
Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

Kirill O. Senoshenko

OBJECT-ORIENTED SPECIFICATIONS:
SET-THEORY BASED AND ALGEBRAIC APPROACHES.

A REVIEW

Preprint
91

Novosibirsk 2002

In this review, the main trends in object-oriented dynamic system specifica-
tion are discussed. A classification for the specification approaches is given bas-
ing on the underlying model of system state; several representatives from differ-
ent categories are presented. For each approach, a special attention is given to the
completeness of support of various OO concepts, ability to define not only static
aspects of the system but also its behavior and the specification transparency.
Finally, a comparative review of the selected languages and formalisms is pro-
vided and directions for further work are outlined.

© A. P. Ershov Institute of Informatics Systems, 2002

Российская академия наук
Сибирское отделение

Институт систем информатики
им. А. П. Ершова

Сеношенко К. О.

ОБЪЕКТНО-ОРИЕНТИРОВАННЫЕ СПЕЦИФИКАЦИИ:
ТЕОРЕТИКО-МНОЖЕСТВЕННЫЙ
И АЛГЕБРАИЧЕСКИЙ ПОДХОДЫ.

ОБЗОР

Препринт
91

Новосибирск 2002

Рассматриваются основные методы построения объектно-
ориентированных спецификаций для динамических систем. Предлагается
классификация этих методов, базирующаяся на внутренней модели состоя-
ния системы; рассматривается несколько языков спецификаций разных
классов. При рассмотрении каждого языка внимание уделяется полноте
поддержки объектно-ориентированного подхода, возможности описания не
только статических свойств, но и динамического поведения системы и про-
зрачности спецификации. В завершении приводится сравнительный анализ
выбранных языков и методов и намечаются направления дальнейшей рабо-
ты.

© Институт систем информатики им А. П. Ершова СО РАН, 2002

5

1 INTRODUCTION

The aim of this paper is to give a comparative review of various approaches
to object-oriented formal specifications.*) Object orientation is well-adopted for
specifying both static and dynamic properties of complex scalable systems.
Benefits of this methodology are widely recognized since it proposes techniques
to enhance quality factors of software, such as reusability, extensibility and com-
patibility. Therefore, there are numerous languages and tools supporting it
through the entire development cycle of a system, including program specifica-
tion and validation stage.

Some of object-based specification languages extend existing formalisms
with data encapsulation, inheritance, polymorphism, subtyping and other well-
known key features of the object-oriented paradigm; others are more or less in-
dependent. Conventionally, these formalisms can be divided into two classes:
formalisms in the first class do not have an underlying notion of a state (the so-
called pure algebraic approach is most well-known among them) while those in
the second class do support it. There are several models of a state; to mention
only a few, these are:

– first-order logic and set theory (a state is a family of sets and bags),
– the algebraic approach (a state is an algebra),
– Petri nets / algebraic nets (a state is a net).

There are representatives for each of these groups [1,2] that additionally in-

volve the temporal logic in describing dynamic properties of a system though it
is not always the case.

Because of the limited size of this review, only the languages from the first
two groups, which are most widely used nowadays, are discussed below. Ap-
proaches representing the system state as a net [3,4,5] are rather specific and
have a limited range of application while the intent is to compare general-
purpose object-oriented specification languages.

The paper is organized as follows. A pure algebraic object-oriented approach
is presented in Section 2. Some applications of the set theory approach (Object-Z
and Z++ specification languages) and specification languages representing a

*) The research is supported in part by the Russian Foundation for Basic Research under
the grant № 01-01-00787.

6

state as an algebra (TROLL, Maude and Object-Oriented ASMs) are described in
Sections 3 and 4, respectively. Some conclusions and directions of further work
are given in Section 5.

2 PURE ALGEBRAIC APPROACH

The approach of representing static aspects of a dynamic system in a formal
algebraic framework (called a pure algebraic approach) has proved to be suit-
able for specifying important notions of the object-oriented paradigm, such as
inheritance, subtyping and method overloading. This specification technique
does not involve the notion of a state.

One of the most fundamental works on specifying classes and relations be-
tween them is done by F. Parisi-Presicce and A. Pierantonio. Late binding of
object methods is formally introduced in [6]. These two works are presented be-
low.

2.1 Relations between classes

The approach proposed in [7,8] is intended to give a strict algebraic defini-
tion of the notion of a class and to formalize the concepts of inheritance, actuali-
zation, combination, etc., which are considered as binary relations between
classes.

The model of the class covers the features present in most object-oriented
languages. First, it supports encapsulation as a distinction between what the class
implements and what the designer of the class chooses to be visible. Then, two
different roles of the class are distinguished: the class as a description of an ob-
ject (instance of the class) and the class as a base for other classes. These roles
result in different interfaces: an instance interface and a class interface, respec-
tively (conventionally, the latter includes the former). For example, C++ public
class members constitute an instance interface, while protected members extend
it to the class interface. The class model also includes a parameter list, intended
to model what is called unconstrained and constrained genericity, and an explicit
import interface. It is important to note that the import interface specifies only
what is needed, but not the class which is intended to provide the imported fea-
tures. This allows different hierarchies to be built over classes though it is not a
typical situation for object-oriented languages (it corresponds rather to the “in-
clude” interface than to direct inheritance). A special sort called a class sort
models the concept of object identity; this sort is a distinguished “point” of a
pointed signature and pointed specification introduced below.

7

In order to continue, some preliminary notes are required.
– A signature Σ is a pair (S, OP), where S is a set of sorts and OP is a

set of function symbols. A pointed signature has a distinguished ele-
ment p(Σ) ∈ S that represents the sort of object identities.

– An algebra A = (SA,OPA) of Σ is understood conventionally; the
category of all Σ-algebras and morphisms between them is denoted by
Alg(Σ). For a sort name s ∈ S, the corresponding set of an algebra
A is denoted by As; for an operation name op ∈ OP, the correspond-
ing function in A is denoted by opA.

– A signature morphism h: Σ1 → Σ2 is a pair of functions (hS: S1
→ S2, h

OP: OP1 → OP2), such that if N: s1…sn → s ∈ OP1,
then hOP(N): hS(s1)…hS(sn) → hS(sn) ∈ OP2. A pointed sig-
nature morphism has an additional constraint: hS(p(Σ1)) = p(Σ2),
i.e., the sort of object identities is mapped to the corresponding sort of
object identities.

– Every signature morphism h: Σ1 → Σ2, where Σi = (Si,OPi), induces a
forgetful functor Vh: Alg(Σ2) → Alg(Σ1). For a Σ2-algebra
A’=(S2A’,OP2A’), Vh(A’) = A = (S1A,OP1A), where S1A = {A’hS(s) | s ∈
S1}, OP1A = {hOP(op)A’ | op ∈ OP1}. That is, the family of sets S1A con-
sists of sets from S2A’ so that, for each s ∈ S1, the A’-set corresponding
to hS(s)is taken. The family of functions OP1A consists of functions
from OP2A’ so that, for each op ∈ OP1, the A’-function corresponding to
hOP(op)is taken. The result is an algebra since h is a signature mor-
phism.

– The left adjoint of Vh is the free functor Freeh: Alg(Σ1) →
Alg(Σ2); it makes Diagram 1 commutative for any pair of Σ2-algebras
A2’ and A2″ and any morphism g between them; uh: IDAlg(Σ2) →
Vh ○ Freeh is called a universal transformation. For the proof of ex-
istence of uh and Freeh and further details refer to [9].

– An algebraic specification consists of a signature and a set of (positive
conditional) equations E. The translation f#(E) induced by the signa-
ture morphism f is understood conventionally (in each equation, all
function names from OP1 are substituted by corresponding function
names from OP2, and variables of the sort s1 ∈ S1 are treated as vari-
ables of the sort fS(s1) ∈ S2).

8

 g
 A2’ A2’’

 uh(A2’) uh(A2’’)

 Vh ° Freeh(A’) Vh ° Freeh(A’)

 Vh ° Freeh(g)
Diagram 1

– A specification morphism is a signature morphism, such that the transla-
tion f#(E1) is contained in E2. For convenience, p(Σ) is also denoted
by p(SPEC) for SPEC = (Σ,E).

A class specification Cspec consists of five algebraic specifications PAR (pa-
rameter part), EXPi (instance interface), EXPc (class interface), IMP (import
interface) and BOD (implementation part) and five specification morphisms as in
the following commutative Diagram 2.

 ei ec
 PAR EXPi EXPc

 i v

 s
 IMP BOD

Diagram 2

The specifications EXPi, EXPc and BOD are pointed specifications, and ec
and v are pointed specification morphisms. Semantics SEM(Cspec) of the class
specification Cspec is the composition Vv ○ Frees: Alg(IMP) →
Alg(EXPc), that is a transformation from the models of the import interface to

9

the models of the export interface; it constructs a BOD-algebra from an IMP-
algebra with all and only the features described in the body and then, forgetting
all the hidden items, it returns an EXPc–algebra. The class specification Cspec is
correct if Vs(Frees(A)) = A for all A ∈ Alg(IMP); this requires that op-
erations (defined in the body) returning the values of imported sorts be total and
well-defined.

