
Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

V. E. Kozura

UNFOLDINGS OF TIMED COLOURED PETRI NETS

Preprint
82

Novosibirsk 2000

In the paper [10] the unfolding technique was applied to coloured Petri nets
(CPN) [8,9]. It was also shown in [10] how to use the unfolding technique taking
into consideration symmetry or equivalence specifications. In [1] unfolding tech-
nique was applied to interval-timed Petri nets. This paper transfers this technique
to interval-timed CPN and also considers the unfolding technique for timed CPN
(TCPN) [8,9]. We require CPN to be finite, n-safe and containing only finite
sets of colours.

© A. P. Ershov Institute of Informatics Systems, 2000

Российская академия наук
Сибирское отделение

Институт систем информатики
им. А. П. Ершова

В.Е. Козюра

РАЗВЕРТКИ РАСКРАШЕННЫХ СЕТЕЙ ПЕТРИ СО ВРЕМЕНЕМ

Препринт
82

Новосибирск 2000

В работе [10] метод развертки был применен к раскрашенным сетям
Петри (РСП) [8,9]. Также в [10] было показано, как использовать свойства
симметрии и эквивалентности при построении развертки. В работе [1] ме-
тод развертки был применен к сетям Петри с интервальным временем. В
данной работе метод развертки применяется к РСП с интервальным време-
нем и к РСП со временем, описанным в [8,9]. На РСП накладываются огра-
ничения конечности, n-безопасности и конечности множеств, представ-
ляющих цвета.

© Институт систем информатики им А. П. Ершова СО РАН, 2000

5

1 INTRODUCTION

There are several techniques to avoid the “state explosion problem” in the
state space analysis of Petri Nets. The stubborn set method, methods based on
symbolic binary decision diagrams (BDD), methods using symmetry and equiva-
lence properties of the state space and methods based on partial orders help us to
avoid the problem in some cases[14].

McMillan in [12] has proposed an unfolding technique for Petri net analysis.
In his works a finite prefix of maximal branching process, which is large enough
to describe a system, has been considered instead of the reachability graph. The
size of unfolding is exponential in the general case and there were few works
which have improved in some way the unfolding definitions and the algorithms
of unfolding construction [6, 11].

J.Esparsa has proposed a model-checking approach to unfolding of 1-safe
systems analysis [5]. In [1] the model-checking technique using the net unfolding
has been applied to timed Petri nets. In [7] LTL-based model-checking has been
developed.

Unfolding of coloured Petri nets has been considered in the general case in
[15] for using it in dependency analysis needed by the Stubborn Set method. In
paper [10] the unfolding method, as it was developed in later works for ordinary
Petri nets has been applied to coloured Petri nets (in the way they are described
in [8,9]). It was also shown in [10] how to use the unfolding technique taking
into consideration symmetry or equivalence specifications.

This paper transfers the unfolding technique from [1] to interval-timed CPN
and also considers the unfolding generation for timed CPN as they are described
in [8,9]. Let us notice here that the notion of unfolding with equivalence given in
[10] is very useful when we want to obtain the complete unfolding of TCPN con-
sidered in [8,9].

The paper is organized as follows: chapter 2 gives the main definitions of the
CPN’s theory and the subclass we are interested in, chapter 3 introduces the un-
folding theory and gives the net example, chapter 4 describes the unfolding tech-
nique for interval-timed CPN and chapter 5 describes the unfolding technique for
TCPN.

6

2 INTRODUCTION TO COLOURED PETRI NETS

In this section we briefly give the basic definitions related to CPN and de-
scribe the subclass of colours we will use in the paper. More detailed description
of coloured Petri nets can be found in [8,9].

Definition 2.1. A multi-set is a function m: S→N, where S is a usual set and N
is the set of natural numbers.

In the natural way we can define operations such as m1+m2, n⋅m, m1-m2, and
relations m1≤m2, m1<m2. Also ⎪m⎪ can be defined as ⎪m⎪=∑s∈Sm(s).

Let Var(expression) define the set of variables of expression and
Type(expression) define its type.

Definition 2.2. A coloured Petri net CPN is the net

N = (S,P,T,A,N,C,G,E,I),

where S,P,T,A are the sets of colours, places, transitions, and arcs such that
P∩T = P∩A = T∩A=∅; N is a mapping N: A→P×T∪T×P; C is a colour func-
tion C: P→S; G is a guard function such that for all t∈T Type(G(t))=bool and
Type(Var(G(t))) ⊆ S; E is the function defined on arcs with Type(E(a)) = C(p)MS,
where p is the place from N(a) and Type(Var(E(a))) ⊆ S; and I is the initial
function defined on places such that for all p∈P Type(I(p)) = C(p)MS .

A(t), Var(t), A(x,y), E(x,y) can be defined in the natural way.

Definition2.3. A binding b is a function from Var(t) such that b(v)∈Type(v) and
G(t). The set of bindings for t will be denoted by B(t)

Definition2.4. A token element is a pair (p,c) where p∈P and c∈C(p). The set of
all token elements is denoted by TE.

Definition2.5. A binding element is a pair (t,b) where t∈ T and b∈ B(t). The set
of all binding elements is denoted by BE.

Definition2.6. A marking M is a multi-set over TE.

Definition2.7. A step Y is a multi-set over BE.

Definition2.8. A step Y is enabled in the marking M if for all p∈P
∑(t,b)∈YE(p,t) ≤ M(p) and a new marking M1 is given by

 M1(p) = M(p) - ∑(t,b)∈YE(p,t) + ∑(t,b)∈YE(t,p).

7

Now we can define a subclass of colored Petri nets which is large enough to de-
scribe many interesting systems and still allows us to build a finite prefix of its
branching process. In [10] more detailed description is given. The main idea is
to consider only finite color domains s∈S. All functions defined in [8] and hav-
ing the above described classes as their domains are allowed in our subclass. The
same can be told about the variables, constants, operators and net expressions.

Definition 2.9. The CPN satisfying all the above-mentioned requirements is
called S-finite.

Definition 2.10. The marking M of a CPN is n-safe if |M(p)|≤ n for all p∈P. A
CPN is called n-safe if all of its reachable markings are n-safe. 1-safe net is also
called safe.
Definition 2.11. A preset of an element x∈P∪T denoted by •x is the set

•x = {y∈ P∪T | ∃a: N(a) = (y,x) }.
A postset of x denoted by x• is the set

x• = {y∈ P∪T | ∃a: N(a) = (x,y) }.

The CPN considered in this paper are the CPN satisfying three additional prop-
erties:

1. The number of places and transitions is finite.
2. The CPN is n-safe.
3. The CPN is S-finite.

If the opposite is not mentioned, the term CPN has the meaning of a CPN,
satisfying these three properties.

3 UNFOLDINGS OF COLOURED PETRI NETS

Let N be a Petri net. We will use the term nodes for both places and transi-
tions.

Definition 3.1. The nodes x1 and x2 are in conflict, denoted by x1# x2, if there
exist transitions t1 and t2 such that •t1 ∩•t2 ≠ ∅ and (t1,x1) and (t2,x2) belong to the
transitive closure of N (which we denote by Rt). The node x is in self-conflict if
x#x. We will write x1≤ x2 if (x1,x2)∈Rt and x1< x2 if x1≤ x2 and x1≠ x2.

Definition 3.2. We say that x co y, or x || y, or x concurrent y if neither x < y
nor x > y nor x#y.

