalence relation on the set of all binding elements BE.

Proposition 8.3. ([9]) Each consistent symmetry specification @ determines a
consistent equivalence specification (=y, ~gg).

Now the cutoff criteria will be defined for a CPN with a symmetry specification
@ or equivalence specification = . We call the finite prefix of the maximal
branching process of CPN obtained by using new cutoff criteria an unfolding
with symmetry Unf® or unfolding with equivalence Unf~. Since accordingly to
propositions 8.2 and 8.3 we can consider the symmetry specification as the case
of equivalence specifications, we give the cutoff definitions only for equivalence
specifications.

Note: Taking into consideration the consistency of the regarded equivalence, we
can conclude that it is sufficient to consider the classes [M] in our definitions of
cutoffs. The classes of binding elements will be obtained in a natural way.

Definition 8.6. Let N be a coloured Petri net and MBP(N) be its maximal
branching process. Then
(1) a transition teT of an OPN is a GTY, - cuttoff if there exists toeT such
that Mark([t]) = Mark([t,]) and [to] < [t].

28

(2) a transition teT of an OPN is a GT - cutoff if there exists toe T such that
Mark([t]) ~ Mark([to]) and |[to]| < |[t]]
(3) atransition teT of an OPN is a EQ™- cutoff if there exists tye T such that
(a) Mark([t]) ~ Mark([t])
(®) [to]l = I[t]I
(c) —(t] to)
(d) there are no EQ-cutoffs among t’ such that t’|| t, and
1= 1 to]l-

The notion Unf™is used for any type of unfoldings.
Proposition 8.4. EQ -unfolding < GT -unfolding < GT, - unfolding.

w9

Proof: We can apply the ideas of proposition 4.2 changing the symbols “=" into

el

Theorem 3. Let N be a CPN and = = (&, ~pg) be a consistent equivalence on
N. Then for an Unf"(N) we have:
(1) [M]e[[My]) < 3C, a configuration of Unf"(N) | Mark(C) =y M.
(2) C<C’ and C’ is a configuration of Unf"(N) <
[Mark(C?)]e[[Mark(C)])

Proof:

(1) [M]e[My) < we have a sequence

[Mo]([Mo],[b1],[IMiDIM:] ([Mi1,[b2],[M2DIM:] ... Mt]([Mi-11,[ba],[Ma D[Ma],

where [M,] = [M]. From proposition 8.1(2), 3 M;’,b;’, i=l..n, such that
My[b;")M;’[by’)M,’...M,.1’[b,dMy41”, and Vi=1..n M’ =y Mjand by’ =pg b;.

Let us consider the configuration C’ = {b,’... b,’} | Mark(C’) = M,,” =y M,..

Due to proposition 2.5 we only need to consider EQ™-unfolding.

We have 3 possibilities:

(a) C’ contains no cutoffs (in particular, C =). C’eConf(Unf*(N)) and
Mark(C’) =y M.

(b,c) C’ contains a (GT- or EQ-) cutoff.

Let us choose the set of minimal configurations {C; | j=1..k}, such that

Vj Mark(C;) = Mark(C’). Consider the situation when none of them belongs to

the EQ™-unfolding. We can apply here the considerations of Theorem 1(3) after
changing the symbols “=" into and applying the transitivity of “~* relation.

(191}
~

29

Thus we obtain the configuration C’’ such that Mark(C’”) = M and C’’ is a con-
figuration of EQ™-unfolding(N).

(2) From the safety of MBP, C < C’ = Mark(C’)e[Mark(C)), i.e.,
M;[b)M,...M,[b,)M,,41, where M = Mark(C) and M,,;; = Mark(C’).
On applying the proposition 8.1(1), we get [Mark(C’)]e[[Mark(C)]).]

Figures 5,6 show us the dining philosophers CPN and its unfolding with the
symmetry specification.