A class C = (Cspec,Cimpl) consists of a class specification Cspec and a
class implementation Cimpl such that Cimpl = Frees(AI) for some AI ∈
Alg(IMP). It requires a model of the import interface to be chosen; the class
body can then be implemented.

This model allows formal definitions of both reusing inheritance and spe-
cialization inheritance as binary relations between classes. Suppose C1 =
(C1spec, C1impl) and C2 = (C2spec, C2impl) are classes (algebras from
C1spec are PAR1, EXPi1, EXPc1, IMP1 and BOD1 and algebras from C2spec are
respectively indexed by 2); then

– C2 weakly reuses C1 if there exists a morphism f: EXPc1 → BOD2
(exported features of C1 are present in the body of C2);

– C2 strongly reuses C1 if, in addition, Vf(C2impl) = Vv1(C1impl);
– C2 is a weak specialization of C1 if there exist morphisms

 fi: EXPi1 → EXPi2,
 fc: EXPc1 → EXPc2,

such that ec2 ○ fi = fc ○ ec1 (interfaces of C2 enhance those of
C1);

– C2 is a strong specialization of C1 if, in addition, Vfc(Vv2(C2impl))
= Vv1(C1impl).

In this way, specialization inheritance is a technique for defining the behav-

ioral relation between classes, and it indicates that the instances of the new class
(subclass) obey semantics of the superlass; each subclass instance is a special
case of a superclass instance. Reuse inheritance, in contrast, is rather an imple-
mentation technique than a behavioral constraint: it indicates that everything in
the class interface of C1 is available in the body part of the class C2 but not nec-
essarily reexported by C2.

Two more relations correspond to instantiating the parameter part of a (ge-
neric) class and to replacing the import interface of a (semi-virtual) class with the
export interface of another class; they are Wact (Sact in the strong form) and
Wcomb (Scomb), respectively.

10

The above-presented approach has a solid mathematical background and cov-
ers static features of most object-oriented languages. However, it does not in-
volve a notion of a state and state transformation and therefore is not suitable for
specifying the evolution of a dynamic system. A special sort is introduced to
model object identities, but this concept is not worked over in detail; the method
overloading and late binding concepts are not considered at all.

2.2 Method overloading (static and dynamic)

One of the distinguishing features of the object-oriented approach is the fact
that, in method calls, the actual method to be invoked is determined at run-time
(late binding). In the languages like C++ or Java, the correct method is selected
basing on the static type of an object; this is defined in [6] as dynamic overload-
ing, and it is one of the manifestations of polymorphism. The approach proposed
in the paper deals with late binding in a formal algebraic framework, it also pro-
vides a capability of writing axioms related to a given type that are not required
to hold for subtypes, thus reflecting at the specification level the fact that seman-
tics of a method in a subtype may differ from that in the supertype.

The idea is to handle overloading at the model (semantic) level and not at the
signature (syntactic) level. A function ssop →: that has several variants is

modeled by a multifunction that is a family of functions uop , one for each exist-

ing subtype u of s . The main novelty of the logic part is the ability to distin-
guish between two different kinds of requirements (logical sentences) over ele-
ments of a given type s: those that must hold for elements of any possible sub-
type of s and those that hold for elements having s as the most specific type, but
not for elements of its proper subtypes.

An order-sorted signature Σ is treated conventionally as a triple (S,≤,O),
where (S,≤) is a preorder of sorts and O is a set of function signatures of the
form ssop →: . There are three kinds of terms of Σ: variables, function appli-
cations and casted terms. They are built over the S-indexed family of variables X
= {Xs}s∈S with pairwise disjoint subsets Xs. The S-indexed family of terms
TΣ(X) is inductively defined by

– Xs ⊆ TΣ(X)s;
– t ∈ TΣ(X)s and s’≤ s implies (s’)t ∈ TΣ(X)s’ (casting) ;

11

– if ti ∈ TΣ(X)s″i and s″i≤s’i≤si for all i=1,…,n and
ssop →: is a function symbol, then op(τ1,…,τn) ∈ TΣ(X)s,

where τi = ti or τi = ti:s’i for all i=1,…,n (function appli-
cation).

According to this definition, each term t has a unique type called its static

type. But a term can be used as an argument in a function application whenever
its static type is a subtype of the needed type; each supertype of the static type of
t is called its dynamic type. In the above definition, the notation ti:s’i means
that ti should be considered as a term of the sort s’i.

An S-indexed family of logical sentences PΣ(X) is also defined inductively
over terms from TΣ(X). Atoms over Σ and X are

– definedness assertions of the form D(t), where t ∈ TΣ(X);
– strong equalities of the form t = t’, where the static type of t is s

and the static type of t’ is s’ and there is a common supertype s0 of s
and s’ (s ≤ s0 and s’ ≤ s0), that is, there is a common dynamic
type of t and t’.

Then, horn clauses from HC(Σ,X) have the form ε1 ∧ … ∧ εn ⊃ εn+1,

where each εi is an atom. Finally, conditional sentences from PΣ(X) have the
form ∀x1:s1≤ … ∀xk:sk≤.∀x’1:s’1 … ∀x’n:s’n.ϕ for each ϕ ∈
HC(Σ,X). The domains of xi and x’j are constructed differently (see below),
so different notations are involved to define them (∀xi:si≤ and ∀x’j:s’j,
respectively).

A Σ-model M is a family of sets { sM | s ∈ S } and a family of func-
tions (defined below). For each s ∈ S, a set sM is called the proper carrier of
the sort s in M. The extended carrier s≤

M of s in M is the union of all the proper
carriers of all s’≤ s:

s≤

M = {a: s’ | a ∈ s’M, s’≤ s}.

The notion of an extended carrier is expanded to sequences s of sorts with
length n: M

n
MM sss ≤≤≤ ××= ...1 .

12

For each ssop →: and each u ≤ s , M contains a partial function
MsMuM

uop ≤→≤: . The function is not necessarily total and it is essential due to

non-termination of calculations in programming languages. Note that there is a
family of functions associated with each operation signature.

Terms from TΣ(X) are interpreted (evaluated) in M basing on the valuation

V: X → M of the family of variables:

– xM,V = V(x) for all x ∈ X;
– if t ∈ TΣ(X)s and s’≤ s then (s’)tM,V = tM,V, else (s’)tM,V

is undefined;
 is′ if iii st ′= :τ ,

–),...,,()(,,
1

, VM
n

VMM
u

VM ttopop =τ where iu =

 is ′′ if ii t=τ and

 M
ii

VM
i sat '', ∈= .

Satisfaction of logical sentences is defined conventionally following the in-

tuition that a variable xi can be evaluated to any value of the extended carrier of
si, while x’j has to be evaluated to the values of the proper carrier of s’j.

According to the above model, the function to be invoked is determined bas-
ing on the static types of all function arguments; different functions are invoked
for different sets of arguments (it is known as late binding in the OO terminol-
ogy). Note that late binding of object methods is usually based on the static type
of the object whose method is to be invoked, static types of the method argu-
ments do not affect it. In this sense, the approach presented here is more general
but it can be restricted to literally correspond to the OO concept of polymor-
phism.

This approach does not account for static overloading, but it can be safely ex-
tended. Static overloading can be resolved at compile time by modifying the sig-
nature Σ; more precisely, a distinct internal name is assigned to each overloaded
function declaration and the resulting signature that differs from the original
user-visible signature is used internally.

Finally, it is worth mentioning that the above approach does not use a notion
of a system state and therefore is not suitable for specifying the system dynamics.
The model of an object also seems to be quite rudimentary: although a special

13

sort (of object identities) is introduced for each object signature and there is a
preorder of classes, the object identity is not used in invoking the methods of the
class. This corresponds to the traditional procedural style of programming, rather
than to the object-oriented methodology. As a conclusion, there is a formal intro-
duction of late binding presented in the paper, but the object-oriented formal
framework for it is incomplete.

3 SET-THEORY BASED APPROACH WITH STATES

The specification languages of this group formalize the dynamic system by
constructing a mathematical model for it. Typically, a specification describes the
states of a system (represented by data structures and relations between them)
together with operations (formalized as functions) that transform one state into
another. Semantics of these languages is based on the set theory. Due to its typi-
cal use — specification of states and operations — this group of languages seems
to be well-suited for being adapted to the object-oriented paradigm.

One of the most widely used set-theory based specification languages
is Z [10]. Several object-oriented extensions of Z have been developed; among
them, we focus on Object-Z and Z++.

3.1 Object-Z

The specification language Object-Z is Z extended to facilitate specification
in an object-oriented style. It came into existence in late 1988 as part of a col-
laborative project between the Department of Computer Science at the University
of Queensland and the Overseas Telecommunications Corporation (OTC) of
Australia. The goal of the project was to enhance structuring in the Z specifica-
tion language (on which Object-Z is based) in order to more effectively specify
medium-to-large-scale software systems. A more fundamental motivation was
the desire to investigate the integration of formal techniques with the methodol-
ogy of object orientation: a methodology which at that time was gaining rapid
popularity in the programming community.

