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In the paper [10] the unfolding technique was applied to coloured Petri nets 
(CPN) [8,9]. It was also shown in [10] how to use the unfolding technique taking 
into consideration symmetry or equivalence specifications. In [1] unfolding tech-
nique was applied to interval-timed Petri nets. This paper transfers this technique 
to interval-timed CPN and also considers the unfolding technique for timed CPN 
(TCPN) [8,9]. We require CPN to be finite, n-safe and containing  only finite 
sets of colours.  
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В работе [10] метод развертки был применен к раскрашенным сетям 
Петри (РСП) [8,9]. Также в [10] было показано, как использовать свойства 
симметрии и эквивалентности при построении развертки. В работе [1] ме-
тод развертки был применен к сетям Петри с интервальным временем. В 
данной работе метод развертки  применяется к РСП с интервальным време-
нем и к РСП со временем, описанным в [8,9]. На РСП накладываются огра-
ничения конечности, n-безопасности и конечности множеств, представ-
ляющих цвета.  
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1 INTRODUCTION 

There are several techniques to avoid the “state explosion problem” in the 
state space analysis of Petri Nets. The stubborn set method, methods based on 
symbolic binary decision diagrams (BDD), methods using symmetry and equiva-
lence properties of the state space and methods based on partial orders help us to 
avoid the problem in some cases[14]. 

McMillan in [12] has proposed an unfolding technique for Petri net analysis. 
In his works a finite prefix of maximal branching process, which is large enough 
to describe a system, has been considered instead of the reachability graph. The 
size of unfolding is exponential in the general case and there were few works 
which have improved in some way the unfolding definitions and the algorithms 
of unfolding construction [6, 11]. 

J.Esparsa has proposed a model-checking approach to unfolding of 1-safe 
systems analysis [5]. In [1] the model-checking technique using the net unfolding 
has been applied to timed Petri nets. In [7] LTL-based model-checking has been 
developed. 

Unfolding of coloured Petri nets has been considered in the general case in 
[15] for using it in dependency analysis needed by the Stubborn Set method. In 
paper [10] the unfolding method, as it was developed in later works for ordinary 
Petri nets has been applied to coloured Petri nets (in the way they are described 
in [8,9]). It was also shown in [10] how to use the unfolding  technique taking 
into consideration symmetry or equivalence specifications. 

This paper transfers the unfolding technique from [1] to interval-timed CPN 
and also considers the unfolding generation for timed CPN as they are described 
in [8,9]. Let us notice here that the notion of unfolding with equivalence given in 
[10] is very useful when we want to obtain the complete unfolding of TCPN con-
sidered in [8,9].   

The paper is organized as follows: chapter 2 gives the main definitions of the 
CPN’s theory and the subclass we are interested in, chapter 3 introduces the un-
folding theory and gives the net example, chapter 4 describes the unfolding tech-
nique for interval-timed CPN and chapter 5 describes the unfolding technique for 
TCPN.  
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2 INTRODUCTION TO COLOURED PETRI NETS 

In this section we briefly give the basic definitions related to CPN and de-
scribe the subclass of colours we will use in the paper. More detailed description 
of coloured Petri nets can be found in [8,9]. 

Definition 2.1.  A multi-set is a function m: S→N, where S is a usual set and N 
is the set of natural numbers. 

In the natural way we can define operations such as m1+m2, n⋅m, m1-m2, and 
relations m1≤m2, m1<m2. Also ⎪m⎪ can be defined as ⎪m⎪=∑s∈Sm(s). 

Let Var(expression) define the set of variables of expression and 
Type(expression) define its type. 

Definition 2.2.  A coloured Petri net CPN is the net  

N = (S,P,T,A,N,C,G,E,I), 

where S,P,T,A are the sets of colours, places, transitions, and arcs such that   
P∩T = P∩A = T∩A=∅; N is a mapping N: A→P×T∪T×P; C is a colour func-
tion C: P→S; G is a guard function such that for all t∈T Type(G(t))=bool and  
Type(Var(G(t))) ⊆ S; E is the function defined on arcs with Type(E(a)) = C(p)MS, 
where p is the  place from N(a) and Type(Var(E(a))) ⊆ S; and I is the initial 
function defined on places such that for all p∈P Type(I(p)) = C(p)MS .  

A(t), Var(t), A(x,y), E(x,y) can be defined in the natural way. 

Definition2.3.  A binding b is a function from Var(t) such that b(v)∈Type(v) and 
G(t)<b>. The set of bindings for t will be denoted by B(t) 

Definition2.4. A token element is a pair (p,c) where p∈P and c∈C(p). The set of 
all token elements is denoted by TE. 

Definition2.5.  A binding element is a pair (t,b) where t∈ T and  b∈ B(t). The set 
of all binding elements is denoted by BE. 

Definition2.6. A marking M is a multi-set over TE. 

Definition2.7.  A step Y is a multi-set over BE.  

Definition2.8. A step Y is enabled in the marking M if for all p∈P 
∑(t,b)∈YE(p,t)<b> ≤ M(p) and a new marking M1 is given by   

 M1(p) = M(p) - ∑(t,b)∈YE(p,t)<b> + ∑(t,b)∈YE(t,p)<b>. 
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Now we can define a subclass of colored Petri nets which is large enough to de-
scribe many interesting systems and still allows us to build a finite prefix of its 
branching process. In [10] more detailed description  is given. The main idea is 
to consider only finite color domains s∈S. All functions defined in [8] and hav-
ing the above described classes as their domains are allowed in our subclass. The 
same can be told about the variables, constants, operators and net expressions. 

Definition 2.9. The CPN satisfying all the above-mentioned requirements is 
called S-finite. 

Definition 2.10. The marking M of a CPN is n-safe if |M(p)|≤ n for all p∈P. A 
CPN is called n-safe if all of its reachable markings are n-safe. 1-safe net is also 
called safe. 
Definition 2.11. A preset of an element x∈P∪T  denoted by •x is the set  

•x = {y∈ P∪T | ∃a: N(a) = (y,x) }.  
A postset of x denoted by x• is the set  

x• = {y∈ P∪T | ∃a: N(a) = (x,y) }. 

The CPN considered in this paper are the CPN satisfying  three additional prop-
erties: 

1. The number of places and transitions is finite. 
2. The CPN is n-safe. 
3. The CPN is S-finite. 

If the opposite is not mentioned, the term CPN  has the meaning of a CPN, 
satisfying these three properties.    

3 UNFOLDINGS OF COLOURED PETRI NETS 

Let N be a Petri net. We will use the term nodes for both places and transi-
tions.  

Definition 3.1. The nodes x1 and x2 are in conflict, denoted by x1# x2, if there 
exist transitions t1 and t2 such that •t1 ∩•t2 ≠ ∅ and (t1,x1) and (t2,x2) belong to the 
transitive closure of N (which we denote by Rt). The node x is in self-conflict if 
x#x. We will write x1≤ x2 if (x1,x2)∈Rt and x1< x2 if x1≤ x2 and x1≠ x2. 