8

Definition3.3. An Occurrence Petri Net (OPN) is a usual Petri net N = (P,T,N),
where

(1) P and T are the sets of places and transitions,
(2) N ⊆ P×T∪T×P gives us the incidence function

satisfying the following properties:
(a) For all p∈P ⎢•p⎟ ≤ 1,
(b) N is acyclic, i.e., the (irreflexive) transitive closure of N is a partial order.
(c) N is finitely preceded, i.e. for all x∈P∪T the set { y∈P∪T | y ≤ x} is fi-

nite which gives us the existence of Min(N), the set of minimal elements
of N with respect to Rt (which is considered to contain only the elements
from P).

(d) no transition is in self conflict.
Every place p∈P may have some tokens. The initial marking of an OPN M0 of N
is defined by M0(p) = 1 if p ∈ Min(N) and empty otherwise. If for the transition
t∈T we have M(p)>0 for all p∈•t, then t may occur and the obtained marking
M1 is given by M1 = M - M(•t) + M(t•).

Proposition 3.1. OPN is a 1-safe net.

Proof. The initial marking is 1-safe by definition. Using the restriction ⎜•p⎟ ≤ 1
from the OCPN definition, we have that, from the 1-safe marking by occurrence
of any t∈T, we can obtain only 1-safe marking. Otherwise we have a contradic-
tion either with the property (b) in the case p ∈ Min(N) or with the above men-
tioned property (a) from the OCPN definition.

Definition 3.4. Let N1 = (P1,T1,N1) and N2 = (P2,T2,N2) be two Petri nets. A ho-
momorphism h from N2 to N1 is a mapping h: P2∪T2→P1∪T1 such that

(a) h(P2) ⊆ P1 and h(T2) ⊆ T1.
(b) for all t∈T2 h | •t = •t → •h(t).
 for all t∈T2 h | t• = t• → h(t)•.

Next we will give the definition from [10] of a branching process given

for coloured Petri nets.

Definition 3.5 : A branching process of a CPN N1 = (S1, P1, T1, A1, N1, C1, G1,
E1, I1) is a tuple (N2, h, ϕ, η), where N2 = (P2, T2, N2) is an OPN, h is a homo-
morphism from N2 to N1, ϕ and η are functions from P2 and T2, respectively,
such that

9

(a) ϕ(p) ∈ C(h(p)).
(b) η(t) ∈ B(h(t)).

Other requirements are listed below:
(c) Min(N2) == M0.

Here and further the double equality operator means two equal multi-sets of to-
ken elements. This can also be written in the following way: for all p1∈ P1
Σ(p∈A)ϕ(p) = M0(p1), where A = { p∈ Min(N2) | h(p) = p1}.

(d) G(h(t))<η(t)> for all t∈T2.
(e) ∀t’∈T2 | (∃a∈A1: N1(a)=(p,t) and h(t’)=t) ⇒
 E(a)<η(t’)>=∑(p’∈I)ϕ(p’), where I={p’∈•t’ | h(p’) = p}.
 ∀t’∈T2 | (∃a∈A1: N1(a)=(t,p) and h(t’)=t) ⇒
 E(a)< η(t)>=∑(p’∈I)ϕ(p’), where I={p’∈(t,b)• | h(p’) = p}.
(f) If (h(t1)=h(t2)) and (η(t1)=η(t2)) and (•t1 = •t2) then t1=t2.

Important Note: Using the first two properties, we can associate a token ele-
ment (p,c) of N1 with every place in N2 and the binding element (t,b) of N1 with
every transition in N2. So we can further consider the net N2 as containing the
places which we identify with token elements of N1, and transitions which we
identify with binding elements of N1. So we sometimes use them instead, like
h((t,b))=t means h(t’)=t and η(t’)=b or p∈•(t,b) means p∈•t’ and h(t’)=t and
η(t’)=b. Analogously, we can consider (p,c)∈P2 as p’∈P2 and h(p’)=p and
ϕ(p)=c. Also, h(p,c)=p and h(t,b)=t.

It can be shown that any finite CPN has a maximal branching process (MBP)
up to isomorphism (proposition 3.2). We can declare existence of the maximal
branching process when considering the algorithm of its generation. As such an
algorithm we choose the algorithm of unfolding generation proposed by McMil-
lan [12] and applied to coloured Petri nets.

Maximal Branching Process generation algorithm
var: P2,T2,N2;
// Places and transitions are natural numbers, N2 is the set of pairs (m,n).
H_Table = {Ph_table[], Th_table[]}
// This is a table for storing a homomorphism and functions ϕ and η
// Ph: n→(p,c), Th: m→(t,b).
T_Fired;
// The list of waiting binding elements.
m, n : integer;
// The place and transition under construction.

10

// Using H_Table for simplification of the algorithm, we sometimes write
//(p,c) and (t,b) instead of the corresponding n and m.

begin
H_Table:=empty;
N2= (P2,T2,N2): = ∅; n:=1;m:=1;
for all p∈P1 such that |I(p)|>0 do
 for all c∈I(p) do
 begin
 add(n , P2);
 n:=n+1;
 GenTr({n-1});
 end;
While (T_Fired ≠ ∅) do
 begin
 m0: = head(T_Fired) = (t,b);
 delete(m0,T_Fired);
 for all a∈A1 such that N1(a) = (t,p) do
 for all c∈E(a) do
 begin
 Ph_table[n]:=(p,c);
 add((m0,n), N2);
 add(n,P2);
 n:=n+1;
 GenTr({n-1})
 end;
 end;
return N2= (P2,T2,N2);
end.

procedure GenTr(N);
begin
if (¬∃t∈T1 | N⊆•t) then return
if Predecessors(N) has forward conflict then return
 for all (t,b)∈TE such that h(N)=•t do
 if (t,b) is enabled in M==N then
 // i.e M = Ph_table[N]
 begin
 add((N,m), N2);

11

 insert m = (t,b) in T_Fired in order of |LocalConfig(m)|
 Th_table[m]:=(t,b);
 add(m,T2);
 m:=m+1;
 end;
 for all n∈P2 \ N do
 GenTr(N∪{n});
end.

Proposition 3.2[10]. The algorithm gives us the maximal branching process
MBP(N1) of N1.

This branching process can be infinite even for the finite nets if they are not
acyclic. We are interested to find a finite prefix of a branching process large
enough to represent all the reachable markings of the initial CPN. This finite
prefix will be called an unfolding of the initial CPN. In the next section we give
the definitions of a configuration, cutoff points and the definition of unfolding of
CPN.

Definition 3.6. A configuration C of an OPN N = (P,T,N) is a set of transitions
satisfying the following two conditions:

(1) t ∈ C ⇒ for all t0 ≤ t : t0∈C
(2) for all t1,t2∈C : ¬(t1#t2).

Definition 3.7. A set X0 ⊆ X of nodes is called a co-set, if for all t1, t2∈X0:
(t1 co t2).
Definition 3.8. A set X0⊆X of nodes is called a cut, if it is a maximal co-set
with respect to the set inclusion.
Finite configurations and cuts are closely related. Let C be a finite configuration
of an occurrence net, then Cut(C) = (Min(N)∪C•) \ •C is a cut.

Definition 3.9. Let N1 = (S1,P1,T1,A1,N1,C1,G1, E1,I1) be a CPN and MBP(N1) =
(N2, h, ϕ, η), where N2 = (P2,T2,N2) , be its maximal branching process. Let C be
a configuration of N2. We define a marking Mark(C) == Cut(C) which is a mark-
ing of N1. Operator ”==” has the same meaning as in definition 3.5 Mark(C)(p) =
Σ(p’∈Cut(C) ⎢h(p’) = p)M2(p’).
Definition 3.10. Let N be an OPN. For all t∈T the configuration [t] = {t’∈T ⎢t’ ≤ t}
is called a local configuration. (The fact that [t] is a configuration can be easily
checked).