Now the language has reached a new level of completeness with the exis-
tence of axiomatic and denotational semantics and the first tools. Semantics of
Object-Z is usually given on the basis of that of Z with the help of the meta-
language, such as the one introduced in [11], which allows the meaning of Ob-
ject-Z constructs to be formally expressed in terms of constructs of Z.

Semantics of both Z and Object-Z are based on the set theory, and they use
first-order logic to express system states and state transformations caused by an

14

operation execution. This is done by relating primed and non-primed variables
that represent system states before and after the operation, as well as its input and
output. In fact, Object-Z is a conservative extension of Z in the sense that all Z’s
syntax and its associated semantics are also a part of Object-Z. Therefore, any Z
specification is also an Object-Z specification. On the other hand, Object-Z ex-
tends not only the syntax of Z but also the semantic universe in which specifica-
tions are given their meaning.

Syntactically, an Object-Z specification comprises a list of formal para-
graphs — type definitions, axiomatic definitions, global predicates, schema defi-
nitions and class definitions — possibly interleaved with informal descriptive
comments. Among these paragraphs, class definitions are of major concern since
they are the only construct new to Z. Each class definition encapsulates a single
state schema with its initial state schema and all the operations that can affect its
variables. It syntactically differs from usual Z constructs since:

a) the roles of schemas within class definitions and their order are fixed;
b) the principle of “definition before use” does not hold for class opera-

tions and for class members whose values are object identities (this both
facilitates writing recursive specifications and allows choosing a top-
down design fashion).

A class definition comprises a named box possibly with generic parameters.
This box may contain, in the order they can occur, a visibility list defining the
class’s interface, inherited class designators, local type and constant definitions,
at most one state schema, the associated initial state schema and operation sche-
mas.

The first construct in the class definition is the visibility list. It enumerates
those features — constants, state variables, the initial state schema and opera-
tions — of the class that are in the class’s interface and, hence, “visible” to the
environment of objects of the class. The absence of the visibility list implies that
all features are visible.

The inherited class designators comprise a class name, an instantiation of that
class’s generic parameters, if any, and possibly a rename list. This construct al-
lows Object-Z classes to be directly reused in the definition of other classes. The
type and constant definitions of the inherited classes and those declared explicitly
in the derived class are merged. Any schemas with the same name and state
schema are conjoined. Inheritance, therefore, is only possible when all names
common to the inherited and inheriting classes are used for the same kind of
definitions. Name clashes can be resolved by renaming.

15

The local type and constant definitions are as in Z, but with the scope limited
to a single class. A state schema is nameless and comprises declarations of state
variables and a state predicate. They are implicitly included in every operation
and the initial state schema and form a class invariant. The initial schema that has
a reserved name (namely Init) restricts the set of possible initial states; this
name also can be used as a predicate to check whether an object is in its initial
state.

The class operation schemas describe the methods defined for the class. They
may use only the state variables of the object to which they belong, so the poten-
tial behavior of the class can be considered in isolation. A class operation schema
extends the notion of a standard Z schema by adding a ∆-list to it. The ∆-list is a
list of state variables that may be changed by an operation; all state variables not
in the ∆-list remain unchanged. The pre- and postcondition describe the effect of
an operation. Unlike Z, an operation cannot be executed if its precondition is
violated (in Z, it can be executed but the outcome of the operation is undefined).
All Z schema operations (conjunction, disjunction, etc.) can be used to form new
operations as well as Object-Z specific operations: [] (non-deterministic
choice), || (operator for inter-object communication), (sequential composi-
tion). Operators [], ∧ and have a distributed form, which allows them to be
applied to a collection of similar expressions. This facilitates specification of
concurrent systems comprising variable-length collections of similar components
that use aggregation, synchronization, communication and nondeterminism.

Semantic changes in Object-Z are consequence of support added for the ob-
ject identity concept. It refers to that property of an object which enables it to be
distinguished from all other objects. Support for it in Object-Z presents a major
departure from semantics of Z. It allows the declaration of variables which,
rather than directly representing a value, refer to a value in much the same way
as pointers in a programming language. Semantics supporting such variables is
called reference semantics.

Object identity is modeled in Object-Z by associating a set of values with
each class. The sets for different classes are disjoint. For any class different from
the one without objects (either because its initial state schema’s predicate evalu-
ates to false, or the class has no initial state schema and its state schema’s predi-
cate evaluates to false), this set is countably infinite. Each value associated with a
class identifies a distinct object of the class. Object identities may be declared in
a specification before the class of the referenced object is defined. This is possi-
ble since the set of object identities associated with the class A is independent of
the actual definition of the class A.

16

An object variable can be declared polymorphically — that is, the identities
of objects of different classes can be assigned to it (polymorphism in Object-Z is
similar to genericity in the sense that it allows a variable to be declared which
can be associated with more than one type). This can be done in two different
ways. The first approach uses a syntactic construct of inheritance. The definition
a: ↓A declares a as an object of the class A or of one of its subclasses (classes
directly or indirectly inheriting A and having at least the visible properties of A).
This means that the set of possible values is a union of all object identity sets for
all A’s subclasses. The second notion of polymorphism, called class union, is
more flexible; it allows the declaration of an object of one of an arbitrary set of
classes. Given the declaration a: A∪B, the identity of either A or B can be as-
signed to a. The associated set of values is a union of object identity sets for A
and B, and possible operations over the variable are those belonging to the poly-
morphic core (defined as an intersection of the visibility lists of all the united
classes). Despite its flexibility, the construct is hardly translated into most pro-
gramming languages where polymorphism usually relies on inheritance. For po-
lymorphically defined variables, the methods to be invoked are determined dy-
namically basing on the type of the associated object (late binding cannot be
done for the usual class variables).

Object-Z has a specific notation to model object containment (the notion in-
dicating that some object is contained within another one and cannot be refer-
enced from other places external to the containing object). This notation enables
the specifier to state that objects are contained in a system when they are de-
clared. This is denoted by the subscript “©” appended to the class name. Note
that many objects still may refer to associated object in the specified system.
However, it can be directly contained only in one object, say a, other objects
should in their turn contain a in order to access the innermost containing entity,
that is, they would access it indirectly. Object containment is sometimes possible
to be modeled by conjoining properties and methods of the container and the
contained entity and by considering the resulting subsystem as a single object of
a new class, but this is not always the case (for instance, some objects of the in-
ner class may exist independently and some may be contained in the outer object
thus making conjoining of two classes impossible).

Creation and destruction of objects is not supported at the specification level.
Each object that can be referenced by a specification exists throughout the evolu-
tion of the specified system — even in the case when it is never actually refer-
enced. While this would not be feasible in a programming language where issues
of memory usage and efficiency are important, it is not a problem in the abstract
world of specification. This, however, complicates transforming a specification

17

into a concrete program and performing the related tasks automatically, but the
problem is common for all set theory based formalisms: since the base set for
each type (including object identities) is fixed, it cannot be populated with new
elements during the program execution. This is the reason for selecting countably
infinite object identity sets in Object-Z.

Another shortcoming of the approach is impossibility to consider a class as
one of its superclasses and to call superclass operations for subclass objects. This
is because object identity sets for such classes are disjoint and the “superclass-
subclass” relation does not induce the inclusion relation between these sets.

3.2 Z++

Z++, as well as Object-Z, is among object extensions of the Z language. It
arose from the Esprit II project REDO and the need within it to provide an ab-
stract representation for large data-processing systems [12]. The aim was to pro-
duce a language that could naturally express design requirements, in addition to
providing a means for structuring and incremental correct development of com-
plex systems. In terms of the standard life cycle, it supports expression of re-
quirements, design and specification. Support for implementation is now possible
only via translation to a notation, such as B [13], which also allows the use of the
semantic analysis facilities of the latter.

The concrete syntax of the language is quite different from that of Z and Ob-
ject-Z. It was chosen in order to stress the commonalities of the concepts of the
language with those of well-defined object-oriented languages such as Eiffel and,
in addition, to simplify extensions of the notation by adding to the class defini-
tion new clauses rather than subordinate schema boxes.

The BNF description of Z++ class declaration is the following:

Object_class ::= CLASS Identifier TypeParameters
 [EXTENDS Imported]
 [TYPES Types]
 [OWNS Locals]
 [RETURNS Optypes]
 [OPERATIONS Optypes]
 [INVARIANT Predicate]
 [ACTIONS Acts]
 [HISTORY History]
 END CLASS

18

If the TypeParameters list is not empty, this means that a generic class is be-
ing defined (generic classes are templates for classes and, unlike non-generic
classes, are not types themselves). Type checking over the selected generic pa-
rameters is possible: a type X in the list can be required to be a descendent of a
class A via the notation A<<X, which means that A is an ancestor of X. In this
way, constrained genericity is provided.