Definition 3.2. We say that x co y,  or x || y, or x concurrent y if neither x < y 
nor x > y nor x#y.  
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Definition3.3. An Occurrence Petri Net  (OPN) is a usual Petri net N = (P,T,N), 
where  

(1) P and T are the sets of  places and transitions, 
(2) N ⊆ P×T∪T×P  gives us the incidence function 

satisfying  the following properties: 
(a) For all p∈P   ⎢•p⎟ ≤ 1, 
(b) N is acyclic, i.e., the (irreflexive) transitive closure of N is a partial order.  
(c) N is finitely preceded, i.e. for all x∈P∪T the set { y∈P∪T | y ≤ x} is fi-

nite which gives us the existence of Min(N), the set of minimal elements 
of N with respect to Rt (which is considered to contain only the elements 
from  P). 

(d) no transition is in self conflict.    
Every place p∈P may have some tokens. The initial marking of an OPN M0 of N 
is defined by M0(p) = 1 if p ∈ Min(N) and empty otherwise. If for the transition 
t∈T we have M(p)>0 for all p∈•t, then  t  may occur and the obtained marking 
M1 is given by M1 = M - M(•t) + M(t•). 

Proposition 3.1. OPN is a 1-safe net. 

Proof. The initial marking is 1-safe by definition. Using the restriction ⎜•p⎟ ≤ 1 
from the OCPN definition, we have that, from the 1-safe marking by occurrence 
of any t∈T, we can obtain only 1-safe marking. Otherwise we have a contradic-
tion either with the property (b) in the case  p ∈ Min(N) or with the above men-
tioned property (a) from the OCPN definition.  

Definition 3.4.  Let N1 = (P1,T1,N1) and N2 = (P2,T2,N2) be two Petri nets. A ho-
momorphism h  from N2 to N1 is a mapping h: P2∪T2→P1∪T1 such that  

(a) h(P2) ⊆ P1 and h(T2) ⊆ T1. 
(b) for all t∈T2  h | •t = •t  → •h(t).   
 for all t∈T2 h | t• =  t• →  h(t)•.  

Next we will give the definition from [10] of a branching process given 

for coloured Petri nets. 

Definition 3.5 : A branching process of a CPN N1 = (S1, P1, T1, A1, N1, C1, G1, 
E1, I1) is a tuple (N2, h, ϕ, η), where N2 = (P2, T2, N2) is an OPN, h is a homo-
morphism from N2 to N1, ϕ and η are functions from P2 and T2, respectively, 
such that 
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(a) ϕ(p) ∈ C(h(p)). 
(b) η(t) ∈ B(h(t)).  

Other requirements are listed below:  
(c) Min(N2) == M0. 

Here and further the double equality operator means two equal multi-sets of to-
ken elements. This can also be written in the following way: for all p1∈ P1  
Σ(p∈A)ϕ(p) = M0(p1), where A = { p∈ Min(N2) | h(p) = p1}. 

(d) G(h(t))<η(t)> for all t∈T2. 
(e) ∀t’∈T2 | (∃a∈A1: N1(a)=(p,t) and h(t’)=t) ⇒    
  E(a)<η(t’)>=∑(p’∈I)ϕ(p’), where I={p’∈•t’ | h(p’) = p}. 
  ∀t’∈T2  | (∃a∈A1: N1(a)=(t,p) and h(t’)=t) ⇒  
  E(a)< η(t)>=∑(p’∈I)ϕ(p’),  where I={p’∈(t,b)• | h(p’) = p}. 
(f) If  (h(t1)=h(t2)) and (η(t1)=η(t2)) and (•t1 = •t2) then t1=t2. 

Important Note: Using the first two properties, we can associate a token ele-
ment (p,c) of N1 with every place in N2 and the binding element (t,b) of N1 with 
every transition in N2. So we can further consider the net N2 as containing the 
places which we identify with token elements  of N1, and transitions which we 
identify with binding elements of N1. So we sometimes use them instead, like 
h((t,b))=t means h(t’)=t and η(t’)=b or p∈•(t,b) means p∈•t’ and h(t’)=t and 
η(t’)=b. Analogously, we can consider (p,c)∈P2 as p’∈P2 and h(p’)=p and 
ϕ(p)=c. Also, h(p,c)=p and h(t,b)=t. 

It can be shown that any finite CPN has a maximal branching process (MBP) 
up to isomorphism (proposition 3.2). We can declare existence of the maximal 
branching process when considering the algorithm of its generation. As such an 
algorithm we choose the algorithm of unfolding generation proposed by McMil-
lan [12] and applied to coloured Petri nets. 

Maximal Branching Process generation algorithm  
var:  P2,T2,N2; 
// Places and transitions  are natural numbers, N2 is the set of pairs (m,n). 
H_Table = {Ph_table[], Th_table[]} 
// This is a table for storing a homomorphism and functions  ϕ and η  
// Ph: n→(p,c),  Th: m→(t,b). 
T_Fired; 
// The list of waiting binding elements. 
m, n : integer; 
// The place and transition under construction. 
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// Using H_Table for simplification of the algorithm, we sometimes write 
//(p,c) and (t,b) instead of the corresponding n and m. 

 
begin 
H_Table:=empty; 
N2= ( P2,T2,N2): = ∅; n:=1;m:=1; 
for all p∈P1 such that |I(p)|>0 do 
    for all c∈I(p) do 
       begin 
         add(n , P2); 
         n:=n+1; 
         GenTr({n-1}); 
       end; 
While (T_Fired ≠ ∅) do 
  begin 
    m0: = head(T_Fired) =  (t,b); 
    delete(m0,T_Fired); 
      for all a∈A1 such that N1(a) = (t,p) do        
        for all c∈E(a)<b> do 
          begin 
            Ph_table[n]:=(p,c); 
            add((m0,n), N2); 
            add(n,P2); 
            n:=n+1;  
            GenTr({n-1})     
          end; 
   end;  
return N2= ( P2,T2,N2); 
end. 
 
procedure GenTr(N); 
begin 
if  (¬∃t∈T1 | N⊆•t) then return 
if Predecessors(N) has forward conflict then return 
 for all (t,b)∈TE such that h(N)=•t do  
     if (t,b) is enabled in M==N then 
      // i.e M = Ph_table[N] 
         begin 
            add( (N,m), N2); 
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            insert m = (t,b) in T_Fired in order of |LocalConfig(m)| 
            Th_table[m]:=(t,b); 
            add(m,T2); 
            m:=m+1; 
          end; 
 for all n∈P2 \ N do 
   GenTr(N∪{n}); 
end. 

Proposition 3.2[10]. The algorithm gives us the maximal branching process 
MBP(N1) of N1. 

This branching process can be infinite even for the finite nets if they are not 
acyclic. We are interested to find a finite prefix of a branching process large 
enough to represent all the reachable markings of the initial CPN. This finite 
prefix will be called an unfolding of the initial CPN. In the next section we give 
the definitions of a configuration, cutoff points and the definition of unfolding of 
CPN.  

Definition 3.6. A configuration C of an OPN N = (P,T,N) is a set of transitions 
satisfying the following two conditions: 

(1) t ∈ C ⇒ for all t0 ≤ t :  t0∈C 
(2) for all t1,t2∈C : ¬(t1#t2). 

Definition 3.7. A  set  X0 ⊆ X of nodes is called a co-set,  if  for all t1, t2∈X0:  
(t1 co t2). 
Definition 3.8.  A set X0⊆X of nodes is called a cut, if it is a maximal co-set 
with respect to the set inclusion. 
Finite configurations and cuts are closely related. Let C be a finite configuration 
of an occurrence net, then Cut(C) = (Min(N)∪C•) \ •C is a cut. 