12

Let us consider the maximal branching process for a given CPN. It can be no-
ticed that MBP(N) satisfies the completeness property, i.e., for every reachable
marking M of N there exists a configuration C of MBP(N) (i.e., C is the con-
figuration of OPN) such that Mark(C) = M. Otherwise we could add a necessary
path and generate a larger branching process. This would be a contradiction with
the maximality of MBP(N).

Now we are ready to define three types of cutoffs used in the definition of
unfolding. The first two definitions can be found in [5] and [12]. The last is the
definition given in [11].
Definition 3.11. A transition t∈T of an OPN is a GT0-cutoff, if there exists t0∈T
such that Mark([t]) = Mark([t0]) and [t0] ⊂ [t].
Definition 3.12. A transition t∈T of an OPN is a GT-cutoff, if there exists t0∈T
such that Mark([t]) = Mark([t0]) and |[t0]| < |[t]|.

Definition 3.13. A transition t∈T of an OPN is a EQ-cutoff, if there exists t0∈T
such that

(1) Mark([t]) = Mark([t0])
(2) |[t0]| = |[t]|
(3) ¬(t || t0)
(4) there are no EQ-cutoffs among t’ such that t’|| t0 and |[t’]| < |[t0]|.

Definition 3.14. For a coloured Petri net N, an unfolding is obtained from the
maximal branching process by removing all the transitions t’, such that there
exists a cutoff t and t < t’, and all the places p∈t’•.

If Cutoff = GT0(GT)-cutoffs then the resulted unfolding is called GT0(GT)-
unfolding. GT0(GT)-unfolding is also called a McMillan unfolding. If Cutoff =
GT-cutoffs ∪ EQ-cutoff then the resulted unfolding is called EQ-unfolding.

It has been shown that the McMillan unfoldings are inefficient in some cases.
The resulting finite prefix grows exponentially, when the minimal finite prefix
has only a linear growth. The following proposition can be formulated for these
three types of unfoldings.

Proposition 4.2 [10]. EQ-unfolding ≤ GT-unfolding ≤ GT0- unfolding.

The following theorem gives correctness of the obtained unfoldings.

Theorem 1 [10]. Let N1 be a CPN. Then for its unfoldings we have:
(1) EQ-unfolding, GT-unfolding and GT0-infolding are finite.

13

(2) EQ-unfolding, GT-unfolding and GT0-infolding are safe, i.e., if C and C’
are configurations, then C ⊆ C’ ⇒ Mark(C’)∈[Mark(C)〉.

(3) EQ-unfolding, GT-unfolding and GT0-infolding are complete, i.e.,
M∈[M0〉 ⇒ there exists a configuration C such that Mark(C) = M.

As an algorithm for unfolding generation we can use the algorithm of maximal
branching process generation and add there the finitization function based on
cutoff criteria. Exact algorithms can be found in [10].

As an example let us consider the CPN representing the problem of dining philoso-
phers (Fig. 1). For this net we have GT0-unfolding = GT-unfolding = EQ-unfolding.

decide to eat

take left cs. take right cs.

begin eating

stop eating

val n = 3
 color PH = index
 ph with 1..n
 var p:PH

 fun C(ph(i)) =
 =1’p(if i=n
 then 1
 else i+1)

Think PH

PH

p

Ready 1

p p

Ready 2

PH

 PHunused
chopsticks

PH

pC(p)

p p
PH

guard [ch=p]
p

p

having left cs. having right cs.

PH

PH

p

p

p

Eat

p

C (p) p p

Fig.1 The Dining Philosophers Example

Unfoldings of this net are represented on Fig.2.

14

Th.1 Th.2

Un.CS 2

R 1,1 R 2,1 R 1,2 R 2,2

Un.CS 1

HL 1 HR 1 HL 2 HR 2

Eat 1

Th 1

Eat 2

UnCS 1UnCS 2 Th 2 UnCS 2

UnCS 1

GT0,GT,EQ-Unfoldings

Fig. 2 Unfolding of the Dining Philosophers Example

As it can be seen from the table below, the size of unfoldings is linear in the
number of philosophers while the number of reachable markings is exponential.

N

the unfolding sizes
(the numbers of transitions)

GT0,GT,EQ-unfoldings

Reachable
Markings

 2 10 22
 3 15 100
 4 20 466
 5 25 2164

We measure the unfolding size by the number of transitions, because, when
storing the information about each place in every reachable marking, we have the
analogy with storing the fan-out places for every transition. (Anyway, the num-
ber of fan-out places is restricted by some constant and doesn’t spoil the linear
growth of the unfolding size).

15

4 UNFOLDINGS OF INTERVAL-TIMED CPN

In this chapter we apply the technique of unfolding of timed PN from [1] to
CPN with analogous time structure. Such CPN will be called interval-timed
CPN. The nets considered in [1] are 1-safe and satisfy the Divergent-Time prop-
erty (DT-nets). We require from CPN only to be finite, n-safe and S-finite. This
means that 1-safety and Divergent-Time property are not necessary.

First, let us consider the Divergent-Time property. DT-property requires that
if a place p loses its token at time t, then no token will arrive at p before time t+1.
Although there are some classes of systems which can be modelled by the DT-
nets, for many interesting systems DT-property isn’t true. For example, even for
a simple model of communication protocols ABP described in [8,9], we have
violation of DT-property. It is described in [1] how to avoid the requirement of
holding DT-property for an unfolding construction. In this paper we choose an-
other approach.

Definition 4.1. An interval-timed CPN (ITCPN) is a pair NIT = (N,χ), where N is
a CPN and χ is a transition inscription χ: T → τ⊆N×N (τ consists of nonnegative
integer intervals). For χ(t) = (eft(t), lft(t)) we call eft(t) and lft(t) the earliest fir-
ing time and the latest firing time of t, respectively.

Definition 4.2. A state of an interval-timed CPN N is a pair (M,I), where M is a
marking of N and I is a clock vector I : T →(N∪{$}) such that either I(t) = $ or
I(t) < lft(t) for all t∈T. The symbol $ indicates that the corresponding transition is
not enabled. A state is called consistent if for all t∈T I(t) ≠ $ ⇔ t∈Enabled(M).
Only the consistent states will be considered in this paper. For an integer θ >0
and for all t∈T, (I+θ) is defined by (I+θ)(t) = I(t)+θ if t∈Enabled(M) and $ oth-
erwise.

Definition 4.3. The initial state (M0,I0) is defined by the initial marking M0 and
the initial clock vector I0 such that I0 = 0 if t∈Enabled(M0) and $ otherwise.

Definition 4.4. Two types of events are considered:
(1) Tic-event: tic is firable at the state (M,I) if for all t∈T I(t) < lft(t). In this case,
the successor state (M1,I1) is given by M1 = M and I1 = (I+1). The tick-event is
denoted by (M,I) →tic(M1,I1).
(2) Occur-event: An occur event is firable at the state (M,I) if some transition
t may occur with the binding element b, i.e., if (t,b)∈Enabled(M) and eft(t) ≤ I(t)
≤ lft(t). In this case the successor state (M1,I1) is given by M1(p) = M(p) -
E(p,t) + E(t,p) and I1(t’) is

16

 $, if t’∉ Enabled(M1),
 0, if (t’ = t) and t’∈Enabled(M1),
 0, if (t’ ≠ t) and t’∈Enabled(M1) and t’∉Enabled(M’), where

M’(p) = M(p) - E(p,t) and
 I(t’) otherwise.
An occur event is denoted by (M,I) →(t,b)(M1,I1).