The EXTENDS list provides means for reusing other class definitions: it de-
notes the set of previously defined classes that are inherited in this class. The
relation of inheritance generates two predicates:

inherit <<
tcinherit <i

(the latter being the recursive extension of the former); they can be used across the

specification. Some features of the inherited class may be hidden or renamed; this is

useful for the purpose of reusability, separate refinement, and avoiding name

clashes between the features upon extension.
TYPES are declarations of type identifiers used in the declarations of local

variables of an object. The OWNS variable declarations are attribute declarations,
in the style of variable declarations in Z. The INVARIANT gives a predicate
that specifies the properties of the internal state, in terms of object attributes.
This predicate is guaranteed to be true on the state of an object between execu-
tions of its operations. The default invariant (i.e., if this clause is omitted) is true.

The visible method declarations are divided in two groups. First of them is
identified by the RETURNS list of operations as functions from a sequence of
input domains to an output domain; these are operations with no side-effect on
the state. The OPERATIONS list declares the types of all the remaining meth-
ods. The ACTIONS list gives actual definitions for all the operations that can be
performed on instances of the object; the default action for a method, if no action
for it is listed, is the completely non-deterministic operation on the state of the
class and its parameter types. It is worth mentioning that the execution of an op-
eration, in contrast to Object-Z, is possible even when its precondition is vio-
lated, but it may have an arbitrary behavior within the state and operation typing
constraints in this case.

It is possible to mark some methods as ‘spontaneous internal actions’, using
the symbol ∗ in front of their definitions. Such methods are not available to users

19

or inheritors of the class; they provide a means to model many real-world situa-
tions occurring spontaneously. One of such situations corresponds to object shar-
ing that is possible for Z++ classes: when the same object is referenced more
than once, changing its state by one of its “parents” looks like a spontaneous
action for the others.

Two major features of the language semantics are strict mathematical concept
of refinement and specific treatment of object identity.

Refinement (that is a synonym for subtyping and conformant subclassing in
Z++) is the central concept of semantics; a strong mathematical definition is
given for it. The refinement relation between classes C and D is expressed via the
notation C φ,R D, where φ is a mapping of the method names of C to those of
D, and R is a predicate which defines a data refinement relation between the at-
tributes and constants of the class in the sense of Z. This reduces to C φ D, or
C R D or C D in the case when the specific interpretation function φ or
the predicate R is of no interest (C D is also a predicate that evaluates to true
if there exist a refinement mapping and a relation from C to D). The notation A
 B means that A B and B A: such classes are semantically equiva-

lent.
The existence of a refinement relation between two classes implies that the

more refined class is type-compatible with the less refined class, in the usual
sense of OO specification. It also allows some operations for composing classes,
such as binary operation ∗ producing the maximal common ancestor for two
classes. The union operation, denoted as ∧, creates a class that has the disjoint
union of attributes of its arguments and conjoins the definitions of identically
named methods. The operation ∩ forms the syntactic intersection of the defini-
tions of two classes. Some operations over the generic class expressions, such as
partial instantiation, are also available.

The concept of object identity is modeled by associating an infinite set @C (a
set of object identities for potential and existing objects) with each class C. This
set has a subset C of existing objects of C, and the dereference map *C is used
to obtain object values from object identities of existing objects:

*C: @C → StateC

C = dom (*C)

(StateC is a state schema obtained by reducing the Z++ class declaration to the
plain Z; it defines the states of all objects of C). This approach implicitly ad-

20

dresses the problem of memory management, since it allows distinguishing po-
tential and existing objects of C, but it is not imperative and has nothing to do
with real-life memory management issues.

If the declaration a: C occurs in the OWNS list of another class, this is inter-
preted as a: @C in the above translation. The class methods are also applied to
object identities from @C, not to objects themselves; the method call syntax is
a.m(e), where e is a list of arguments. There is a second use of methods as
operations on the state of C. It requires the method m to be defined in the class D,
a refinement of C, and the call syntax is either m(e) or C.m(e) if the former
version is ambiguous. In this way, the OO concept of virtual and overloaded
methods may be expressed in the specification.

The language is different from Object-Z in several key aspects. Z++ has no
means of encapsulation like the visibility list of Object-Z: to hide private meth-
ods of the class, another class has to be defined. The language syntax also does
not include the initial state schemas, though it may be easily extended. Z++ does
not support polymorphyc declarations but it is equilibrated by existence of a
strong refinement relation that induces type compatibility between more and less
refined classes. It has more expressive parameterization including typed parame-
ters and generic class expressions and supports not only declarative operation
definitions (by relating pre- and post-conditions for the schema as in Z) but also
the procedural style (using the B code). Object-Z defines several useful opera-
tions over objects and collections of objects, and Z++ allows operating over
classes instead. Concerning mathematical foundations, both languages are well-
defined by reductions to the plain Z notation. They also demonstrate problems
common to all set theory based formalisms, such as poor support for object crea-
tion and destruction.

4 ALGEBRAIC APPROACH WITH STATES

The idea of representing the state as an algebra and state transformations as
algebra transitions is rather new; several algebraic specification languages have
been developed. Attractive properties of these languages (natural means for ex-
pressing most of programming language constructs, ease of specifying the state
changes) result in numerous experiments in extending algebraic specifications
towards object orientation. Object-oriented algebraic specification languages
support the most important OO concepts (data encapsulation, inheritance, sub-
typing, object methods and method overloading, object creation and deletion).
The most interesting of them (extensions of pure algebraic approach, TROLL,

21

Maude and Object-Oriented TASMs) are described below. We focus on several
key features of these approaches:

– modeling the notions of object and object state;
– means of expressing object creation and deletion;
– support for various OO concepts.

4.1 Extensions of the pure algebraic approach

Though the class model introduced in 2.1 is well-tailored for describing the
static aspects of a system (classes, their structure and relations between them), it
does not address the system dynamics. The notions of a system state and state
transformation are not defined; even an object as a class instance is informally
introduced. Actually, this modification of a pure algebraic approach to the ob-
ject-oriented specification is a tool for studying the static part of a dynamic sys-
tem and cannot be regarded as a complete model of it. One of possible extensions
of this approach that supports complex evolving object communities is formally
introduced in [14].

The intent is to define an object transition system (OTS) in which every state
is represented by an algebra that contains both objects and object values. The set
of possible values is determined by the class implementation and it remains un-
changed for all states (instant algebras); a state function associates with each
object its current value. The OTS is formalized with the notion of category [9].
The objects of this category are instant algebras and morphisms model state evo-
lutions. They occur whenever there is a method execution or object crea-
tion/deletion.

Given an algebraic class specification Cspec, the object values specification
SPECυ = ((S,OP),E) of Cspec is obtained as the union of instance interfaces
of Cspec and of all specifications used by Cspec. Its algebra Aυ is the amalgama-
tion sum [9] of the corresponding implementation algebras; the algebra elements
model all possible values of objects of Cspec. For each sort s in SPECυ, two sorts
are obtained: sυ (the sort of values of the sort s), that is a renaming of s, and sΩ
(the sort of objects of s). Conventionally speaking, sΩ models the set of object
identifiers for objects of the class s. The authors designate Sυ = {sυ | s ∈
S}, SΩ = {sΩ | s ∈ S}, both Sυ and SΩ being signatures without opera-
tions. The set of state function signatures Ψ is defined as {Ψυ

s: s
Ω → sυ

|sυ ∈ Sυ}. When interpreted, each state function defines the state of objects
of the sort s (it maps object identities from sΩ to object values from sυ). The

22

state functions signature SIGΨ is defined in a natural way, as a pair (Sυ ∪
SΩ,Ψ).

The category Trans(Aυ) is the model where method executions are inter-
preted. Each object S of the category is a quadruple of algebras
(A3,A2,A0,A1), where

– A0 ∈ Alg(Sυ),
– A1 = Aυ ∈ Alg(SPECυ) is an object value algebra,
– A2 ∈ Alg(SIGΨ),
– A3 ∈ Alg(SΩ),

with

– Vi1(A1) = A0 with i1: Sυ → SPECυ,
– Vi2(A2) = A0 with i2: Sυ → SIGΨ,
– Vi3(A2) = A3 with i3: SΩ → SIGΨ,

where Vi1, Vi2(A2) and Vi3(A2) are forgetful functors corresponding to sig-
nature morphisms i1, i2 and i3. The canonical extension SPECΨ of SPECυ is
defined as follows. First, S is substituted by Sυ in SPECυ; next, the specification
is extended by SΩ and Ψ. The state of the system is given by the algebra A1 +A0
A2 ∈ Alg(SPECΨ) (this construct is a pushout object of f1: A0 → A1 and
f2: A0 → A2; it is actually the disjoint union of A1 and A2, where f1(x)
and f2(x) are identified for all x ∈ A0). Each morphism of Trans(Aυ) is
defined by a quadruple of mappings

(Φ|SΩ: A3 → A3’, Φ: A2 → A2’, idA0:A0 → A0,
idA1:A1 → A1)

and a family of functions {fos: Aυ

s → Aυ
s | o ∈ A2Ω

s}, such that
ΨA2’

s(Φ(o)) = fos(ΨA2
s(o)). For an object o of Cspec, the function fos

from this family corresponds to the state change of the object due to the system
transition identified by the morphism.