Definition 3.9. Let N1 = (S1,P1,T1,A1,N1,C1,G1, E1,I1) be a CPN and MBP(N1) = 
(N2, h, ϕ, η), where N2 = (P2,T2,N2) , be its maximal branching process. Let C be 
a configuration of N2. We define a marking Mark(C) == Cut(C) which is a mark-
ing of N1. Operator ”==” has the same meaning as in definition 3.5 Mark(C)(p) = 
Σ(p’∈Cut(C) ⎢h(p’) = p)M2(p’).   
Definition 3.10. Let N be an OPN. For all t∈T the configuration [t] = {t’∈T ⎢t’ ≤ t} 
is called a local configuration. (The fact that [t] is a configuration can be easily 
checked).  
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Let us consider the maximal branching process for a given CPN. It can be no-
ticed that MBP(N) satisfies the completeness property, i.e., for every reachable 
marking M of N there exists a configuration C of MBP(N) ( i.e., C is the con-
figuration of OPN) such that Mark(C) = M. Otherwise we could add a necessary 
path and generate a larger branching process. This would be a contradiction with 
the maximality of MBP(N). 

Now we are ready to define three types of cutoffs used in the definition of 
unfolding. The first two definitions can be found in [5] and [12]. The last is the 
definition given in [11].  
Definition 3.11.  A transition t∈T of an OPN is a GT0-cutoff, if there exists t0∈T  
such that Mark([t]) = Mark([t0]) and [ t0] ⊂ [t]. 
Definition 3.12. A transition t∈T of an OPN is a GT-cutoff, if there exists t0∈T  
such that Mark([t]) = Mark([t0]) and |[ t0]| < |[t]|.  

Definition 3.13. A transition t∈T of an OPN is a EQ-cutoff, if there exists t0∈T  
such that   

(1) Mark([t]) = Mark([t0]) 
(2) |[ t0]| = |[t]| 
(3) ¬(t || t0) 
(4) there are no EQ-cutoffs among t’ such that t’|| t0 and |[t’]| < |[ t0]|. 

Definition 3.14. For a coloured Petri net N, an unfolding is obtained from the 
maximal branching process by removing all the transitions t’, such that there 
exists a cutoff  t and t < t’, and all the places p∈t’•.  

If Cutoff = GT0(GT)-cutoffs then the resulted unfolding is called GT0(GT)-
unfolding. GT0(GT)-unfolding is also called a McMillan unfolding. If Cutoff = 
GT-cutoffs ∪ EQ-cutoff then the resulted unfolding is called  EQ-unfolding. 

It has been shown that the McMillan unfoldings are inefficient in some cases. 
The resulting finite prefix grows exponentially, when the minimal finite prefix 
has only a linear growth. The following proposition can be formulated for these 
three types of unfoldings. 

Proposition 4.2 [10]. EQ-unfolding ≤ GT-unfolding ≤ GT0- unfolding.   

The following theorem gives correctness of the obtained unfoldings. 

Theorem 1 [10]. Let N1 be a CPN. Then for its unfoldings we have: 
(1) EQ-unfolding, GT-unfolding and GT0-infolding are finite. 



 

13 

(2) EQ-unfolding, GT-unfolding and GT0-infolding are safe, i.e., if C and C’ 
are configurations, then  C ⊆ C’ ⇒ Mark(C’)∈[Mark(C)〉. 

(3) EQ-unfolding, GT-unfolding and GT0-infolding are complete, i.e., 
M∈[M0〉 ⇒ there exists a configuration C such that Mark(C) = M. 

As an algorithm for unfolding generation we can use the algorithm of maximal 
branching process generation and add there the finitization function based on 
cutoff criteria. Exact algorithms can be found in [10]. 

As an example let us consider the CPN representing the problem of dining philoso-
phers (Fig. 1). For this net we have GT0-unfolding = GT-unfolding = EQ-unfolding.  

decide to eat

take left cs. take right cs.

begin eating

stop eating

val n = 3
 color PH = index
   ph  with 1..n
 var p:PH

 fun C(ph(i)) =
  =1’p(if i=n
            then 1
            else i+1)

Think PH 

PH

p

Ready 1

p p

Ready 2

PH

 PHunused
chopsticks

PH

pC(p)

p        p
PH

guard [ch=p]
p

p

having left cs. having right cs.

PH

PH

p

p

p

Eat

p

C (p) p                  p

 
Fig.1 The Dining Philosophers Example 

Unfoldings of this net are represented on Fig.2. 
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Th.1 Th.2

Un.CS 2

R 1,1 R 2,1 R 1,2 R 2,2

Un.CS 1

HL 1 HR 1 HL 2 HR 2

Eat 1

Th 1

Eat 2

UnCS 1UnCS 2 Th 2 UnCS 2

UnCS 1

GT0,GT,EQ-Unfoldings  

Fig. 2 Unfolding of the Dining Philosophers Example  

As it can be seen from the table below, the size of unfoldings is linear in the 
number of philosophers while the number of reachable markings is exponential.  

 
 
N 

the unfolding sizes 
(the numbers of transitions) 

GT0,GT,EQ-unfoldings 

Reachable 
Markings 

 2 10 22 
 3 15 100 
 4 20 466 
 5 25 2164 

 

We measure the unfolding size by the number of transitions, because, when 
storing the information about each place in every reachable marking, we have the 
analogy with storing the fan-out places for every transition. (Anyway, the num-
ber of fan-out places is restricted by some constant and doesn’t  spoil the linear 
growth of the unfolding size). 
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4 UNFOLDINGS OF INTERVAL-TIMED CPN 

In this chapter we apply the technique of unfolding of timed PN from [1] to 
CPN with analogous time structure. Such CPN will be called interval-timed 
CPN. The nets considered in [1] are 1-safe and satisfy the Divergent-Time prop-
erty (DT-nets). We require from CPN only to be finite, n-safe and S-finite. This 
means that 1-safety and Divergent-Time property are not necessary.  

First, let us consider the Divergent-Time property. DT-property requires that 
if a place p loses its token at time t, then no token will arrive at p before time t+1. 
Although there are some classes of systems which can be modelled by the DT-
nets, for many interesting systems DT-property isn’t true. For example, even for 
a simple model of communication protocols ABP described in [8,9], we have 
violation of DT-property. It is described in [1] how to avoid the requirement of 
holding DT-property for an unfolding construction. In this paper we choose an-
other approach.           

Definition 4.1. An interval-timed CPN (ITCPN) is a pair NIT = (N,χ), where N is 
a CPN and χ is a transition inscription χ: T → τ⊆N×N (τ consists of nonnegative 
integer intervals). For χ(t) = (eft(t), lft(t)) we call eft(t) and lft(t) the earliest fir-
ing time and the latest firing time of t, respectively. 

Definition 4.2. A state of an interval-timed CPN N is a pair (M,I), where M is a 
marking of N and I is a clock vector I : T →(N∪{$}) such that either I(t) = $ or 
I(t) < lft(t) for all t∈T. The symbol $ indicates that the corresponding transition is 
not enabled. A state is called consistent if for all t∈T I(t) ≠ $ ⇔ t∈Enabled(M). 
Only the consistent states will be considered in this paper. For an integer θ >0 
and for all t∈T, (I+θ) is defined by (I+θ)(t) = I(t)+θ if t∈Enabled(M) and $ oth-
erwise. 