Let us notice that the initial state is consistent and both occur- and tic-events
preserve the consistency property.

Now we define the time expansion of an interval-timed CPN — X(ITCPN)
which captures the behaviour of the initial ITCPN and is an ordinary (untimed)
CPN. As in the paper [1] we will consider the part of the unfolding of X(ITCPN)
to be an unfolding of initial ITCPN (see below). In general, the size of
X(ITCPN) may be exponential in the size of the initial ITCPN, but the unfolding
of ITCPN can be generated without constructing X(ITCPN). However, we need
the definition of time expansion of an interval-timed CPN to prove existence and
the necessary properties of ITCPN’s unfolding. For any NIT = (N,χ) we, as usu-
ally, require N to be finite, n-safe and S-finite.

Definition 4.5: The time expansion of an interval-timed CPN NIT = (N,χ) is de-
fined in the following way:
(1) For every place p∈P, a place pc (complementary place) is introduced such

that C(p) = C(pc). The set of all complementary places is denoted by Pc.
(2) For each transition t∈T, a new place pt is introduced such that C(pt) = int

with -1...lft(t), where the symbol $ is denoted by -1. The set of such places is
denoted by Pt

(3) The marking PL(I) is defined in the following way: PL(I)(p) = I(t) if p = pt
and empty otherwise. The state (M,I) of the initial ITCPN is represented by
the state X(M,I) = M∪Mc∪PL(I), where for all pc∈Pc: Mc(pc)= n’C(p) \
M(p) and n is the constant from the n-safety condition of the initial CPN.

(4) For each marking M of ITCPN a new transition tic(M) is introduced such
that the preset and postset of tic(M) are the set M∪Pc∪Pt. (This means that
•tic(M)∩P = {p | M(p) ≠empty}. It is denoted by •tic(M)∩P = M). The arc
expressions are:
∀ p (M(p)≠empty): N(a) = (p, tic(M,I)) ⇒ E(a) = M(p).
∀ pc∈Pc N(a) = (pc, tic(M,I)) ⇒ E(a) = n’C(p) \ M(p).
∀ pt∈Pt N(a) = (pt, tic(M,I)) ⇒ E(a) = it, if t∈Enabled(M), and empty oth-

erwise.
∀ p (M(p)≠empty): N(a) = (tic(M,I),p) ⇒ E(a) = M(p).

17

∀ pc∈Pc N(a) = (tic(M,I),pc) ⇒ E(a) = n’C(p) \ M(p).
∀ pt∈Pt N(a) = (pt, tic(M,I)) ⇒ E(a) = it+1, if t∈Enabled(M), and empty

otherwise.
guard[tic(M)] = ∀it it <lft(t).
Notice, that we consider only n-safe markings. The set of these transitions
is denoted by Tic.

(5) For each marking M and each (t,b)∈BE we define a transition T(t,b),M.
The arcs are described below.
For all p∈P if ∃a∈AIT | NIT(a) = (p,t) we define ap,apc∈A such that

N(ap) = (p, T(t,b),M), N(apc) = (T(t,b),M, pc).
E(ap) = EIT(a), E(apc) = EIT(a).

For all p∈P if ∃a∈AIT | NIT(a) = (t,p) we define ap,apc∈A such that
N(ap) = (T(t,b),M ,p), N(apc) = (pc,T(t,b),M).
E(ap) = EIT(a), E(apc) = EIT(a).

For all t’∈TIT we define a1,t’,a2,t’∈A such that
N(a1, t’) = (pt’, T(t,b),M), N(a2, t) = (T(t,b),M, pt’),
E(a1, t’) = it’,
E(a2, t’) = -1 if t’∉Enabled(M1),
 where M1(p) = M(p) - E(p,t) + E(t,p),
 0 if (t’ =t) and t’∈Enabled(M1),
 0 if (t’ ≠ t) and t’∈Enabled(M1) and t’∉Enabled(M’),
 where M’(p) = M(p)-E(p,t),
 i1,t’ — otherwise.

The set of these transitions is denoted by Fire.
The whole CPN constructed is
NX(ITCPN) = (SX,PX,TX,AX,NX,CX,GX,EX,IX), where

SX = SIT ∪ C(Pt),
PX = P ∪ Pc ∪ Pt,
TX = Tic ∪ Fire,
CX(p) = CX(pc) = C(p),
CX(pt) = int with -1..lft(t),
the sets AX,NX,GX,EX are described in the definition,
the initial marking MXo = M0 ∪ M0

c ∪ PL(I0).

Now let us write some comments to each of these six points.

18

(1)
As shown in [1], we have some problems when modelling the clock events

during the time expansion construction. First, if we introduce a tic transition for
each state (M,I) when tic is possible, we can come to a situation when, instead of
this tic transition, the tic transition for (M’,I’) fires where M’⊂M. This is the
reason for introducing the complementary places.

(2)
For every transition t we introduce the place pt, where the clock position for t

will be stored.
(3)
In this point we define a marking X(M,I) of time expansion using comple-

mentary and clock places.
(4)
These transitions model time-events. The arc expressions in the definition

could be written using the variables evaluations of which could be moved to the
guard functions. Such a definition would be more in the style of CPN description
in [8,9]. However, we leave the arc functions as they are to make the definition
more observable. Let us notice that we also could make the set of tic transitions
based on the subsets T’⊆T (tic(T’)) instead of basing them on the set of mark-
ings. In this case the descriptions of M will be transferred to the guard functions.
The variant presented in the definition is chosen to retain the analogy with the
article [1].

(5)
These transitions model the occur-events and additionally update clock vec-

tors. As shown in [1] the clock updating is needed to model firing of transitions.
Since we represent the clock by the unique place for each transition, we don't
need to have the set of transitions parameterized by the clock positions.

As it was written earlier, we don't require our CPN to satisfy DT-property.
This means that we have to store in some way the "intermediate" markings. This
is needed when some place p loses its token at the time t and at the same time
some token arrives at p. We elaborate such an "intermediate” marking in E(a1, t’)
and E(a2, t’).

From the definition we make a conclusion about existence of X(ITCPN)’s
unfolding. Since the time expansion is finite, n-safe and S-finite, we obtain, ac-
cordingly to theorem 1, finiteness, safety and completeness of the generated un-
folding.

We can also consider the part of the unfolding of X(ITCPN) to be an unfold-
ing of initial ITCPN (see below). The adequacy of this approach is given by the
theorem below. Let us first give the following definition.

19

Definition 4.6: A marking M of X(ITCPN) is called consistent iff
(1) |M(pt)| = 1 for all t∈TIT.
(2) M(p) ∪ M(pc) =n’C(p).
(3) M(pt) = -1 ⇔ t∉Enabled(M∩P) for all t∈T.

Let us notice that the initial state is consistent and by the definition of time
expansion any state reached from the consistent state is consistent.

Theorem 2. Let NIT =(N,χ) be an ITCPN and we constructed its time expansion
NX. Then we have the following results:

(1) A tic-event can occur at (M,I) and (M,I) →tic(M,I’) ⇔ tic∈Tic is enabled
in M∪Mc∪PL(I) and M∪Mc∪PL(I) →ticM∪Mc∪PL(I’).

(2) (t,b) can occur at (M,I) and (M,I) →(t,b)(M’,I’) ⇔ T∈Fire is enabled in
M∪Mc∪PL(I) and M∪Mc∪PL(I) →T M’∪M’c∪PL(I’).