@ PH valn=3
P Chopsticks(p) color PH = index ph with 1..n
s color CS = index cs with 1..n
Ta‘ke var p:PH
. fun Chopsticks(ph(i)) =
Chopstick
opsticts =1cs(i)+1cs(if i=n then 1
P P s else i+1)
NED,
Put Down
Chopsticks hopsticks(p)
L T

Fig. 5 The dining Philosophers

EQ-unfolding
with symmetry

GTy,GT,EQ-unfoldings

Fig. 6 The unfolding with symmetry
30

As is seen from the picture, using the symmetry we obtain a much smaller
occurrence net when constructing the EQ®-Unfolding.
To avoid an impression gained from this example that given an equivalence
specification it is inefficient to use unfoldings (while the size of the state space of
the respective OE-graph (O-graph with equivalence) is just two states), we con-
sider the following example. The next table compares these two possibilities by
considering the producer/consumer example (see chapter 6 or [9]). As an equiva-
lence specification, the abstraction from the data d, and d, is considered. For a
graph this means that we can put nd=1. In the case of unfolding we obtain the
additional (d-1) transitions in the part PA. The whole size of EQ-unfolding with
this equivalence is UnfSize® = [PA[*np*nc + |CA|*np*nc + [PB-1/*np*nc +
[PC+1[*(np*nc)*+(d-1).
The table below represents the results.

p C |d O-graph Consistent Unfolding’s EQ-
OE-graph Size unfolding
with
equivalence
1 1 |1 72 72 19 19
2 12 |2 9.03 * 10° 7.32 * 10* 1.4 *10° 137
3 |3 |3 1.58 % 10" 1.68 * 10° 3.3 * 10 533
5 |5 |5 45%10°7 | 3.67* 107 1.95 * 10° 3.5 *10°
10 [105 1.32 * 10% 1.43 * 10° 3.1 %10’ 5.14 * 10*
10 | 10| 10 7.8 % 107 1.43 * 10° 5.0 * 10° 5.14 * 10*
20 (2020 | 1.73*10" |597*10% |1.28*10" 8.0*10°
50 |50 [20 |2.11*10% | 2.32%*10** 5.0 * 10" 3.1 *10’

Important note: Let us notice that we should generate EQ-unfolding when using
the symmetry specification. In the case of equivalence specifications in general
we can use all types of unfoldings.

The next proposition gives us the possibility to find a deadlock of N consid-
ering its unfolding with an equivalence.

Proposition ([9]). Let M be a marking of a CPN, then (M is dead) <

([M] is terminal i.e. = 3 M’ | [M’]e[[M])).

It follows from the proposition that we can apply the technique from chapter
7 to unfoldings with equivalence.

Unfortunately we can’t say (M is reachable) <> ([M] is reachable). Using an
unfolding with equivalence, we may declare only the reachability of markings
represented in Unf™(N).

31

CONCLUSION

In this paper the unfolding technique proposed by McMillan in [11] and de-
veloped in later works is applied to coloured Petri nets as they are described in
[8, 9]. The technique is formally transferred, two algorithms and three finitization
criteria are considered. We require a CPN to be finite, n-safe and to contain only
finite sets of colours.

The unfolding is a finite prefix of the maximal branching process. To trancate
the occurrence net, we consider three cutoff criteria in the paper. To construct the
finite prefix, two algorithms of unfolding generation are formally transferred
from the ordinary PN’s area.

One of the novelties of the paper is application of the unfolding technique to
CP-nets with symmetry and equivalence specifications as they are represented in
[9].

The size of unfolding is often much smaller than the size of the reachability
graph of a PN. Using the criteria, such as EQ-cutoff criteron, and symmetry or
equivalence specifications in the unfolding generation, we can (as it is shown in
the last chapter) additionally reduce the size of unfolding.

In the future it is planed to construct finite unfoldings of Timed CPN as they
are described in [8, 9], using the technique of unfolding with equivalence, and
also to make all the necessary experiments with unfoldings of coloured Petri
nets.

Acknowledgments. I would like to thank Dr. Valery Nepomniaschy for
drawing my attention to this problem and Dr. Elena Bozhenkova for valuable
remarks.