Definition 4.3. The initial state (M0,I0) is defined by the initial marking M0 and 
the initial clock vector I0 such that I0 = 0 if t∈Enabled(M0) and $ otherwise. 

Definition 4.4. Two types of events are considered:  
(1) Tic-event: tic is firable at the state (M,I) if for all t∈T I(t) < lft(t). In this case, 
the successor state (M1,I1) is given by M1 = M and I1 = (I+1). The tick-event is 
denoted by (M,I) →tic(M1,I1). 
(2) Occur-event: An occur event is firable at the state (M,I) if some transition  
t may occur with the binding element b, i.e., if (t,b)∈Enabled(M) and eft(t) ≤ I(t) 
≤ lft(t). In this case the successor state (M1,I1) is given  by M1(p) = M(p) - 
E(p,t)<b> + E(t,p)<b> and I1(t’) is  
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 $, if  t’∉ Enabled(M1),  
 0, if (t’ = t) and t’∈Enabled(M1),  
 0, if (t’ ≠ t) and t’∈Enabled(M1) and t’∉Enabled(M’), where  

M’(p) = M(p) - E(p,t)<b>  and 
 I(t’) otherwise. 
An occur event is denoted by (M,I) →(t,b)(M1,I1). 

Let us notice that the initial state is consistent and both occur- and tic-events 
preserve the consistency property.  

Now we define the time expansion of an interval-timed CPN — X(ITCPN) 
which captures the behaviour of the initial ITCPN and is an ordinary (untimed) 
CPN. As in the paper [1] we will consider the part of the unfolding of X(ITCPN) 
to be an unfolding of initial ITCPN (see below). In general, the size of 
X(ITCPN) may be exponential in the size of the initial ITCPN, but the unfolding 
of ITCPN can be generated without constructing X(ITCPN). However, we need 
the definition of time expansion of an interval-timed CPN to prove existence and 
the necessary properties of ITCPN’s  unfolding. For any NIT = (N,χ) we, as usu-
ally, require N  to be finite, n-safe and S-finite.  

Definition 4.5: The time expansion of an interval-timed CPN NIT = (N,χ) is de-
fined in the following way: 
(1) For every place p∈P, a place pc (complementary place) is introduced  such 

that C(p) = C(pc). The set of all complementary places is denoted by Pc.  
(2) For each transition t∈T, a new place pt is introduced such that C(pt) = int 

with -1...lft(t), where the symbol $ is denoted by -1. The set of such places is 
denoted by Pt 

(3) The marking PL(I) is defined in the following way: PL(I)(p) = I(t) if p = pt  
and empty otherwise. The state (M,I) of the initial ITCPN is represented by 
the state X(M,I) = M∪Mc∪PL(I), where for all pc∈Pc: Mc(pc)= n’C(p) \ 
M(p) and n is the constant from the n-safety condition of the initial CPN.  

(4) For each marking M of ITCPN a new transition tic(M) is introduced such 
that the preset and postset of tic(M) are the set  M∪Pc∪Pt. (This means that 
•tic(M)∩P = {p | M(p) ≠empty}. It is denoted by •tic(M)∩P = M). The arc 
expressions are: 
∀ p (M(p)≠empty):  N(a) = (p, tic(M,I)) ⇒ E(a) = M(p). 
∀ pc∈Pc N(a) = (pc, tic(M,I)) ⇒ E(a) = n’C(p) \ M(p). 
∀ pt∈Pt N(a) = (pt, tic(M,I)) ⇒ E(a) = it, if t∈Enabled(M), and empty oth-

erwise. 
∀ p (M(p)≠empty): N(a) = (tic(M,I),p) ⇒ E(a) = M(p). 
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∀ pc∈Pc N(a) = (tic(M,I),pc) ⇒ E(a) = n’C(p) \ M(p). 
∀ pt∈Pt N(a) = (pt, tic(M,I)) ⇒  E(a) = it+1, if t∈Enabled(M), and empty 

otherwise. 
guard[tic(M)]  = ∀it  it <lft(t).  
Notice, that we consider only n-safe markings. The set of these transitions 
is denoted by Tic.  

(5)  For each marking M and each (t,b)∈BE we define a transition  T(t,b),M.  
The arcs are described below. 
For all p∈P  if ∃a∈AIT | NIT(a) = (p,t) we define ap,apc∈A such that  

N(ap) = (p, T(t,b),M), N(apc) = (T(t,b),M, pc). 
E(ap) = EIT(a)<b>, E(apc)  = EIT(a)<b>. 

For all p∈P  if ∃a∈AIT | NIT(a) = (t,p) we define ap,apc∈A such that  
N(ap) = (T(t,b),M ,p), N(apc) = (pc,T(t,b),M). 
E(ap) = EIT(a)<b>, E(apc)  = EIT(a)<b>. 

For all t’∈TIT we define a1,t’,a2,t’∈A such that 
N(a1, t’) = (pt’, T(t,b),M), N(a2, t) = (T(t,b),M, pt’), 
E(a1, t’) = it’, 
E(a2, t’) = -1 if t’∉Enabled(M1), 
 where M1(p) = M(p) - E(p,t)<b> + E(t,p)<b>, 
 0 if (t’ =t) and t’∈Enabled(M1), 
 0 if (t’ ≠ t) and t’∈Enabled(M1) and t’∉Enabled(M’), 
 where M’(p) = M(p)-E(p,t)<b>, 
 i1,t’  — otherwise.    

The set of these transitions is denoted by Fire.  
The whole CPN constructed is 
NX(ITCPN) = (SX,PX,TX,AX,NX,CX,GX,EX,IX), where 

SX = SIT ∪ C(Pt), 
PX = P ∪ Pc ∪ Pt, 
TX = Tic ∪ Fire, 
CX(p) = CX(pc) = C(p), 
CX(pt) = int with -1..lft(t), 
the sets AX,NX,GX,EX are described in the definition,  
the initial marking MXo = M0 ∪ M0

c ∪ PL(I0).  

Now let us write some comments to each of these six points.  
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(1)  
As shown in [1], we have some problems when modelling the clock events 

during the time expansion construction. First, if we introduce a tic transition for 
each state (M,I) when tic is possible, we can come to a situation when, instead of 
this tic transition, the tic transition for (M’,I’) fires where M’⊂M. This is the 
reason for introducing the complementary places. 

(2) 
For every transition t we introduce the place pt, where the clock position for t 

will be stored.  
(3) 
In this point we define a marking X(M,I) of time expansion using comple-

mentary and clock places.  
(4) 
These transitions model time-events. The arc expressions in the definition 

could be written using the variables evaluations of which could be moved to the 
guard functions. Such a definition would be more in the style of CPN description 
in [8,9]. However, we leave the arc functions as they are to make the definition 
more observable. Let us notice that we also could make the set of tic transitions 
based on the subsets T’⊆T ( tic(T’) ) instead of basing them on the set of mark-
ings. In this case the descriptions of M will be transferred to the guard functions. 
The variant presented in the definition is chosen to retain the analogy with the 
article [1]. 