(3) The (consistent) state (M,I) is reachable in NIT ⇔ the (consistent) state
M∪Mc∪PL(I) is reachable in NX. In particular, M is reachable in
NIT ⇔ M = M’∩ P for some reachable marking M’ of NIT.

Proof:
(1)

⇒) Let tic be possible in the state (M,I). There exists tic(M)∈TX and, by the
definition of time expansion, •tic(M) ∩ P = { p | M(p) ≠ empty}.

EX(a) = M(p) if NX(a) = (p,tic(M)) or NX(a) = (tic(M),p).
In the case of Pc we get the whole set Pc as a pre and post set for tic(M) and

the markings on Pc remain unchanged.
From definitions of E(at) we can conclude that ∀t∈TX if t∈Enabled(M) then

tic(M), for t∈Enabled(M), increases the value of the token in the place pt by one
and leaves it untouched otherwise.

So, from the definition of time expansion, we obtain that tic(M) starts
from the marking M∪Mc∪PL(I) and, after, occurring leaves the marking
M∪Mc∪PL(I’).

⇐) If tic has occurred in M∪Mc∪PL(I), then it is a tic(M) transition (because
of marking control made by complementary places).
Since tic(M) has occurred, it satisfies the guard function:

∀it | it < lft(t) ⇒ PL(I)(p) = I(t) < lft(t).
This means that tic is enabled at the state (M,I) of the initial net N. Accordingly
to E(at) definition, we have that clock places PL(I’) correspond to the clock

20

function obtained by occurrence of tic at the state (M,I). This means that (M,I)
→tic(M,I’).

(2)
⇒) If (t,b) is enabled in the state (M,I), then TM,(t,b)∈ TX.

As in the case of tic transitions, from the definition of time expansion we obtain:
M∪Mc∪PL(I) →TM,(t,b) M’∪M’c∪PL(I’).

For all t’ the expression on the arc a1,t’ contains the input variables it’, and the
expression on the output arc a2,t’ is constructed accordingly to the occur-event
definition.

⇐) If T has occurred in M, then (because of marking control made by com-
plementary places) T = TM,(t,b) for some (t,b)∈BE. This means that (t,b) is en-
abled in the state (M,I) and, after occurring (by the definition of time expansion),
gives us the marking (M’,I’).

(3)
⇒) Let (M0,I0) →σ(M,I). In the proof we will use induction on the length of

σ. If |σ| = 0, then by definition M0∪M0
c∪PL(I0) is the initial state and therefore

is reachable.
If σ = σ1 +{ t }, (M0,I0) →σ1(M’,I’) →t(M,I) and M’∪M’c∪PL(I’) is reach-

able in NX, then we have two cases:
(a) t = tic. Using point (1) of this theorem we can conclude about the

reachability of M∪Mc∪PL(I).
(b) t = (t,b). Using point (2) of this theorem we conclude about the reach-

ability of M∪Mc∪PL(I).
⇐) Let M0∪M0

c∪PL(I0) →σ M∪Mc∪PL(I). In points (1) and (2) we have the
equivalence properties. So, as in the previous part, we can apply induction on
|σ|.

If |σ| = 0, then M0∪M0
c∪PL(I0) is initial and by the definition of time expan-

sion we obtain that (M0,I0) is initial in N and therefore is reachable.
If |σ| ≠ 0, then we can consider two cases as in the previous part and con-

clude, using properties (1) and (2) of this theorem, that the state (M,I) is reach-
able.

As mentioned earlier, the time expansion of CPN is used only to prove exis-
tence of a finite, safe and complete unfolding of ITCPN. Below we give the defi-
nition of a reduced unfolding which is obtained from the unfolding of X(ITCPN)
by removing the parts with unnecessary information and can be constructed di-
rectly from the ITCPN. We consider the reduced unfolding of X(ITCPN) to be
an unfolding of initial ITCPN. Although the exact algorithm description is out of

21

the scope of the paper, the basic idea of how to construct a reduced unfolding
directly from ITCPN will be given.

Definition 4.7. Let N be an ITCPN and the finite unfolding Unf(NX) of its time
expansion be constructed, then a reduced unfolding is obtained from Unf(NX) in
the next two steps:

(1) Remove all the places pc and pt from the unfolding and all the incidental
arcs.

(2) Add the names (t,b) and tic to T(t,b),M and tic(M) respectively.
The reduced unfolding is denoted by R(Unf(NX)).
The configuration C = (t1...tn) of Unf(NX) has a corresponding configuration
C’ = (t1’...tn’) of R(Unf(NX)) such that if ti = TM,(t,b) then ti’ = (t,b) and if ti = tic(M)
then ti’ = tic and vice versa.
It also follows from the reduced unfolding definition that
MarkUnf(Nx)(C) ∩ P = MarkR(Unf(Nx)(C’).

Let us notice here that it would be more in the style of [8,9] to consider steps
Y instead of single transitions in the theorem and definitions. However, the ap-
proach chosen here gives us a simple and clear way of how to describe the un-
foldings of ITCPN. Below we give the net example and its GT-unfolding.

Take
Chopsticks

 Put Down
Chopsticks

 val n = 2
 color PH = index ph with 1..n
 color CS = index cs with 1..n
 var p:PH
 fun Chopsticks(ph(i)) =
 =1’cs(i)+1’cs(if i=n then 1
 else i+1)

Think PH
PH Chopsticks(p)

p p Unused CS
 Chopsticks

p

Eat CS
PH

Chopsticks(p)
[0,1]

Fig. 3 The Dining Philosophers

22

Th,1 Th,2 Ch,1 Ch,2

Eat,1 Eat,2 Th,1 Th,2 Ch,1 Ch,2

Th,1 Ch,1 Ch,2 Th,2 Ch,1 Ch,2 Eat,1 Eat,2

tic tic

Eat,1 Eat,2

Th,1 Ch,1 Ch,2 Th,2 Ch,1 Ch,2

Fig. 4. Unfolding of Dining Philosophers (Fig. 3)

Now we give the basic idea of how to modify the unfolding algorithm for
CPN into the algorithm of reduced unfolding generation for a given interval-
timed CPN. At each step, considering a co-set of places to be a preset for a given
binding element (t,b), we should calculate the function I for all t such that t < P’,
where P’ are the places from the current co-set. This takes O(NTNP) time. So we
should multiply the complexity of the unfolding algorithm by NTNP. To find a
deadlock by the method described in [10,13], we should consider cutoffs occur-
ring after the tic transition when for all t I(t)=$ as a decision of the system of
equations.

5 UNFOLDINGS OF TIMED CPN

In this section we describe the unfolding technique for timed CPN (TCPN) as
they are represented in [8,9]. There a more detailed description of timed CPN can
be found. Here we briefly give the main definitions.

Definition 5.1. A timed multi-set tm, over a non-empty set S, is a function
tm∈[S×N→N] such that the sum tm(s)=∑(n∈N)tm(s,n) is finite for all s∈S (we

23

consider time values to be a set of integers). tm(s) is the number of appearances
of s. The list tm[s] = [n1,n2,...,ntm(s)] is defined as containing the time values for
which tm(s,n)≠∅. The timed multi-set is represented by a formal sum
∑(s∈S)tm(s)’s@tm[s]. tm(s) is called a coefficient of s. For a timed multi-set tm,
an ordinary multi-set tmU is defined by = ∑(s∈S)tm(s)’s.
Analogously, for an ordinary multi-set m and a time value n we define
mn = ∑(s∈S)m(s)@tm[n,n...n].