Certain morphisms in this interpretation correspond to method executions.
Let ω ∈ A2Ω

s be an existing object of the sort s and m: s1,…,sn → s be a
method symbol in SPECυ; execution of m over ω with parameters a1 ∈ A1υ

s1,
…, an ∈ A1υ

sn causes the evolution described by the morphism eval: S →
S’ defined as < (idA3,idA2,idA0,idA1), {fos | o ∈ A2Ω

s} >, where

23

λx.mA1(x,a1,…,an) if o = ω,

fos =
id A1

υ
s otherwise.

The identities say that the carrier sets remain the same, no object is created or

deleted and only the object ω changes its current value (in general, the methods
with side effects could be defined). Similarly, object creation and deletion are
modeled.

4.2 TROLL

TROLL (Textual Representation of an Object Logic Language) is designed for
the conceptual modeling and subsequent design of information systems [15,16].
The emphasis is on combining conceptual modeling and formal specification
techniques with techniques for describing distribution and concurrency. As the
main abstractions, TROLL supports classes, roles and derived roles (specializa-
tions), composite objects, views, and relationships. The basic concepts of
TROLL can be characterized as follows:

– Objects are sequential processes which can synchronize their life-

cycles through event interactions. The life of an object starts with a
birth event and may end with a death event.

– Objects encapsulate an internal state that can only be modified by
events. However, a part of the object state is observable through at-
tributes.

– Objects are organized in classes; each object has a unique identity.
– An object is described by a set of attributes and events. Its evolution is

specified by a possible sequence of events and communications with
other objects.

Different formalisms are integrated into TROLL. The sorted first order logic

is the basis for the state specification (the specification of data types is consid-
ered external to TROLL, and they are simply imported). The linear first order
temporal logic (both past and future tenses) is used to describe the object behav-
ior and state evolution constraints, respectively. The behavior of an object is de-
fined as a linear process consisting of a set of possible traces of event snapshots
(sets of concurrent events used to model object communication). A sublanguage

24

for the process specification is used to explicitly define the fragments of such
life-cycles.

Syntactically, a TROLL specification is a set of templates of the following
form:

template Name [ParameterList]
<Imports and Declarations>
<Component, Attribute, and Event Specification>
<Object Behaviour Specification>

end template Name

A template may evaluate to an object class or may define behavior of indi-
vidual objects not belonging to any class. Component, attribute, and event names
must be unique in the template at hand, as well as the names of local classes.

Data type declarations can be built from imported data types, predefined
types (bool, nat, integer, real, char, string) and data type construc-
tors (set, list, tuple, and enum) and, together with local classes, can be
used to define attributes. One special case is the object identity data types whose
values are used as "handles" to objects. For a class C, its object identity data type
is denoted as |C|; it can be used on a par with any other data type. With the speci-
fication of a class C, a function:

C: |C| → C-OBJECTS

is implicitly defined (C-OBJECTS denotes the set of all possible objects of the
class C). The existence of such an artificial data type seems to be one of the most
significant TROLL shortcomings: it means that semantics of the notion of an
object is not sufficiently worked over. Conventionally, the algebraic semantics of
the object includes a unique identity for each object and a set of attribute func-
tion values over this identity. The stand-alone identity adds an unnecessary level
of indirection since it always stands for the object when an object is needed and
this leads to an unnatural specification fashion.

The attribute and event specifications define the observable properties of ob-
jects and the state update operations, respectively. They form the local signature
of an object. Attributes and events may be supplied with the named typed pa-
rameters. Data encapsulation is not directly supported: attributes and events are
in the class interface unless they are hidden. A parameterized attribute defines
one value for each combination of values of the parameter sorts (data types) —
arrays can be specified in this way. Attribute values can be further restricted ei-

25

ther directly in the attribute definition after the restricted keyword or in the
special constraints section of the template specification (in the latter case,
dependences among attributes and dynamic constraints as Future Directed Tem-
poral Logic (FDTL) predicates can be expressed). The attribute parameter values
can also be restricted:

attributes
SalaryInYear(Year:nat): money

restricted Year > 1950 and Year <= 2010 .

In this example, for the years for which the formula evaluates to false, the
value of the attribute denoted by SalaryInYear(Year) has to be undefined (“unde-
fined” is a valid value of all data types in TROLL). By default, the attribute value
is undefined when an object is created, but it may be explicitly changed in the
initialized attribute definition section. Derived attributes are not stored;
they are determined by a computation over the observable properties of an object
instead.

Each event that can take place in the object’s life is denoted by an event

name and a list of (typed) formal parameters. Its definition can include the fol-
lowing sections: necessary conditions that should be fulfilled (enabled), local
change of the state (changing), associations with other events (calling),
and return values (binding). Spontaneous events are marked as active. Two
special classes of events denote the creation (birth) and destruction (death)
of objects. At least one birth event should exist for each template, but death
events are optional.

Explicit pre-conditions for events, called enabling conditions, can be formu-
lated in terms of predicate logic and Past Directed Temporal Logic (PDTL); al-
ternatively, the process description language sketched below can be used. Such
conditions are formulae built over attributes and event parameters. The special
predicate after frequently used in this context is true in the state after the men-
tioned event took place. The state change is described by stating the value of the
attribute after the occurrence of an action:

events
deposit (amount : money)

 changing balance := balance + amount.

26

The term in the right-hand side is evaluated in the state before the event oc-
currence; the implicit frame assumption is that an attribute keeps its value if not
explicitly changed. An optional condition formulated in terms of first order logic
may precede each assignment in the section; the change is to be applied only if
the condition is satisfied.

Calling rules of an event describe causal relationships to other events; each
rule consists of a condition determining whether the call should be performed in
the current state and of a list of event terms denoting the events to be called. For
the event to take place, each of its dependent events should be permitted. If so,
all of them are called together, that is, the transitive closure of the first triggered
event defines the change of the state of the system. The construct is not usual for
traditional object-oriented programming languages and is difficult for translation
into any of them.

The binding rules are special means of describing the output parameters of an
event. It should be noted that such output parameters cannot participate in ena-
bling conditions or calling conditions of the event since they are initially unde-
fined.

The process language introduced in TROLL provides mechanisms to de-
scribe possible evolution of objects in terms of sequences of events. Each life-
cycle description is divided into the declaration part and usage part. Processes
may be combined with several operators such as sequencing, choice, parallel,
and for each; recursive processes are allowed. The start condition is a PDTL
formula that denotes the state of an object where the process becomes valid (may
be initiated). The interleaving mode specification serves to describe vari-
ous possibilities for other events to interleave the specified sequence (by default,
such events are possible but their names should not be mentioned in the process
declaration; other options are none, free and excluding modes). Declaring a proc-
ess as initiative means that all its events become active (spontaneous) as
long as the process is executed.

As mentioned above, templates evaluate to classes and/or to individual ob-
jects. There is a distinction between templates and classes: a template is a static
description of the object structure and behavior. Classes, however, are dynamic
since there is a time varying set of objects in them.

Objects may be components of other objects, which are called composite ob-
jects in this case. The relation between an object and its component is stronger
than so-called object referencing, since it is bi-directional (components may use
properties of the composite object). In TROLL, the composition may change
dynamically; set-valued and list-valued components are allowed (the relation
between a set-valued component and its elements is the same as the one between

27

a class and its objects). Components may interact with objects containing them
and with each other by means of interaction rules.

Different forms of object identification are allowed, such as specifi-
cation of unique key attributes of a class to identify objects or direct identifica-
tion by name for single objects. The empty identification section of a
class means that its objects are anonymous; they should be identified by means of
object identity values of the class.

Objects are related in various ways. A role describes a temporal specializa-
tion of an object having additional properties and/or restricted behavior. A spe-
cialization is considered to be a permanent role. Over the objects, views can be
defined which are means for the description of a restricted access to the set of
objects of the class (a selection view) or to the set of properties of objects (a pro-
jection view).

To describe communication between separate objects, a special kind of
global constraints called relationship can be used. They either relate the
states of different objects or define causality between events of different objects.
Relationship rules can be used to model the data-flow between related objects via
binding of event parameters.

TROLL has a special means to operationally express object creation, man-
agement and destruction. A class object is implicitly generated for every class;
conceptually it is not different from any other object. For a class C, a class object
has a single set-valued component called Objs that represents all existing ob-
jects of C, a key map (a set-valued attribute of the type |C|) for each key attrib-
ute of C, several derived attributes, events and constraints to manipulate objects
of C.

There is a simplified version of the TROLL called TROLL light that is tai-
lored towards verification and direct execution purposes. It does not support ob-
ject sharing, recursive structures and conditions formulated in the temporal logic;
the relationships between the states and events of different objects, as well as
object creation and destruction, cannot be expressed. The semantics of TROLL is
mostly informal; in contrast, the algebraic semantics of TROLL light is given in
[17]. The underlying model of an object community is an algebraic transition
system, where both the state and the state transformation caused by finite sets of
events are represented as algebras.