REFERENCES

[1] Bieber B., Fleischhack H. Model Checking of Time Petri Nets Based on Partial Order Seman-
tics // Proc. CONCUR'99. — Berlin a.o.: Springer-Verlag, 1999. — P. 210—225. — (Lect.
Notes Comput. Sci.; Vol. 1664).

[2] Cheng A., Christensen S., Mortensen K. H. Model Checking Coloured Petri Nets Exploiting
Strongly Connected Components / DAIMI PB — 519, March 1997.

[3] Couvreur J.-M., Grivet S., Poitrenaud D. Designing an LTL Model-Checker Based on Un-
folding Graphs // Lect. Notes Comput. Sci. — 2000. — Vol. 1825. — P. 123—145.

[4] Engelfriet J. Branching Processes of Petri Nets / Acta Informatica. — 1991. — Vol. 28. —
P. 575—591.

[5] Esparsa J. Model-Checking Using Net Unfoldings // Lect. Notes Comput. Sci. — 1993. — Vol.
668. —P. 613—628.

32

[6] Esparsa J., Romer S., Volger W. An Improvement of McMillan’s Unfolding Algorithm // Proc.
TACAS'96. — Berlin a.o.: Springer-Verlag, 1997. — P. 87—106. — (Lect. Notes
Comput. Sci.; Vol. 1055).

[7] Esparza J., Heljanko K. A New Unfolding Approach to LTL Model-Checking // Lect. Notes
Comput. Sci. — 2000. — Vol. 1853. — P. 475—486.

[8] Jensen K. Coloured Petri Nets. Vol. 1. — Berlin a.o.: Springer, 1995.

[9] Jensen K. Coloured Petri Nets. Vol. 2. — Berlin a.o.: Springer, 1995.

[10] Kondratyev A., Kishinevsky M., Taubin A., Ten S. A Structural Approach for the Analysis of
Petri Nets by Reduced Unfoldings // 17" Intern. Conf. on Application and Theory of Petri Nets,
Osaka, June 1996. — Berlin a.o.: Springer-Verlag, 1996 — P. 346—365. — (Lect. Notes Com-
put. Sci.; Vol.1091.).

[11] MecMillan K.L. Using Unfolding to Avoid the State Explosion Problem in the Verification of
Asynchronous Circuits // Lect. Notes Comput. Sci. — 1992. — Vol.663. — P. 164—174.

[12] Melzer S., Romer S. Deadlock Checking Using Net Unfoldings // Proc. of the Conf. on Com-
puter Aided Verification (CAV'97), Haifa, 1997. —Berlin a.o.: Springer-Verlag, 1997. — P.
352—363. — (Lect. Notes Comput. Sci.; Vol.1254).

[13] Valmari A. The State Explosion Problem // Lect. Notes Comput. Sci. — 1998. — Vol.1491. —
P. 429—528.

[14] Valmari A. Stubborn Sets of Coloured Petri Nets // Proc. of the 12th Intern. Conf. on Applica-
tion and Theory of Petri Nets. — Gjern, 1991. — P. 102—121.

[15] Wallner F. Model-Checking LTL Using Net Unfoldings // Proc. of the Conf. on Computer
Aided Verification (CAV'95), Vancouver, 1995. —Berlin a.o.: Springer-Verlag, 1998. —
P. 207—218. — (Lect. Notes Comput. Sci.; Vol. 1427).

33

Appendix

Unfolding of Producer-Consumer net for np=nc=mb=nd=1

CA

P

LIS

34

B.E. Ko3ropa

PA3BEPTKHM PACKPAILIEHHBIX CETEM IETPU

IIpenpunrt
80

Pykommcs moctynmna B pepakuuio 23.10.00
Penenzent E. H. boxkenkoBa
Penaktop A. A. lllenyxuna

INoanucano B neyats 8.12.00
®opmar 6ymarn 60 x 84 1/16 O6vem 1.9 yu.-m3nr., 2.1 ..
Tupax 50 k3.

H® OO0 UIIO “Omapu” PULI, 630090, r. HoBocubupck, np. Akan. JlaBpeHtsesa, 6