As an example we consider the multi-set
tm = 2’(q,3)@[11,26] + 1’(q,4)@[526] for which we have tm[(q,3)] = [11,26],
and tmU = 2’(q,3) + 1’(q,4).

For a timed multi-set tm and a time value n, the multi-set tmn is defined as
tmn = ∑tm(s)’s@tm[s]n, where tm[s]n is the list obtained from tm[s] by adding n
to each time value.

Let a =[a1,a2,...am] and b =[b1,b2,...bn] be two lists over the set of natural num-
bers. a≤b iff m≤n and ai≥bi for all i=1..m.

When a≤b, b–a is defined as a list of length n–m which is obtained from b in
the following way. We remove from b the largest element which is smaller than
a1. From the remaining list, we remove the largest time value which is smaller
than a2, etc.

Definition 5.2. Comparison between timed multi-sets is defined in the following
way, for all timed multi-sets tm1,tm2:
(1) tm1 ≤ tm2 ⇔ ∀s∈S: tm1[s]≤ tm2[s].
When tm1 ≤ tm2 we also define the subtraction:
(2) tm2 - tm1 = ∑(s∈S)(tm2(s) - tm1(s))’s@(tm2[s] - tm1[s]).

Definition 5.3. A timed CPN is a pair TCPN = (CPN, t0) such that
(1) CPN satisfies the requirements of an ordinary CPN, and the types of E(a)

and I(p) are allowed to be timed or untimed multi-sets.
(2) t0 is a natural number called the start time.

Timed CPN often contain one or more colour sets S which are untimed. This
means that the token of type S are required to be always available, independently
of any time constraints.

Definition 5.4. A marking is a timed multi-set over TE. The initial marking M0 is
given by M0(p) = I(p)to. A state is a pair (M,t) and the initial state is a pair
(M0,t0).

24

Definition 5.5. A step Y is enabled in a state (M1,t1) at time t2 iff the following
properties are satisfied:
(1) for all p∈P: ∑((t,b)∈Y)E(p,t)t2 ≤ M1(p).
(2) t1 ≤ t2.
(3) t2 is the smallest time value for which there exists a step satisfying (1)

and (2).
When such a step occurs, we obtain a new marking M2 given by

M2(p)= M1(p) - ∑((t,b)∈Y)E(p,t)t2 + ∑((t,b)∈Y)E(t,p)t2.
It is more natural to use single transitions instead of steps for the unfolding

generation. So, we will define, as in the previous part, two kinds of transitions.

Definition 5.6. Two kinds of events are defined in the following way:
(a) If in a state (M,r) the step Y = {(t,b)} is enabled at time r, then the occur-

event is enabled in the state (M,r) and the obtained state (M’,r) is defined as a
result of occurring Y. We denote it by (M,r) →(t,b)(M’,r).

(b) If in a state (M,r) some step Y is enabled at the time r’>r, then the tic-event is
enabled in the state (M,r). We denote it by (M,r) →tic(M’,r+1).
We will consider only occur- or tic-events when considering the TCPN

evaluation. As it was made for ITCPN, below we give the definition of time ex-
pansion and reduced unfolding of TCPN.

Definition 5.7. A time expansion of TCPN N = (S,P,T,A,N,C,G,E,I) denoted by
X(TCPN) is the coloured Petri net described below.
(1) The set of places is P∪Pc∪pt, where

CX(p) = C(p) if C(p) is an untimed multi-set,
CX(p) = C(p) × int otherwise.
CX(pc) = C(p) for all p∈P,
CX(pt) = int.

We define the unique clock place for the whole net and consider the time stamps
as parts of the colour description.
(2) The marking X(M,r) is defined in the following way.

X(M,r)(p) = ∑(s∈M(p)U)(s × tm[s]), if C(p) is a timed multi-set (further we
will write such a sum as M(p)U ⊗ tm[M(p)]). We suppose
M(p)U to be sorted in some way which gathers the same
color elements in one part of a list and tm[M(p)] to be a re-
spective list of time values, where for all c∈M(p) the parts
tm[c] are sorted in the ascending order;

25

X(M,r)(p) = M(p) otherwise;
X(M,r)(pc) = n’C(p)U \ M(p)U,
X(M,r)(pt) = r.

(3) For all markings M such that some step Y={(t,b)} is colour-enabled in MU,
we define a transition tic(M) which has M∪Pc∪pt as its pre- and postsets (also as
in the previous chapter: •tic(M)∩P = {p | M(p) ≠empty}).
NX(a) = (p,tic) or NX(a) = (tic,p) ⇒

EX(a) = M(p)U ⊗ JM(p), if C(p) is a timed multi-set (JM(p) = {x1... x|M(p)|} is
the set of integer variables, M(p)U is sorted as in the previous
point);

EX(a) = M(p) otherwise,
NX(a) = (pc,tic) or NX(a) = (tic,pc) ⇒ E(a) = n’C(p)U \ M(p)U,
NX(a) = (pt,tic) ⇒ EX(a) = xt,
NX(a) = (tic,pt) ⇒ EX(a) = xt +1.

Let for all c∈E(a)U, [rc1,…,rcm] denote the ascending list of time values and for
all c∈M(p)U, [xc1,…,xcm] denote the respective sublist of integer variables.
The function guard(tic(M)) is defined in the following way.
First, the sublists [xc1,…,xcm] are sorted for all c∈M(p)U: xc1≤ xc2,≤…≤xcm. Then,
∀ (t,b)∈color_enabled(MU) ∃a such that N(a)=(p,t) and at least one c∈E(a)U
satisfies the condition: ∀j=1…cm | xcj ≥ rcj+ xt. The list of xcj is longer than that
of rcj , while (t,b) is color-enabled in MU. Formally this can be written using the
propositional logic operations.
The set of tic transitions is denoted by Tic.
(4) ∀(t,b)∈BE ∀ MU we define a transition TM,(t,b)∈TX with the arc expressions
described below.
If N(a) = (p,t) and C(p) is a timed multi-set, we define ap,out,ap,out and ac such that

NX(ap,out) = (p, TM,(t,b)),
NX(ap,in) = (TM,(t,b), p),
NX(ac) = (TM,(t,b), pc),
E(ap,out) = M(p)U⊗ LM, where LM = {l1...l|M(p)|},
E(ap,in) = (M(p)U⊗ LM) - (E(a)U ⊗ La), where La = {la,1...la, |E(a)|} is the

set of integer variables
(M(p)U is sorted in the standard way),

E(ac) = E(a)U.
If C(p) is an untimed multi-set, then we define ap and ac such that

NX(ap) = (p, TM,(t,b)),
NX(ac) = (TM,(t,b), pc),

26

E(ap) = E(ac) = E(a).
If N(a) = (t,p), we define ap and ac such that

NX(ap) = (TM,(t,b), p),
NX(ac) = (pc, TM,(t,b)),
EX(ap) = E(a) ⊗ Ya, where Ya = {y1...y|E(a)|} is the set of integer variables

if C(p) is a timed multi-set,
EX(ap) = E(a)U otherwise,
EX(ac) = E(a)U.

For the sets La ,Ya we define the sets La’,Ya’ of the corresponding time coeffi-
cients of E(a) sorted in the standard way (the same color-elements are in one part
of the list and the respective lists of time values tm[c] are sorted in the ascending
order).
We also define the arcs at,1 and at,2 such that

NX(at,1) = (pt, TM,(t,b)),
NX(at,2) = (TM,(t,b), pt),
EX(at,1) = EX(at,2) = xt.