(5) 
These transitions model the occur-events and additionally update clock vec-

tors. As shown in [1] the clock updating is needed to model firing of transitions. 
Since we represent the clock by the unique place for each transition, we don't 
need to have the set of transitions parameterized by the clock positions.  

As it was written earlier, we don't require our CPN to satisfy DT-property. 
This means that we have to store in some way the "intermediate" markings. This 
is needed when some place p loses its token at the time t and at the same time 
some token arrives at p. We elaborate such an "intermediate” marking in E(a1, t’) 
and E(a2, t’). 

From the definition we make a conclusion about existence of X(ITCPN)’s 
unfolding. Since the time expansion is finite, n-safe and S-finite, we obtain, ac-
cordingly to theorem 1, finiteness, safety and completeness of the generated un-
folding. 

We can also consider the part of the unfolding of X(ITCPN) to be an unfold-
ing of initial ITCPN (see below). The adequacy of this approach is given by the 
theorem below. Let us first give the following definition. 
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Definition 4.6: A marking M of X(ITCPN) is called consistent iff 
(1) |M(pt)| = 1 for all t∈TIT.    
(2) M(p) ∪ M(pc) =n’C(p).  
(3) M(pt) = -1 ⇔ t∉Enabled(M∩P) for all t∈T. 

Let us notice that the initial state is consistent and by the definition of time 
expansion any state reached from the consistent state is consistent.  

Theorem 2. Let NIT =(N,χ) be an ITCPN and we constructed its time expansion 
NX. Then we have the following results: 

(1) A tic-event can occur at (M,I) and (M,I) →tic(M,I’) ⇔ tic∈Tic is enabled 
in M∪Mc∪PL(I) and M∪Mc∪PL(I) →ticM∪Mc∪PL(I’). 

(2) (t,b) can occur at (M,I) and (M,I) →(t,b)(M’,I’) ⇔ T∈Fire is enabled in 
M∪Mc∪PL(I) and M∪Mc∪PL(I) →T  M’∪M’c∪PL(I’). 

(3) The (consistent) state (M,I) is reachable in NIT ⇔ the (consistent) state 
M∪Mc∪PL(I) is reachable in NX. In particular, M is reachable in  
NIT  ⇔ M = M’∩ P for some reachable marking M’ of NIT. 

Proof: 
(1) 

⇒) Let tic be possible in the state (M,I). There exists tic(M)∈TX and, by the 
definition of time expansion, •tic(M) ∩ P = { p | M(p) ≠ empty}.  

EX(a) = M(p) if NX(a) = (p,tic(M)) or NX(a) = (tic(M),p).   
In the case of Pc we get the whole set Pc as a pre and post set for tic(M) and 

the markings on Pc remain unchanged. 
From definitions of E(at) we can conclude that ∀t∈TX if t∈Enabled(M) then 

tic(M), for t∈Enabled(M), increases the value of the token in the place pt by one 
and leaves it untouched  otherwise. 

So, from the definition of time expansion, we obtain that tic(M) starts  
from the marking M∪Mc∪PL(I) and, after, occurring leaves the marking 
M∪Mc∪PL(I’). 

⇐) If tic has occurred in M∪Mc∪PL(I), then it is a tic(M) transition (because 
of marking control made by complementary places). 
Since tic(M) has occurred, it satisfies the guard function: 

∀it | it < lft(t) ⇒ PL(I)(p)  = I(t) < lft(t). 
This means that tic is enabled at the state (M,I) of the initial net N. Accordingly 
to E(at) definition, we have that clock places PL(I’)  correspond to the clock 
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function obtained by occurrence of tic at the state (M,I). This means that (M,I) 
→tic(M,I’). 

(2) 
⇒) If (t,b) is enabled in the state (M,I), then TM,(t,b)∈ TX.  

As in the case of tic transitions, from the definition of time expansion we obtain: 
M∪Mc∪PL(I) →TM,(t,b) M’∪M’c∪PL(I’). 

For all t’ the expression on the arc a1,t’ contains the input variables it’, and the 
expression on the output arc a2,t’ is constructed accordingly to the occur-event 
definition.  

⇐) If T has occurred in M, then (because of marking control made by com-
plementary places) T = TM,(t,b) for some (t,b)∈BE. This means that (t,b) is en-
abled in the state (M,I) and, after occurring (by the definition of time expansion), 
gives us the marking (M’,I’).   

(3) 
⇒) Let (M0,I0) →σ(M,I). In the proof we will use induction on the length of 

σ. If |σ| = 0, then by definition M0∪M0
c∪PL(I0) is the initial state and therefore 

is reachable. 
If σ = σ1 +{ t }, (M0,I0) →σ1(M’,I’) →t(M,I) and M’∪M’c∪PL(I’) is reach-

able in NX, then we have two cases: 
(a) t = tic. Using point (1) of this theorem we can conclude about the 

reachability of  M∪Mc∪PL(I).    
(b) t = (t,b). Using point (2) of this theorem we conclude about the reach-

ability of M∪Mc∪PL(I). 
⇐) Let M0∪M0

c∪PL(I0) →σ M∪Mc∪PL(I). In points (1) and (2) we have the 
equivalence properties. So, as in the previous part, we can apply  induction on 
|σ|. 

If |σ| = 0, then M0∪M0
c∪PL(I0) is initial and by the definition of time expan-

sion we obtain that (M0,I0) is initial in N and therefore is reachable. 
If |σ| ≠ 0, then we can consider two cases as in the previous part and con-

clude, using properties (1) and (2) of this theorem, that the state (M,I) is reach-
able.               

As mentioned earlier, the time expansion of CPN is used only to prove  exis-
tence of a finite, safe and complete unfolding of ITCPN. Below we give the defi-
nition of a reduced unfolding which is obtained from the unfolding of X(ITCPN) 
by removing the parts with unnecessary information and can be constructed di-
rectly from the ITCPN. We consider the reduced unfolding of X(ITCPN) to be 
an unfolding of initial ITCPN. Although the exact algorithm description is out of 
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the scope of the paper,  the basic idea of how to construct a reduced unfolding 
directly from ITCPN will be given. 

Definition 4.7. Let N be an ITCPN and the finite unfolding Unf(NX) of its time 
expansion be constructed, then a reduced unfolding is obtained from Unf(NX) in 
the next two steps: 

(1) Remove all the places pc and pt from the unfolding and all the incidental 
arcs. 

(2) Add the names (t,b) and tic to T(t,b),M  and tic(M) respectively.  
The reduced unfolding is denoted by R(Unf(NX)). 
The configuration C = (t1...tn) of Unf(NX) has a corresponding  configuration  
C’ = (t1’...tn’) of R(Unf(NX)) such that if ti = TM,(t,b)  then ti’ = (t,b) and if ti = tic(M) 
then ti’ = tic and vice versa. 
It also follows from the reduced unfolding definition that 
MarkUnf(Nx)(C) ∩ P = MarkR(Unf(Nx)(C’). 

Let us notice here that it would be more in the style of [8,9] to consider steps 
Y instead of single transitions in the theorem and definitions. However, the ap-
proach chosen here gives us a simple and clear way of how to describe the un-
foldings of ITCPN. Below we give the net example and its GT-unfolding. 

