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Program logics are modal logics for reasoning about programs and sys-
tems. In general case of semantics we examine the expressive power, model
checking and decidability for pairwise fusions of the following program log-
ics: (1)Elementary Propositional Dynamic Logic, Computation Tree Logic
extended by actions, and the propositional µ-Calculus with (2)Propositional
Logic of Knowledge and Propositional Logic of Common Knowledge. The
focus of the paper is on the study of the model checking problem for these
combined logics with respect to Forgetful Asynchronous semantics and Syn-
chronous Perfect Recall semantics.
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В общем случае семантики исследованы выразительная сила, слож-
ность проверки на модели и разрешимость для следующих программных
логик: (1) Элементарной Пропозициональной Динамической Логики
(EPDL), Ветвящейся Логики, расширенной действиями (Act-CTL), и
Пропозиционального µ-исчисления (µC), обогащенных средствами (2)
Пропозициональной Логики Знаний или Пропозициональной Логики
Общих Знаний. Основным в статье является изучение задачи проверки
на модели для вышеперечисленных комбинированных логик в забыва-
ющей асинхронной семантике и синхронной семантике с абсолютной
памятью.
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1. INTRODUCTION AND MOTIVATION

Program logics are modal logics for reasoning about programs and sys-
tems. Traditionally they comprise dynamic logics, temporal logics and their
variants with explicit fixpoints [21, 10]. A recent addition to the family of
program logics is a logic of knowledge [12]. In this paper we study some al-
gorithmic properties of fusions of the propositional logic of knowledge with
the propositional dynamic and state-based temporal logics extended by fix-
points. In general case of semantics we examine the expressive power (E),
model checking (M) and decidability (D) for fusions of
(1) Elementary Propositional Dynamic Logic (EPDL),
(2) Computation Tree Logic extended by actions (Act-CTL),
(3) the propositional µ-Calculus (µC)

with
(a) Propositional Logic of Knowledge for n agents (PLKn),
(b) Propositional Logic of Common Knowledge for n agents (PLCn).
Results for this case can be presented in Fig. 1. In particular, we examine
the model checking problem for combined logics and trace-based seman-
tics. We are especially interested in two extreme subcases: Forgetful Asyn-
chronous finite systems (FAS) vs. Synchronous finite systems with Perfect
Recall (PRS). “Trace-based” means that possible worlds incorporate traces.
“Perfect recall” means that every possible world incorporates information
how it was reached, while “forgetful” means that information of this kind
is not available in any world. “Synchronous” means that traces of different
lengths can be distinguished, while “asynchronous” means that some traces
of different lengths can be indistinguishable.

It is quite natural that in the FAS subcase neither of the discussed
combined logics can express more than it can express in a background fi-
nite system. In other words, for formulae of these logics every system is

EXPTIME-complete D︷ ︸︸ ︷
linear M

EPDL-Cn
E
<

linear M
Act-CTL-Cn

E
<

exp. M
µPLCn

n=1
‖

n>1
∨

n=1
‖

n>1
∨ ‖

linear M
EPDL-Kn︸ ︷︷ ︸
PSPACE-

complete D

E
<

linear M
Act-CTL-Kn

E
<

exp. M
µPLKn︸ ︷︷ ︸

EXPTIME-complete D

Fig. 1. Logic fusion summary
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an abstraction of forgetful asynchronous traces generated by this system.
It implies that all results represented in Fig. 1 remain valid for the FAS
subcase.

In contrast, in the PRS subcase the model checking problem becomes
much more complicated than in background finite systems. We show that
for n > 1 this particular model checking problem

• is PSPACE-complete for EPDL-Cn,
• has non-elementary upper and lower bounds for Act-CTL-Kn,
• is undecidable for Act-CTL-Cn, µPLKn and µPLCn.

These results correlate with [23] where model checking problem for syn-
chronous systems with perfect recall and fusions of PLKn and PLCn with
Propositional Logic of Linear Time (PLLT) have been examined. The cited
paper has demonstrated that model checking for synchronous systems with
perfect recall in the two agents case (n = 2)

• is PSPACE-complete for UNTIL-free PLLT-Cn,
• has non-elementary upper and lower bounds for PLLT-Kn,
• is undecidable for PLLT-Cn.