The function guard(TM,(t,b)) is defined in the following way:
∀a | N(a) = (p,t) ∀c∈E(a)U la,1 ≤la,2 ≤…≤la,m,
∀a | N(a) = (t,p) ∀c∈E(a)U ya,1 ≤ya,2 ≤…≤ya,k,
∀a | N(a) = (p,t) ∀i = 1..|E(a)| la,i ≤ xt + li’, where la,i∈La, li’∈La’,
∀a | N(a) = (t,p) ∀i = 1..|E(a)| yi = xt + mi’, where yi∈Ya, yi’∈Ya’,
∀a | N(a) = (p,t) ∀i = 1..|E(a)| ∀j such that M(p)Uj = E(a)Ui :

(lj ≤ xt +li’) ⇒ (lj ≤ la,i).
Let us remind that we keep M(p) sorted.
The set of such transitions is denoted by Fire.
The whole CPN so constructed is NX(TCPN) = (SX,PX,TX,AX,NX,CX,GX,EX,IX), where

SX is defined in the description of the function C,
PX = P ∪ Pc ∪ pt,
TX = Tic ∪ Fire,
CX(pc) = C(p)U,
CX(p) = C(p)U × int if C(p) is the timed multi-set and
CX(p) = C(p) otherwise,
CX(pt) = int,
the sets AX,NX,GX,EX are described in the definition,
the initial marking MXo = X(M0,t0).

27

While the unique time counter doesn’t make such problems with the clock
updating as an individual timer for every transition, we don’t need any updating.
Notice that we don’t use the complementary places in the time elaboration.

While there are no constraints on the time value r for a given marking M,
every n-safe state (M,r) can be called consistent. In the time expansion we define
the consistent marking in the following way:

Definition 5.8. A marking M of X(TCPN) is called consistent iff
(1) |M(pt)| = 1.
(2) M(p) ∪ M(pc) = n’C(p).
Let us notice that the initial state is consistent and by the definition of time

expansion any state reached from the consistent state is consistent. Every reach-
able marking is consistent and therefore has the type of X(M,r) for some consis-
tent state (M,r). As in the previous part we can prove the theorem that gives us
the relationship between the TCPN and its time expansion.

Theorem 3. Let us have TCPN NT=(CPN, t0) and its time expansion NX be con-
structed. Then we have the following results.

(1) A tic-event can occur at (M,r) and (M,r) →tic(M, r+1) ⇔ tic∈Tic is en-
abled in X(M,r) and X(M,r) →ticX(M,r+1).

(2) (t,b) can occur at (M,r) and (M,r) →(t,b)(M’,r) ⇔ T∈Fire is enabled in
X(M,r) and X(M,r) →T X(M’,r).

(3) The (consistent) state (M,r) is reachable in NT ⇔ the (consistent) marking
X(M,r) is reachable in NX. In particular, M is reachable in NT ⇔ M =
M’∩ P for some reachable marking M’ of NX.

Proof:
(1)

⇒) Let tic be possible in the state (M,r). A transition tic(M) exists by the defini-
tion of time expansion (because some step Y is colour-enabled in MU).

By the definition of time expansion (3), tic (M) has M∪Pc∪pt as its pre- and
post-set. By the definition of EX(a), tic(M) takes the marking X(M,r) and after
occurring leaves the marking X(M,r+1).
⇐) If tic has occured in X(M,r), then it is a tic(M) transition (because of marking
control made by the complementary places). tic(M) satisfies the guard function,
which means that if some step Y is colour-enabled in M, then it is not time-
enabled (some step Y is enabled by the time expansion definition). Therefore, the
tic event is enabled in (M,r) and it changes (M,r) into (M,r+1).

28

(2)
⇒) If (t,b) is enabled in (M,r), then TM,(t,b)∈TX. For a timed place this transition
takes the whole marking M and, accordingly to the guard function, chooses the
elements from E(a) satisfying the time conditions described above in the
TCPN definitions (i.e., it takes the token with the maximal time value la,i ≤ xt +
li’). For the untimed place p, TM,(t,b) takes E(a) from p, where N(a) = (p,t).

After occurring, TM,(t,b) brings tokens to the postset of t accordingly to the
TCPN definitions (E(a) with the time values yi = xt + mi’ in the case of time
places). Also TM,(t,b) returns back unused tokens from the preset.

Therefore, we have X(M,r) → TM,(t,b)

 X(M’,r), where M’ is obtained from M

after occurrence of (t,b).
⇐) If T has occurred in (M,r), then it is TM,(t,b) for some (t,b) (because of mark-
ing control made by the complementary places). This means that (t,b) is enabled
in the state (M,r) and by the definition of time expansion (using the considera-
tions of the previous point) gives us the marking (M’,r).

(3)
⇒) Let (M0,I0) →σ(M,I). In the proof we will use induction on the length of σ.

If |σ| = 0, then by definition X(M0,t0) is the initial state and therefore is reachable.
If σ = σ1 +{ t } , (M0,t0) →σ1(M’,t’) →t(M,t) and X(M’,t’) is reachable in NX,

then we have two cases:
(a) t = tic. Using point (1) of this theorem, we can conclude about the

reachability of X(M,t).
(b) t = (t,b). We conclude about the reachability of X(M,t) using point (2) of

this theorem.
⇐) Let X(M0t0) →σ X(M,t). In points (1) and (2) we have the equivalence prop-
erties. So, as in the previous part, we can apply induction on |σ|.

If |σ| = 0, then X(M0,t0) is initial and by the definition of time expansion we
obtain that (M0,t0) is initial in N and therefore is reachable.

If |σ| ≠ 0, then we can consider two cases as in the previous part and conclude,
using properties (1) and (2) of this theorem, that the state (M,t) is reachable.

Definition 5.8. Let N be a TCPN and the finite unfolding Unf(NX) of its time
expansion be constructed, then a reduced unfolding is obtained from Unf(NX) in
the following four steps:

(1) Remove all the places pc and the place pt from the unfolding and all the
incidental arcs.

(2) Add the names (t,b) and tic to T(t,b),M and tic(M) respectively.
(3) Delete all arcs (p,tic(M)) if C(p) is an untimed set.

29

(4) All consequent tic sequences tic(M)<tic(M)<…<tic(M) should be
changed by one ticN, where N is the length of the sequence.

The reduced unfolding is denoted by R(Unf(NX)).
From the definition it follows that the configuration C = (t1...tn) of Unf(NX) has

a corresponding configuration C’ = (t1’...tm’) of R((Unf(NX)), such that m≤n and
if ti = TM,(t,b), then ∃tj’ = (t,b) and j≤i;
if ti = tic(M), then ∃tj’ = tic and j≤i;
MarkUnf(Nx)(C) ∩ P = MarkR(Unf(Nx))(C’).
Now, having a usual CPN as the time expansion of TCPN, we can construct

R(Unf(X(TCPN))) as the unfolding of TCPN. Unfortunately, the obtained time
expansion is not n-safe and we can’t guarantee finiteness of the generated un-
folding. The problem is the same as for the occurrence-graph (O-graph) of
TCPN. Like for the O-graph, we can propose two methods.

(1) We can construct a partial unfolding by restricting the allowed time
value. Formally this can be done by defining the colours A = int with 0..N
for timed C(p) and the place pt. In this case we obtain S-finite CPN and
accordingly to theorem 1 its unfolding is finite.

(2) We can define some equivalence specification concerned with time val-
ues using the technique proposed in [10] in order to make the unfolding
finite.