Take
Chopsticks

 Put Down
Chopsticks

 val n = 2
 color PH = index ph with 1..n
 color CS = index cs with 1..n
 var p:PH
 fun Chopsticks(ph(i)) =
  =1’cs(i)+1’cs(if i=n then 1
    else i+1)

Think PH  
PH Chopsticks(p)

p p Unused  CS  
 Chopsticks

p

Eat CS
PH

Chopsticks(p)
[0,1]

 

Fig. 3  The Dining Philosophers 
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Th,1 Th,2 Ch,1 Ch,2

Eat,1 Eat,2 Th,1 Th,2 Ch,1 Ch,2

Th,1 Ch,1 Ch,2 Th,2 Ch,1 Ch,2 Eat,1 Eat,2

tic tic

Eat,1 Eat,2

Th,1 Ch,1 Ch,2 Th,2 Ch,1 Ch,2
 

Fig. 4. Unfolding of Dining Philosophers (Fig. 3) 

Now we give the basic idea of how to modify the unfolding algorithm for 
CPN into the algorithm of reduced unfolding generation for a given interval-
timed CPN. At each step, considering a co-set of places to be a preset for a given 
binding element (t,b), we should calculate the function I for all t such that t < P’, 
where P’ are the places from the current co-set. This takes O(NTNP) time. So we 
should multiply  the complexity of  the unfolding algorithm by NTNP. To find a 
deadlock by the method described in [10,13], we should consider cutoffs occur-
ring after the tic transition when for all t I(t)=$ as a decision of the system of 
equations. 

5 UNFOLDINGS OF TIMED CPN 

In this section we describe the unfolding technique for timed CPN (TCPN) as 
they are represented in [8,9]. There a more detailed description of timed CPN can 
be found. Here we briefly give the main definitions. 

Definition 5.1.  A timed multi-set  tm, over a non-empty set S, is a function 
tm∈[S×N→N] such that the sum tm(s)=∑(n∈N)tm(s,n) is finite for all s∈S (we 
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consider time values to be a set of integers). tm(s) is the number of appearances 
of s. The list tm[s] = [n1,n2,...,ntm(s)] is defined as containing the time values for 
which tm(s,n)≠∅. The timed multi-set is represented by a formal sum 
∑(s∈S)tm(s)’s@tm[s]. tm(s) is called a coefficient of s. For a timed multi-set tm, 
an ordinary multi-set tmU is defined by = ∑(s∈S)tm(s)’s.  
Analogously, for an ordinary multi-set m and a time value n we define  
mn = ∑(s∈S)m(s)@tm[n,n...n]. 

As an example we consider the multi-set  
tm = 2’(q,3)@[11,26] + 1’(q,4)@[526] for which we have tm[(q,3)] = [11,26], 
and tmU = 2’(q,3) + 1’(q,4). 

For a timed multi-set tm and a time value n, the multi-set tmn is defined as 
tmn = ∑tm(s)’s@tm[s]n, where tm[s]n is the list obtained from tm[s] by adding n 
to each time value. 

Let a =[a1,a2,...am] and b =[b1,b2,...bn] be two lists over the set of natural num-
bers. a≤b iff m≤n and ai≥bi for all i=1..m. 

When a≤b, b–a is defined as a list of length n–m which is obtained from b in  
the following way. We remove from b the largest element which is smaller than 
a1. From the remaining list, we remove the largest time value which is smaller 
than a2, etc. 

Definition 5.2. Comparison between timed multi-sets is defined in the following 
way, for all timed multi-sets tm1,tm2: 
(1) tm1 ≤ tm2 ⇔ ∀s∈S: tm1[s]≤ tm2[s]. 
When tm1 ≤ tm2 we also define the subtraction:  
(2) tm2 - tm1  = ∑(s∈S)(tm2(s) - tm1(s))’s@(tm2[s] - tm1[s]). 

Definition 5.3. A timed CPN is a pair TCPN = (CPN, t0) such that  
(1) CPN satisfies the requirements of an ordinary CPN, and the types of E(a) 

and  I(p) are allowed to be timed or untimed multi-sets. 
(2)   t0 is a natural number called the start time. 

Timed CPN often contain one or more colour sets S which are untimed. This 
means that the token of type S are required to be always available, independently 
of any time constraints.  

Definition 5.4. A marking is a timed multi-set over TE. The initial marking M0 is 
given by M0(p) = I(p)to.  A state is a pair (M,t) and the initial state is a pair 
(M0,t0).  
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Definition 5.5. A step Y is enabled  in a state (M1,t1) at time t2 iff the following 
properties are satisfied: 
(1)  for all p∈P: ∑((t,b)∈Y)E(p,t)<b>t2 ≤ M1(p).  
(2)  t1 ≤ t2. 
(3)  t2 is the smallest time value for which there exists a step satisfying (1)  

and (2). 
When such a step occurs, we obtain a new marking M2 given by 

M2(p)= M1(p) - ∑((t,b)∈Y)E(p,t)<b>t2  + ∑((t,b)∈Y)E(t,p)<b>t2. 
It is more natural to use single transitions instead of steps for the unfolding 

generation. So, we will define, as in the previous part, two kinds of transitions. 

Definition 5.6. Two kinds of events are defined in the following way: 
(a) If in a state (M,r) the step Y = {(t,b)} is enabled at time r, then the occur-

event is enabled in the state (M,r) and the obtained state (M’,r) is defined as a 
result of occurring Y. We denote it by (M,r) →(t,b)(M’,r). 

(b) If in a state (M,r) some step Y is enabled at the time r’>r, then the tic-event is 
enabled in the state (M,r). We denote it by (M,r) →tic(M’,r+1). 
We will consider only occur- or tic-events when considering the TCPN 

evaluation. As it was made for ITCPN, below we give the definition of time ex-
pansion and reduced unfolding of TCPN. 

Definition 5.7. A time expansion of TCPN N = (S,P,T,A,N,C,G,E,I) denoted by 
X(TCPN) is the coloured Petri net described below. 
(1) The set of places is P∪Pc∪pt, where  

CX(p) = C(p)    if C(p) is an untimed multi-set, 
CX(p) = C(p) × int   otherwise. 
CX(pc) = C(p)   for all p∈P, 
CX(pt) = int. 

We define the unique clock place for the whole net and consider the time stamps 
as parts of the colour description. 
(2) The marking X(M,r) is defined in the following way. 

X(M,r)(p) = ∑(s∈M(p)U)(s × tm[s]), if C(p) is a timed multi-set (further we 
will write such a sum as M(p)U ⊗ tm[M(p)]). We suppose 
M(p)U to be sorted in some way which gathers the same 
color elements in one part of a list and tm[M(p)] to be a re-
spective list of time values, where for all c∈M(p) the parts 
tm[c] are sorted in the ascending order; 
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X(M,r)(p) =  M(p) otherwise;   
X(M,r)(pc) =  n’C(p)U \ M(p)U,   
X(M,r)(pt) =  r.  