A single data algebra DA of the signature DΣ = (DS,Ω) is assumed to be
fixed, where DS is a set of data sorts and Ω is a family of sets of operation sym-
bols. The attribute signature AΣ extends the data signature with the set of object
sort symbols OS and the set of attribute symbols A, so that AΣ = (DS ∪

28

OS,Ω ∪ A). Algebras of this signature represent the system states (they are so-
called instance algebras). The event signature extends the attribute signature, so
that EΣ = (DS ∪ OS ∪ {ê},Ω ∪ A ∪ Ê), where ê is a special event
sort and Ê is a set of event symbols. Algebras of EΣ (event algebras) describe
possible state changes caused by the set of events. A single state transition is
represented by a triple <AL,Â,AR> (the instance algebras AL and AR before and
after the change are joined with the event algebra Â), and an object community
MOΣ is a subset of ALGAΣ × ALGEΣ × ALGAΣ. Various syntactic constructs of the
language become axioms restricting the set of possible triples. State constraints
and derivation rules affect AL and AR; calling rules influence AL and Â; changing
rules of events and behavior definitions control AL, Â and AR in the whole.

The latest (third) version of TROLL [18] is different from the above-
described TROLL 2.0. It is devoted to modeling the distribution issues and has
been designed with the aim of executability. The language now combines
graphical (OmTROLL) and textual (TROLL) notations for system specification.
The graphical notation serves for description of global structures and their corre-
lations; the textual notation is used for description of local properties and for
detailed description of global relationships and constraints. The language allows
more expressive data type definitions, component definitions and system behav-
ior specifications.

4.3 Maude

Maude [19,20] is an object-oriented executable specification language and a
system supporting both equational and rewriting logic concurrent computation
for a wide range of applications, including automated proof systems, crypto-
graphic protocols and network applications. Maude uses and extends the alge-
braic specification paradigm, and its equational logic sublanguage essentially
includes a well-known specification language OBJ3 [21].

The language consists of the basic part (Core Maude) and its reflection called
Full Maude. Core Maude supports module hierarchies consisting of (non-
parameterized) functional and system modules and provides the META-LEVEL
module that allows operating in the module algebra, where modules, terms and
kinds themselves act as terms. Full Maude is an extension of Core Maude, writ-
ten in Core Maude itself, that supports the module algebra of parameterized
modules, views, and module expressions, as well as object-oriented modules with
a convenient syntax for object-oriented applications.

Though Core Maude is not object-oriented, its components (functional and
system modules) are basic specification blocks and should be discussed first. The

29

functional modules define the equational theories whose equations are Church-
Rosser and terminating. A mathematical model of data and functions is provided
by the initial algebra defined by the theory whose elements are equivalence
classes of ground terms modulo equations. The task of the Maude interpreter is
to reduce a given term to its ground (canonical) form using a given theory. The
equational logic on which Maude functional modules are based is an extension of
the order-sorted equational logic called membership equational logic; it supports
so-called membership axioms, in which a term is asserted to have a certain sort if
a condition is satisfied.

In the functional module, sorts (viewed as algebraic data types) and subsort
relations (inducing set-theoretic inclusions between the corresponding sets of the
algebra) are defined by sort declarations and subsort declarations. Each equation
may have previously declared variables of appropriate sorts. An operator can be
declared together with its properties (like associativity) and evaluation strategy.
An error sort is added to the top of each chain of sorts partially ordered by the
subsort relations; such error sorts are called kinds. A term is assumed to belong
to an error sort if it does not satisfy any of the membership axioms for other
sorts; in this way, the Maude interpreter reports errors.

Each system module specifies the initial model of a rewrite theory. The the-
ory essentially contains a theory in the membership equational logic, but terms in
the rewrite theory are no longer interpreted as functional expressions — they
now represent the states of the system. A set of possibly conditional labeled re-
write rules defines state transitions. These rules need not be Church-Rosser and
terminating; consequently, many reactive systems so specified should never ter-
minate, and a system may evolve in a highly nondeterministic way. Therefore,
the issue of executing specifications for system modules is considerably subtler
than executing expressions in a functional module. The Maude interpreter pro-
vides a default strategy for executing expressions in system modules; it applies
the rules in a top-down fair way. Other strategies can be specified within Maude
in the user-definable extensions of the module META-LEVEL. This technique
makes use of the fact that rewriting logic is reflective, i.e. it can be faithfully in-
terpreted in itself.

Besides the strategies, reflection makes possible many advanced metapro-
gramming applications. One of such applications is Full Maude, which makes
essential use of reflection to provide Maude with a rich and extensible module
algebra. In Full Maude, concurrent object-oriented systems can be defined by
means of object-oriented modules using syntactic constructs, such as classes,
objects, messages and configurations, which are more convenient than those of
system modules. A class definition class C | att1: s1 ... attn: sn

30

defines a class C with the attribute names att1,…,attn and their correspond-
ing sorts (classes without attributes can be defined using the syntax class C
though the rationale of having such classes is not clear). Then objects are record-
like structures of the form <O: C | att1: v1 ... attn: vn>, where O is
a user-defined name serving as object identity and the vi's are the corresponding
attribute values. An object without attributes can be represented as <O: C |>.
Objects can interact with each other by means of messages. A message declara-
tion msg m: p1 ... pn → Message (where Message denotes a single
pre-defined sort for modeling class messages) defines the name of a message and
the parameter sorts; the message itself is then denoted as m(v1,…,vn). The first
parameter often refers to the message recipient. The state of a concurrent object
system, that is a multiset of objects and messages, is called a configuration. The
dynamic behavior of a system is axiomatized by specifying each of its concurrent
transition patterns by a corresponding rewrite rule: either rl[label]: C ⇒
C' or crl[label]: C ⇒ C' if cond for conditional transactions. Both
C and C' are subconfigurations (subsets of the configuration; there is no need to
mention objects and messages not affected by the transition). In general, C may
include several objects describing synchronization or multi-party interaction be-
tween them; object creation and destruction can be expressed as well. Full
Maude supports constrained genericity for object modules; generic module in-
stantiation is considered to be a special operation in the module algebra on the
meta-level.

Maude's order-sorted type structure provides a natural support for both single
and multiple class inheritance. A subclass declaration C < C' in an object-
oriented module is a particular case of a subsort declaration. Its effect is that the
attributes, messages, and rules of all the superclasses, as well as the newly de-
fined attributes, messages, and rules, characterize the structure and behavior of
the objects in the subclass (it behaves exactly as any object in any of the super-
classes, but it may exhibit additional behavior due to the introduction of new
properties). Name conflicts are not resolved (implicit renaming is not supported);
this results in additional constraints on inherited classes; alternatively, explicit
renaming is possible to be expressed by means of views as signature mor-
phisms.

Maude does not support data encapsulation; each and every data field of the
class is visible for its users and descendants. Furthermore, class methods are not
supported in any way (messages are not bound to any particular object and there-
fore cannot be regarded as their alternative). These shortcomings would impede
using Maude as a tool for object-oriented software design.

31

Although object-oriented modules facilitate programming of concurrent ob-
ject systems, each such module can be reduced to the corresponding system mod-
ule (a special object-oriented syntax can be regarded as syntactic sugar). This
transformation introduces a single global superclass Cid for all classes. A sub-
sort SC of a sort SCid is introduced for each class C; elements of SC are object
identities for objects of C. The class attributes are mapped to functions taking
object identity as an argument. The subclass declarations result in the subsort
declarations; rewrite rules are modified to make them applicable to all objects of
the given classes and their subclasses. Thus, semantics of an original object-
oriented module is that of the corresponding system module.

Each system module defines a theory Ψ in the rewriting logic that is a 4-tuple
(Σ;E;L;R), where Σ is a ranked signature of function symbols, E is a set of Σ-
equations that are Church-Rosser and terminating (they define equivalence
classes for terms of Σ), L is a set of labels, and R is a set of pairs belonging to L
× TΣ;E(X)

2, whose first component is a label and the second component is a
pair of E-equivalence classes of terms with X = {x1;…;xn;…} being a counta-
bly infinite set of variables. Elements of R are called rewrite rules; a rule
(r,([t],[t’])) is a transition r: [t] → [t’], where [t] and [t’]
are E-equivalence classes identified by their representative terms t and t’. A
rewrite theory Ψ entails a sentence [t] → [t’] if and only if it can be ob-
tained by finite application of deduction rules (reflexivity, congruence, replace-
ment and transitivity) in this framework.

The model of a rewrite theory Ψ is the category TΨ(X) whose objects are
equivalence classes of terms [t] ∈ TΣ;E(X) and whose morphisms are
equivalence classes of “proof terms" representing proofs in rewriting deduction.
The rules for generating such terms, with the specification of their respective
domains and codomains, just "decorate" the rules of deduction in rewrite logic;
for instance, the composition rule decorates transitivity:

]3[]1[:;

]
3

[]
2

[:]
2

[]
1

[:

tt

tttt

→

→→

βα

βα
.