As in the previous part, the exact algorithm of R(Unf(X(TCPN))) generation
is not given here. Instead we just give the idea of how to construct
R(Unf(X(TCPN))).

The net example and its unfolding are given below.

Take
Chopsticks

 Put Down
Chopsticks

val n=2; Teat = 1; Twait = 1;
 color PH = index ph with 1..n
timed
 color CS = index cs with 1..n
 var p:PH
 fun Chopsticks(ph(i)) =
 =1’cs(i)+1’cs(if i=n then 1
 else i+1)

1’ph(1)@[0]
Think 1’ph(2)@[0]

PH Chopsticks(p)

p @+Teat p @+Twait Unused CS
 Chopsticks

p

Eat CS
PH

Chopsticks(p)

Time: 0

Fig. 5 The Dining Philosophers

30

Th,1 Th,2 Ch,1 Ch,2

Eat,1[1] Eat,2[1]

Th,1[2] Ch,1 Ch,2 Th,2[2] Ch,1 Ch,2

tic tic

Th,1[2] Th,2[2]

Eat,1[1] Eat,2[1]

GT-unfolding with equivalence

Unfolding with (Time < 2)

EQ-unfolding with symmetry

tic tic

[0]

[0]

[1]

[1]

[2]

Fig. 6 Unfolding of the TCPN (Fig. 5)

Now we show how to modify the unfolding algorithm for CPN into the algo-
rithm of constructing the reduced unfolding for a given TCPN. First we should
store the time values for each place (token element) in the generated part of un-
folding. At each step of considering a co-set of places to be a preset for a given
binding element (t,b), we should also calculate the number and values for all tic-
transitions such that tic < P’, where P’ are the places from the current co-set. This
takes O(NT) time. Let us notice that in the case of interval-timed CPN it takes
O(NTNP). So we should multiply complexity of the unfolding algorithm by NT.

Finally we don’t need any special deadlock technique for TCPN, since the tic
transition is not possible in the “colour deadlock”. We can apply a usual defini-

31

tion of a deadlock as a state (M,r) for which there is no enabled tic- or occur-
transition. Accordingly to theorem 3, we have that (M,r) is a deadlock in TCPN
⇔ X(M,r) is a deadlock in its time expansion. Otherwise, applying the equiva-
lences from theorem 3 (1) and (2), we would come to contradiction with the
deadlock definition. While reduction of an unfolding doesn’t remove any transi-
tion, we have the correspondence between the deadlocks found in
Unf(X(TCPN)) and the deadlocks found in R(Unf(X(TCPN))).

CONCLUSION

In paper [10] the unfolding technique proposed by McMillan in [12] and de-
veloped in later works has been applied to coloured Petri nets as they are de-
scribed in [8,9]. The technique has been formally transferred, two algorithms and
three finitization criteria have been considered.

The size of unfolding is often much smaller than the size of the reachability
graph of a PN. Using the EQ-cutoff criterion and symmetry or equivalence
specifications in unfolding generation [10], we can additionally reduced the size
of unfolding.

This paper transfer the unfolding technique from [1] to interval-timed CPN
and also considers unfolding generation for timed CPN as they are described in
[8,9]. Let us notice here that the notion of unfolding with equivalence given in
[10] is very useful when we want to obtain the complete unfolding of TCPN con-
sidered in [8,9].

In the future it is planned to make all the necessary experiments with unfold-
ings of coloured Petri nets.

Acknowledgments. I would like to thank Dr. Valery Nepomniaschy for
drawing my attention to this problem and Dr. Elena Bozhenkova for valuable
remarks.

REFERENCES

1. Bieber B., Fleischhack H. Model Checking of Time Petri Nets Based on Partial Order Semantics
// Proc. CONCUR'99. — Berlin a.o.: Springer-Verlag, 1999. — P. 210—225. — (Lect. Notes
Comput. Sci.; Vol. 1664).

2. Cheng A., Christensen S., Mortensen K. H. Model Checking Coloured Petri Nets Exploiting
Strongly Connected Components // DAIMI PB – 519, March 1997.

3. Couvreur J.-M., Grivet S., Poitrenaud D. Designing an LTL Model-Checker Based on Unfold-
ing Graphs // Lect. Notes Comput. Sci. — 2000. — Vol. 1825. — P. 123—145.

32

4. Engelfriet J. Branching Processes of Petri Nets // Acta Informatica. — 1991. — Vol. 28. —
P. 575—591.

5. Esparsa J. Model-Checking Using Net Unfoldings // Lect. Notes Comput. Sci. — 1993. — Vol.
668. — P. 613—628.

6. Esparsa J., Römer S., Volger W. An Improvement of McMillan’s Unfolding Algorithm // Proc.
TACAS'96. — Berlin a.o.: Springer-Verlag, 1997. — P. 87—106. — (Lect. Notes
Comput. Sci.; Vol. 1055).

7. Esparza J., Heljanko K. A New Unfolding Approach to LTL Model-Checking // Lect. Notes
Comput. Sci. — 2000. — Vol. 1853. — P. 475—486.

8. Jensen K. Coloured Petri Nets. Vol. 1. — Berlin a.o.: Springer, 1995.
9. Jensen K. Coloured Petri Nets. Vol. 2. — Berlin a.o.: Springer, 1995.

10. Kozura V.E. Unfoldings of coloured Petri nets.// Technical Report. Novosibirsk 2000.
11. Kondratyev A., Kishinevsky M., Taubin A., Ten S. A Structural Approach for the Analysis of

Petri Nets by Reduced Unfoldings // 17th Intern. Conf. on Application and Theory of Petri Nets,
Osaka, June 1996. — Berlin a.o.: Springer-Verlag, 1996 — P. 346—365. — (Lect. Notes Com-
put. Sci.; Vol.1091.).

12. McMillan K.L. Using Unfolding to Avoid the State Explosion Problem in the Verification of
Asynchronous Circuits // Lect. Notes Comput. Sci. — 1992. — Vol.663. — P. 164—174.

13. Melzer S., Römer S. Deadlock Checking Using Net Unfoldings // Proc. of the Conf. on Com-
puter Aided Verification (CAV'97), Haifa, 1997. —Berlin a.o.: Springer-Verlag, 1997. — P.
352—363. — (Lect. Notes Comput. Sci.; Vol.1254).

14. Valmari A. The State Explosion Problem // Lect. Notes Comput. Sci. — 1998. — Vol.1491. —
P. 429—528.

15. Valmari A. Stubborn Sets of Coloured Petri Nets // Proc. of the 12th Intern. Conf. on Applica-
tion and Theory of Petri Nets. — Gjern, 1991. — P. 102—121.

16. Wallner F. Model-Checking LTL Using Net Unfoldings // Proc. of the Conf. on Computer Aided
Verification (CAV'95), Vancouver, 1995. —Berlin a.o.: Springer-Verlag, 1998. —
P. 207—218. — (Lect. Notes Comput. Sci.; Vol. 1427).

В.Е. Козюра

РАЗВЕРТКИ РАСКРАШЕННЫХ СЕТЕЙ ПЕТРИ СО ВРЕМЕНЕМ

Препринт
82

Рукопись поступила в редакцию 17.11.00
Рецензент Е. Н. Боженкова
Редактор А. А. Шелухина

Подписано в печать 5.02.01
Формат бумаги 60 × 84 1/16 Объем 1.8 уч.-изд.л., 2.0 п.л.
Тираж 50 экз.

НФ ООО ИПО “Эмари” РИЦ, 630090, г. Новосибирск, пр. Акад. Лаврентьева, 6