(3) For all markings M such that some step Y={(t,b)} is colour-enabled in MU, 
we define a transition tic(M) which has M∪Pc∪pt as its pre- and postsets (also as 
in the previous chapter: •tic(M)∩P = {p | M(p) ≠empty} ). 
NX(a) = (p,tic) or NX(a) = (tic,p)  ⇒ 

EX(a) = M(p)U ⊗ JM(p), if C(p) is a timed multi-set (JM(p) = {x1... x|M(p)|} is 
the set of integer  variables, M(p)U is sorted as in the previous 
point); 

EX(a) = M(p) otherwise, 
NX(a) = (pc,tic) or NX(a) = (tic,pc) ⇒ E(a) = n’C(p)U \ M(p)U,  
NX(a) = (pt,tic) ⇒ EX(a) = xt, 
NX(a) = (tic,pt) ⇒ EX(a) = xt +1. 

Let for all c∈E(a)U, [rc1,…,rcm] denote the ascending list of time values and for 
all c∈M(p)U, [xc1,…,xcm] denote the respective sublist of integer variables. 
The function guard(tic(M)) is defined in the following way. 
First, the sublists [xc1,…,xcm] are sorted for all c∈M(p)U: xc1≤ xc2,≤…≤xcm. Then, 
∀ (t,b)∈color_enabled(MU) ∃a such that N(a)=(p,t) and at least one c∈E(a)<b>U 
satisfies the condition:   ∀j=1…cm | xcj ≥ rcj+ xt. The list of xcj is longer than that 
of rcj , while (t,b) is color-enabled in MU.  Formally this can be written using the 
propositional logic operations. 
The set of tic transitions is denoted by Tic. 
(4)  ∀(t,b)∈BE ∀ MU we define a transition TM,(t,b)∈TX with the arc expressions 
described below. 
If N(a) = (p,t) and C(p) is a timed multi-set, we define ap,out,ap,out and ac such that    

NX(ap,out) = (p, TM,(t,b)), 
NX(ap,in) = (TM,(t,b), p), 
NX(ac) =  (TM,(t,b), pc),  
E(ap,out) = M(p)U⊗ LM, where LM = {l1...l|M(p)|}, 
E(ap,in) = (M(p)U⊗ LM) - (E(a)<b>U ⊗ La), where La = {la,1...la, |E(a)|} is the 

set of integer variables 
(M(p)U is sorted in the standard way), 

E(ac) = E(a)<b>U. 
If C(p) is an untimed multi-set, then we define ap and ac such that    

NX(ap) = (p, TM,(t,b)), 
NX(ac) =  (TM,(t,b), pc),  
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E(ap) = E(ac) = E(a)<b>. 
If N(a) = (t,p), we define ap and ac such that    

NX(ap) = (TM,(t,b), p), 
NX(ac) = (pc, TM,(t,b)),  
EX(ap) =  E(a) ⊗ Ya, where Ya = {y1...y|E(a)|} is the set of integer variables 

if C(p) is a timed multi-set, 
EX(ap) = E(a)<b>U otherwise,  
EX(ac) = E(a)<b>U. 

For the sets La ,Ya we define the sets La’,Ya’ of the corresponding time coeffi-
cients of E(a) sorted in the standard way (the same color-elements are in one part 
of the list and the respective lists of  time values tm[c] are sorted in the ascending 
order). 
We also define the arcs at,1 and at,2 such that 

NX(at,1) = (pt, TM,(t,b)), 
NX(at,2) = (TM,(t,b), pt), 
EX(at,1) = EX(at,2) = xt. 

The function guard(TM,(t,b)) is defined in the following way: 
∀a | N(a) = (p,t) ∀c∈E(a)<b>U   la,1 ≤la,2 ≤…≤la,m, 
∀a | N(a) = (t,p) ∀c∈E(a)<b>U   ya,1 ≤ya,2 ≤…≤ya,k, 
∀a | N(a) = (p,t) ∀i = 1..|E(a)| la,i ≤ xt + li’, where  la,i∈La, li’∈La’, 
∀a | N(a) = (t,p) ∀i = 1..|E(a)| yi = xt + mi’, where yi∈Ya, yi’∈Ya’, 
∀a | N(a) = (p,t) ∀i = 1..|E(a)| ∀j such that M(p)Uj = E(a)<b>Ui :  

(lj ≤  xt +li’) ⇒ (lj ≤ la,i). 
Let us remind that we keep M(p) sorted. 
The set of such transitions is denoted by Fire. 
The whole CPN so constructed is NX(TCPN) = (SX,PX,TX,AX,NX,CX,GX,EX,IX), where 

SX is defined in the description of the function C,  
PX = P ∪ Pc ∪ pt, 
TX = Tic ∪ Fire, 
CX(pc) = C(p)U, 
CX(p) = C(p)U × int if C(p) is the timed multi-set and 
CX(p) = C(p)  otherwise,   
CX(pt) = int, 
the sets AX,NX,GX,EX are described in the definition,    
the initial marking MXo = X(M0,t0). 



 

27 

While the unique time counter doesn’t make such problems with the clock 
updating as an individual timer for every transition, we don’t need any updating. 
Notice that  we don’t use the complementary places in the time elaboration. 

While there are no constraints on the time value r for a given marking M, 
every n-safe state (M,r) can be called consistent. In the time expansion we define 
the consistent marking in the following way: 

Definition 5.8. A marking M of X(TCPN) is called consistent iff 
(1) |M(pt)| = 1. 
(2) M(p) ∪ M(pc) = n’C(p). 
Let us notice that the initial state is consistent and by the definition of time 

expansion any state reached from the consistent state is consistent. Every reach-
able marking is consistent and therefore has the type of X(M,r) for some consis-
tent state (M,r). As in the previous part we can prove the theorem that gives us 
the relationship between the TCPN and its time expansion.  

Theorem 3. Let us have TCPN NT=(CPN, t0) and its time expansion NX be con-
structed. Then we have the following results. 

(1) A tic-event can occur at (M,r) and (M,r) →tic(M, r+1) ⇔ tic∈Tic is en-
abled in  X(M,r) and X(M,r) →ticX(M,r+1). 

(2) (t,b) can occur at (M,r) and (M,r) →(t,b)(M’,r) ⇔ T∈Fire is enabled in 
X(M,r) and X(M,r) →T  X(M’,r). 

(3) The (consistent) state (M,r) is reachable in NT ⇔ the (consistent) marking 
X(M,r) is reachable in NX. In particular, M is reachable in  NT  ⇔ M = 
M’∩ P for some reachable marking M’ of NX. 

Proof: 
(1) 

⇒) Let tic be possible in the state (M,r). A transition tic(M) exists by the defini-
tion of time expansion (because some step Y is colour-enabled in MU).  

By the definition of time expansion (3), tic (M) has M∪Pc∪pt as its pre- and 
post-set. By the definition of EX(a), tic(M) takes the marking X(M,r) and after 
occurring leaves the marking X(M,r+1). 
⇐) If tic has occured in X(M,r), then it is a tic(M) transition (because of marking 
control made by the complementary places). tic(M) satisfies the guard function, 
which means that if some step Y is colour-enabled in M, then it is not time-
enabled (some step Y is enabled by the time expansion definition). Therefore, the 
tic event is enabled in (M,r) and it changes (M,r) into (M,r+1). 
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(2) 
⇒) If (t,b) is enabled in (M,r), then TM,(t,b)∈TX. For a timed place this transition 
takes the whole marking M and, accordingly to the guard function, chooses the 
elements from E(a)<b> satisfying the time conditions described above in the 
TCPN definitions (i.e., it takes the token with the maximal time value la,i ≤ xt + 
li’). For the untimed place p, TM,(t,b) takes E(a)<b> from p, where N(a) = (p,t). 