Proof terms form an algebraic structure PΨ(X) consisting of a graph with

nodes TΣ;E(X), with identity arrows, and with operations f (for each f ∈ Σ), r
(for each rewrite rule), and “;” (for composing arrows). The model TΨ(X) is the
quotient of PΨ(X) modulo the following equations:

32

1. Category.

(a) Associativity. For all α, β, γ: α;(β;γ) = (α;β);γ.
(b) Identities. For each α: [t] → [t’]:

[t];α = α;[t’] = α.

2. Functoriality of the algebraic structure. For each f ∈ Σn, the following
holds:

(a) Preservation of composition. For all α1,…,αn, β1,…,βn:
f(α1;β1,…,αn;βn) = f(α1,…,αn);f(β1,…,βn).

(b) Preservation of identities.
f([t1],…,[tn]) = [f(t1,…,tn)].

3. Axioms in E. For the axiom t(x1,…,xn) = t’(x1,…,xn) in E and for all
α1,…,αn:

t(α1,…,αn) = t’(α1,…,αn).

4. Exchange. For each r: [t(x1,…,xn)] → [t’(x1,…,xn)] in R:

])([);()(]);([)(

][][:]
1

[]
1

[:
1

ϖααϖα

ϖϖαϖϖα

′=′=

′→′→

rttrr

nnn
…

.

The first group of equations makes TΨ(X) a category; the second one makes

each f ∈ Σ a functor, and the third group forces the axioms E to be satisfied in
the model. The exchange equation states that rewrite rules can be applied in any
order, sequentially or simultaneously.

4.4 Object-Oriented Abstract State Machines

The approach presented in [22] uses the mechanism of Typed Abstract State
Machines (TASMs) [23] to provide means of object-oriented specification of
complex evolving systems. The specification of such a system includes specifica-
tions of data types representing the static part of a system, object types represent-
ing the dynamic part of a system and independent functions and procedures (they
are not included into this review for simplicity). Each state of a system is mod-
eled by a many-sorted algebra (instance algebra); state transitions are defined by
transition rules of the TASM.

33

An object is understood as a complex entity possessing a unique identifier
and state, that is a set of attributes. The object state can be initialized, updated
and viewed; object methods are accordingly divided into initializers, mutators
and observers. An object can belong to several object types in compliance with
the supertype/subtype hierarchy; this relation also provides the base for late bind-
ing of object methods.

A type-structured signature Σdat is a pair <TYPE,Ω>, where TYPE is a set
of data type names and Ω is a set of function signatures over TYPE (each func-
tion signature has the form op: T1,…,Tn → T, where op is a function name
and each of T and Ti, i=1,…,n, is an element of TYPE). A data type specifi-
cation is a data type signature with a set of axioms E. An algebra of such a speci-
fication is built conventionally by associating the sets of elements with the names
from TYPE (for the name T ∈ TYPE, we denote the corresponding set in the
algebra A by AT) and partial functions with the function signatures from Ω so that
each axiom from E is satisfied. Such an algebra is called a static algebra in the
sequel.

A dynamic system signature DΣ extends Σdat in the following way: let
OTYPE be a set of object type names such that OTYPE∩TYPE = ∅ and

– an observer profile be either T or T1,…,Tn → T,
– a transformer profile be T1,…,Tn,

where T, Ti ∈ TYPE ∪ OTYPE, i=1,…,n. Then

– an attribute signature is a pair at: OP, where at is a name and OP is

an observer profile (attribute profiles of the form T1,…,Tn → T serve
for modeling multidimensional arrays of elements of T);

– an observer signature is a pair b: OP, where b is a name and OP is an
observer profile;

– a transformer signature is either m or m: MP, where m is a name and
MP is a transformer profile; transformers are divided into initializers
and mutators because of slightly different roles they play;

– an object type signature is a set of the attribute, observer and trans-
former signatures.

The signature DΣ is then defined as a pair <Σdat,Σobj>, where Σobj =

<OTYPE,OΦ,int°>, OΦ is a set of object type signatures, int° is a function

34

that maps the object type names into OΦ. For the name T mapped into the signa-
ture φ, we say that φ is marked with T. The sets of the attribute, observer and
mutator signatures in the object type signature marked with T are denoted as
Att(T), Obs(T) and Mut(T), respectively.

An object type T1 is a subtype of an object type T (denoted by T1 < T) if
Att(T) ⊆ Att(T1) and Obs(T) ⊆ Obs(T1) and Mut(T) ⊆ Mut(T1).
An object type T is a root type for an attribute at: OP ∈ Att(T) (at is,
respectively, a root attribute of T) if there is no T1 such that T < T1 and at:
OP ∈ Att(T1).

An instance algebra A of the dynamic system signature DΣ is a typical order-
sorted algebra built as an extension of a static algebra B of Σdat in the following
way:

– with each object name T ∈ OTYPE, a set of elements AT is associated
reflecting the supertype/subtype hierarchy: if T < T’, then AT ⊂ AT’
(these elements are called object identifiers);

– with each root attribute at: T1,…,Tn → T’ in the object type sig-
nature marked with T, a partial function atAT: AT → (AT1,…,ATn
→ AT’) called an attribute function is associated. A non-root attribute
at: OP in the object type signature marked with T1, such that T1 < T
and T is a root type of at, is mapped to the same function as in T.

An object-oriented dynamic system D(B) of the signature DΣ consists of a

set OID of object identifiers and a set |D(B)| of instance algebras of DΣ having
the same static algebra B such that for each A ∈ |D(B)| and for each T, T’
∈ OTYPE

– AT ⊂ OID (object identifiers are always chosen from the same set,
namely OID);

– AT ∩ AT’ = ∅ if neither T < T’ nor T’ < T (the sets of object
identifiers for different types are disjoint).

It also includes a set of algebra modifiers and a set of observers and trans-

formers.
Algebra modifiers transform one instance algebra into another. Two kinds of

modifiers (µ1 and µ2) change partial function interpretation at a certain point; the
other two (µ3 and µ4) serve for creation and deletion of objects. Informally

35

speaking, µ1 redefines a function at a given point, µ2 makes it undefined at that
point, µ3 expands the set of object identifiers of a certain object type and all its
supertypes by a new identifier, and µ4 deletes one object identifier of a certain
object type from the current state and changes function interpretations accord-
ingly. An algebra modifier applied to the instance algebra produces an algebra
update; several modifiers applied simultaneously produce an update set. The set
of all update sets in D(B) is denoted by Γ. More technical details can be found
in [22].

Given a dynamic system D(B), observers and transformers are interpreted by
associating

– with each observer signature b: T1,…,Tn → T’ in the object type

signature marked with T, a partial map bD(B)T: |D(B)| → (AT,
AT1,…,ATn → AT’) called an observer;

– with each transformer signature m: T1,…,Tn in the object type signa-
ture marked with T, a partial map mD(B)T: |D(B)| → (AT,
AT1,…,ATn → Γ) called an initializer or mutator.

Note that if T < T’, different maps fD(B)T and fD(B)T’ can be built in D(B)

to interpret the same observer or transformer name f present in both T and T’;
this corresponds to the principle of dynamic overloading typical of object-
oriented programming paradigm.

Given a dynamic system signature DΣ=<Σdat,Σobj>, the set of DΣ-terms is
defined as an extension of the set of Σdat-terms. Terms are built with the use of
attribute, observer and transformer names (such terms are called attribute values,
observer and transformer calls, respectively). The terms are interpreted with the
use of above-defined attributes, observers and transformers. When a term inter-
pretation is an update set, it is called a transition term (such terms denote transi-
tions from one algebra to another). With the exception of transition terms, each
term t is of type T ∈ TYPE ∪ OTYPE (each supertype T1 of T is also the type
of t since interpretation tA ∈ AT of t is also an element of AT1). If tA ∈ AT
and there is no T’<T such that tA ∈ AT’, then T is called the static type of t;
each supertype T1 of T is the dynamic type of t. Observer and transformer calls
of an object identified by a term t are interpreted using the static type of t; this
is known as late binding. A special transition term, new(y: T) in τ, where
T ∈ OTYPE, y is a variable of type T, and τ is a transition term using y, pro-
vides a means of object creation and its further use in τ. It is interpreted as an

36

algebra update that adds a new element to AT, assigns it to y and performs the
algebra update τ to initialize and use the newly created object. Other means of
defining transition terms are called transition rules. The basic transition rules
redefine attribute functions at certain points; rule constructors such as a sequence
constructor, set constructor, guarded update and loop constructor serve for re-
cursive constructing of complex transition terms from the simpler ones.

If t1 and t2 are two DΣ-terms of type T, then t1==t2 is a static equation. It
holds in an instance algebra A if t1A = t2A. If t1 and t2 are two transition
terms of DΣ, then t1==t2 is a dynamic equation. It holds in D(B), if for any A
∈ D(B) there is an update set γ such that t1A = γ and t2A = γ; this means
that the transformation of A according to either t1 or t2 produces the same alge-
bra B. A dynamic system specification over an object-structured signature DΣ is a
pair <DΣ,E>, where E is a set of equations that contains:

– a subset SEdat such that <Σdat,SEdat> is a data type specification;
– a subset Eoφ for each object type signature oφ from DΣ. Eoφ contains a

set of static equations for each observer name in oφ and a set of dy-
namic equations for each transformer name in oφ. A pair <oφ,Eoφ> is
called an object type specification.