After occurring, TM,(t,b)  brings tokens to the postset of t accordingly to the 
TCPN definitions (E(a)<b> with the time values yi = xt + mi’ in the case of time 
places). Also TM,(t,b) returns back unused tokens from the preset. 

Therefore, we have X(M,r) → TM,(t,b)
 
 X(M’,r), where M’ is obtained from M 

after occurrence of (t,b). 
⇐) If T has occurred in (M,r), then it is TM,(t,b)  for some (t,b) (because of mark-
ing control made by the complementary places). This means that (t,b) is enabled 
in the state (M,r) and by the definition of time expansion (using the considera-
tions of the previous point) gives us the marking (M’,r). 

(3) 
⇒) Let (M0,I0) →σ(M,I). In the proof we will use induction on the length of σ.  

If |σ| = 0, then by definition X(M0,t0) is the initial state and therefore is reachable. 
If σ = σ1 +{ t } , (M0,t0) →σ1(M’,t’) →t(M,t) and X(M’,t’) is reachable in NX, 

then we have two cases: 
(a) t = tic. Using point (1) of this theorem, we can conclude about the 

reachability of  X(M,t).    
(b) t = (t,b). We conclude about the reachability of X(M,t) using point (2) of 

this theorem. 
⇐) Let X(M0t0) →σ X(M,t). In points (1) and (2) we have the equivalence prop-
erties. So, as in the previous part, we can apply induction on |σ|. 

If |σ| = 0, then X(M0,t0) is initial and by the definition of time expansion we 
obtain that (M0,t0) is initial in N and therefore is reachable. 

If |σ| ≠ 0, then we can consider two cases as in the previous part and conclude, 
using properties (1) and (2) of this theorem, that the state (M,t) is reachable.   

Definition 5.8. Let N be a TCPN and the finite unfolding Unf(NX) of its time 
expansion be constructed, then a reduced unfolding is obtained from Unf(NX) in 
the following four steps: 

(1) Remove all the places pc and the place pt from the unfolding and all the 
incidental arcs. 

(2) Add the names (t,b) and tic to T(t,b),M  and tic(M) respectively.  
(3) Delete all arcs (p,tic(M)) if C(p) is an untimed set. 
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(4) All consequent tic sequences tic(M)<tic(M)<…<tic(M) should be 
changed by one ticN, where N is the length  of the sequence. 

The reduced unfolding is denoted by R(Unf(NX)). 
From the definition it follows that the configuration C = (t1...tn) of Unf(NX) has 

a corresponding configuration C’ = (t1’...tm’) of R((Unf(NX)), such that m≤n and   
if ti = TM,(t,b), then ∃tj’ = (t,b) and j≤i;  
if ti = tic(M), then ∃tj’ = tic and j≤i;  
MarkUnf(Nx)(C) ∩ P = MarkR(Unf(Nx))(C’). 
Now, having a usual CPN as the time expansion of TCPN, we can construct 

R(Unf(X(TCPN))) as the unfolding of TCPN. Unfortunately, the obtained time 
expansion is not n-safe and we can’t guarantee finiteness of  the generated un-
folding. The problem is the same as for the occurrence-graph (O-graph) of 
TCPN. Like for the O-graph, we can propose two methods. 

(1) We can construct a partial unfolding by restricting the allowed time  
value. Formally this can be done by defining the colours  A = int with 0..N 
for timed C(p) and the place pt.  In this case we obtain S-finite CPN and 
accordingly to theorem 1 its unfolding is finite. 

(2) We can define some equivalence specification concerned with time  val-
ues using the technique proposed in [10] in order to make  the unfolding 
finite.  

As in the previous part, the exact algorithm of R(Unf(X(TCPN))) generation 
is not given here. Instead we just give the idea of how to construct 
R(Unf(X(TCPN))). 

The net example and its unfolding are given below. 

Take
Chopsticks

 Put Down
Chopsticks

val n=2; Teat = 1; Twait = 1;
 color PH = index ph with 1..n
timed
 color CS = index cs with 1..n
 var p:PH
 fun Chopsticks(ph(i)) =
  =1’cs(i)+1’cs(if i=n then 1
   else i+1)

1’ph(1)@[0]
Think 1’ph(2)@[0]

PH Chopsticks(p)

p @+Teat p @+Twait Unused  CS  
 Chopsticks

p

Eat CS
PH

Chopsticks(p)

Time: 0

 
Fig. 5 The Dining Philosophers 
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Th,1 Th,2 Ch,1 Ch,2

Eat,1[1] Eat,2[1]

Th,1[2]  Ch,1 Ch,2 Th,2[2] Ch,1 Ch,2

tic tic

Th,1[2] Th,2[2] 

Eat,1[1] Eat,2[1]

GT-unfolding with equivalence

Unfolding with (Time < 2)

EQ-unfolding with symmetry

tic tic

[0]

[0]

[1]

[1]

[2]

 

Fig. 6 Unfolding of  the TCPN (Fig. 5) 

Now we show how to modify the unfolding algorithm for CPN into the algo-
rithm of constructing the reduced unfolding for a given TCPN. First we should 
store the time values for each place (token element) in the generated part of un-
folding. At each step of considering a co-set of places to be a preset for a given 
binding element (t,b), we should also calculate the number  and values for all tic-
transitions such that tic < P’, where P’ are the places from the current co-set. This 
takes O(NT) time. Let us notice that in the case of interval-timed CPN it takes 
O(NTNP). So we should multiply complexity of the unfolding algorithm by NT. 

Finally we don’t need any special deadlock technique for TCPN, since the tic 
transition is not possible in the “colour deadlock”. We can apply a usual defini-
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tion of a deadlock as a state (M,r) for which there is no enabled tic- or occur- 
transition. Accordingly to theorem 3, we have that (M,r) is a deadlock in TCPN 
⇔ X(M,r) is a deadlock in its time expansion. Otherwise, applying the equiva-
lences from theorem 3 (1) and (2), we would come to contradiction with the 
deadlock definition. While reduction of an unfolding doesn’t remove any transi-
tion, we have the correspondence between the deadlocks found in 
Unf(X(TCPN)) and the deadlocks found in R(Unf(X(TCPN))).  

CONCLUSION 

In paper [10] the unfolding technique proposed by McMillan in [12] and de-
veloped in later works has been applied to coloured Petri nets as they are de-
scribed in [8,9]. The technique has been formally transferred, two algorithms and 
three finitization criteria have been considered.  

The size of unfolding is often much smaller than the size of the  reachability 
graph of a PN. Using the EQ-cutoff criterion and  symmetry or equivalence 
specifications in unfolding generation [10], we can additionally reduced the size 
of unfolding. 

This paper transfer the unfolding technique from [1] to interval-timed CPN 
and also considers unfolding generation for timed CPN as they are described in 
[8,9]. Let us notice here that the notion of unfolding with equivalence given in 
[10] is very useful when we want to obtain the complete unfolding of TCPN con-
sidered in [8,9].   

In the future it is planned to make all the necessary experiments with unfold-
ings of coloured Petri nets. 
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