It is worth mentioning that the resulting specification language has some im-

portant advantages:

– a transition term looks like an imperative statement, it is easy to under-
stand and it is executable;

– the data type specification level is separated from the object type speci-
fication level; similar means of specifying both levels are provided;

– the most important features of the object-oriented paradigm (inheri-
tance, polymorphism, subtyping) are fully supported.

The above approach can be extended to provide means of specifying the con-

strained generic object types [24].

37

5 CONCLUSIONS

In this review, the main trends in object-oriented dynamic system specifica-
tion have been discussed. Now we briefly summarize the results of the discus-
sion.

Pure algebraic specifications are suitable for modeling the static aspects of a
system, including class hierarchies, genericity and methods overloading. How-
ever, since no notion of state is formally introduced, it is impossible to specify
the dynamic aspects (behavior of a system) in this framework.

Set-theory based specifications allow defining both static and dynamic sys-
tem properties since they have a notion of state. Two object-oriented extensions
of Z discussed above exhibit nearly equal expressive power; they support the
main OO concepts and allow executable specifications to be defined. The most
important shortcoming of both Object-Z and Z++ is poor support for object crea-
tion and destruction — they cannot be expressed naturally since add-
ing/removing elements to the base sets is impossible.

Algebraic specification formalisms with state provide better support of dy-
namic operations over objects, including their construction/destruction. In com-
paring these approaches, we focus on semantic details: how an object and object
state are modeled, what OO concepts are supported. One of attractive properties
of the language is executability of specifications: on the specification stage, it is
often desirable to have a working model of a dynamic system.

The extension of the pure algebraic approach presented above certainly has a
solid mathematical foundation. A support of object orientation, in contrast, is
rather limited (no subtyping, inheritance, overloading). The model of the object
seems to be unnatural (two sets for each object type are involved); the specifica-
tion is hard to understand and it is not executable.

TROLL supports object methods, subtyping and genericity. Data encapsula-
tion is not directly supported; method overloading is not possible. The notion of
object is not sufficiently worked over: the object identity data type is superfluous
and adds an unneeded complexity. TROLL itself is not executable specification
language but TROLL light is.

Maude is a powerful framework for complex concurrent computations that
allows choosing a computation strategy. Support for metaprogramming applica-
tions and strong mathematical foundations make it a perfect automatic proof sys-
tem. However, object orientation in Maude is quite rudimentary: objects are just
tuples of values, the language does not support data encapsulation and overload-
ing; the notion of inheritance is not different from subtyping.

38

Finally, Object-Oriented ASMs has been considered. Benefits of this specifi-
cation approach are:

– natural semantics for the notions of object and object state;
– support for object creation and deletion;
– support for data encapsulation, polymorphism, subtyping, overloading,

constant and mutable objects;
– typical programming language constructs (conditional statements,

loops, etc.) are modeled as complex algebra transitions; as a result, an
OO-ASM specification is easy to understand and it is executable.

Though the specification facilities are sufficiently powerful, a support for

several OO concepts (inheritance and genericity are most important among them)
is incomplete and needs to be worked over in detail in a concrete language. An-
other important task is to create an interpreter for OO-ASMs; this would make the
language practically useful on the early stages of complex software engineering
and validation. These are subjects of further investigation.

REFERENCES

1. Felder M., Morzenti A. A Temporal Logic Approach to Implementation and
Refinement in Timed Petri Nets // Lect. Notes Comput. Sci. — 1994. —
Vol. 827. — P. 365—381.

2. Morzenti A., San Pietro P. An Object-Oriented Logic Language for Modular
System Specifications. — Milan, 1990. — (Tech. Rep. / Dipartimento di Elet-
tronica, Politecnico di Milano; No 90-27).

3. Battistion E., Chizzoni A., De Cindio F. Modeling a Cooperative Environment
with Clown // Proc. of the 2nd Intern. Workshop on “Object-Oriented Program-
ming and Models of Concurrency” within the 16th Intern. Conf. on Application
and Theory of Petri Nets. — Osaka, Japan, 1996. — P. 12—24.

4. Sibertin-Blanc C. Cooperative Nets // Lect. Notes Comput. Sci. — 1994. —
Vol. 815. — P. 471—490.

5. Lakos C. A. Loopn++ User Manual. — Hobart, 1996. — (Tech. Rep. / Dept.
Comput. Sci., Univ. Tasmania; No R96-1).

6. Ancona D., Cerioli M., Zucca E. A Formal Framework with Late Binding //
Lect. Notes Comput. Sci. — 1999. — Vol. 1577. — P. 30—44.

7. Parisi-Presicce F., Pierantonio A. Structured Inheritance for Algebraic Class
Specifications // Lect. Notes Comput. Sci. — 1994. — Vol. 785. —
P. 295—309.

39

8. Parisi-Presicce F., Pierantonio A. Reusing Object-Oriented Design: An Alge-
braic Approach // Lect. Notes Comput. Sci. — 1994. — Vol. 858. —
P. 329—345.

9. Ehrig H., Mahr B. Fundamentals of Algebraic Specification 1. Equations and
Initial Semantics. — Springer-Verlag, 1985. — 325 p.

10. Spivey J. M. The Z Notation. — Prentice Hall, 1992. — 150 p.
11. Smith G. The Object-Z Specification Language. — Kluwer Academic Publish-

ers, 2000. — 146 p.
12. Lano K., Haughton H. The Z++ Manual. — Waddon, 1994. — (Tech. Rep. /

Dept. of Computing, Imperial College).
13. Abrial J.R. The B Book — Assigning Programs to Meanings. — Cambridge

University Press, 1996. — 850 p.
14. Pierantonio A. Making Statics Dynamic: Towards an Axiomatization for Dy-

namic ADTs // Proc. Intern. Workshop “Quality of Communication-Based Sys-
tems” — Berlin, 1994. — P. 19—34.

15. Hartel P., Hartmann T., Kursch J., Saake G. Specifying Information System
Dynamics in TROLL // Proc. Workshop “Formal Methods for Information Sys-
tem Dynamics”. — Univ. of Twente, 1994. — P. 53—64.

16. Hartmann T., Saake G., Jungclaus R., Hartel P., Kursch J. Revised Version
of the Modelling Language TROLL (Version 2.0). — Braunschweig, 1994. —
(Tech. Rep. / Technische Universität Braunschweig; No 94-03).

17. Gogolla M., Hertzig R. An Algebraic Semantics for the Object Specification
Language TROLL light // Lect. Notes Comput. Sci. — 1995. — Vol. 906. —
P. 288—304.

18. http://www.cs.tu-bs.de/idb/publications/tr97/tr97.html —
TROLL 3 tutorial.

19. Denker G., Meseguer J., Talcott C. Protocol Specification and Analysis in
Maude // Proc. of Workshop on Formal Methods and Security Protocols. — In-
dianapolis, 1998.

20. Clavel M., Duran F., Eker S., Lincoln P., Marti-Oliet N., Meseguer J., Que-
sada J. Maude: Specification and Programming in Rewriting Logic. — Menlo
Park, 1999. — (Tech. Rep. / SRI International, Comput. Sci. Laboratory).

21. Goguen J., Winkler T., Meseguer J., Futatsugi K., Jouannaud J.-P. Intro-
ducing OBJ. — Menlo Park, 1992. — (Tech. Rep. / SRI International, Comput.
Sci. Laboratory; No SRI-CSL-92-03).

22. Zamulin A. V. Object-Oriented Specification by Typed Gurevich Machines //
Joint NCC & IIS Bull. Ser.: Comput. Sci. — 1998. — Issue 8. — P. 101—127.

23. Zamulin A. V. Typed Gurevich Machines Revisited // Joint NCC & IIS Bull.
Ser.: Comput. Sci. — 1997. — Issue 7. — P. 93—121.

24. Zamulin A. V. Generic Facilities in Object-Oriented ASMs // Lect. Notes
Comput. Sci. — 2000. — Vol. 1912. — P. 91—111.

Сеношенко К. О.

ОБЪЕКТНО-ОРИЕНТИРОВАННЫЕ СПЕЦИФИКАЦИИ:
ТЕОРЕТИКО-МНОЖЕСТВЕННЫЙ
И АЛГЕБРАИЧЕСКИЙ ПОДХОДЫ.

ОБЗОР

Препринт
91

Рукопись поступила в редакцию 29.11.01
Рецензент И. С. Ануреев
Редактор А. А. Шелухина

Подписано в печать 10.04.02
Формат бумаги 60 × 84 1/16 Объем 2.3 уч.-изд.л., 2.5 п.л.
Тираж 50 экз.

НФ ООО ИПО “Эмари” РИЦ, 630090, г. Новосибирск, пр. Акад. Лаврентьева, 6