We should remark that our results and the results presented in [23] are
closely related to [22], where PSPACE-completeness and undecidability
have been proved for model checking formulae of PLCn in synchronous and
asynchronous systems with perfect recall. The paper [23] and the present
paper extend time-free results from [22] for linear/branching time.

Importance of study of combined logics in the framework of trace-based
semantics in synchronous perfect recall settings rely upon their characteris-
tic as logics of knowledge acquisition. We would like to argue this charac-
teristic and motivate our variant for synchronous perfect recall semantics by
analysis of a puzzle below. A knowledge-based analysis of a muddy children
puzzle, synchronous attack and Byzantine agreement is very popular in the
literature on logic of knowledge (e.g., [12]), but we would like to exploit
another well-known (but hard for newcomers) puzzle:

A set of coins consists of 14 valid and 1 false coin. All valid
coins are of the same weight while the false coin has another
weight. One of the valid coins is marked while others (includ-
ing the false one) are unmarked. Is it possible to identify a
false coin by balancing them 3 times at most?

We would like to refer to this puzzle as False Coin Puzzle. Let us generalize
it as a parameterized problem FCP (N,M) for N ≥ 1 and M ≥ 0 in such a
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way that the original puzzle becomes a particular instance of FCP (N,M)
with N = 14 and M = 3:

A set of coins consists of (N +1) enumerated coins (i.e., coins
are marked by their numbers). The last coin is valid. A single
coin with a number in [1..N ] is false, other coins with numbers
in [1..N ] are valid. All valid coins have the same weight while
weight of the false coin is different. Is it possible to identify a
false coin by balancing them M times at most?

In informal analysis of FCP (N,M) we would like to refer to a person
who has to solve the problem as an agent. The agent does not know neither
a number of a false coin, nor whether it is lighter or heavier than valid
coins. Nevertheless, this number is in [1..N ], and the false coin is either
lighter (l) or heavier (h). The agent can make balancing queries and read
balancing results after each query. A balancing query b(L,R) is an action
which consists in balancing the coins with numbers in L ⊆ [1..N +1] on the
left pan and coins with numbers in R ⊆ [1..N + 1] on the right pan (since
the agent may take the valid coin (N + 1)), where L and R are disjoint sets
with |L| = |R|. There are three possible balancing results: <, >, and =,
which means that the left pan is lighter, heavier than or equal to the right
pan, respectively, in accordance with the number and weight of the false
coin. Of course, there are initial states (marked by ini) which represent a
situation when no query has been made.

Let us summarize. The agent acts in the space [1..N ] × {l, h} ×
×{<,>,=, ini} consisting of states. His/her admissible actions for moving
between states are all b(L,R) for disjoint L,R ⊂ [1..N + 1] with |L| = |R|.
The only information available for the agent in a state (i.e., which gives
him/her an opportunity to distinguish between states) is a balancing re-
sult. The agent should acquire knowledge about the number of the false
coin from a sequence which begins from the initial state and then consists
of M queries and M correspondent results. A combination of Propositional
Dynamic Logic and Propositional Logic of Knowledge seems to be a very
natural framework for expressing this quest:

〈∪...b(L,R)〉...〈∪b(L,R)〉︸ ︷︷ ︸
M times

( ∨
f∈[1..N ]

K(a false coin number is f)
)
,

where all non-deterministic choices ∪... range over all L,R ⊂ [1..N+1] such
that L ∩R = ∅ and |L| = |R|.
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1, l,=
b{1,2},{5,6}
−−−−−−→ 1, l, < 1, h,<

b{1,2},{5,6}
−−−−−−→ 1, h,>

3, l, >
b{1,2},{5,6}
−−−−−−→ 3, l,= 3, l, ini

b{1,2},{5,6}
−−−−−−→ 3, l,=

Fig. 2. Transitions between some states for FCP (5, 2)

For simplicity of further discussion, let us fix some parameter’s values,
say, N = 5 and M = 2. In this case there are 40 states and 140 actions
(some states and transitions fired by some action are depicted in Fig. 2).
It is natural to assume that the agent remembers the sequence of balancing
queries which he/she has done, and the sequence of corresponding balancing
results, since he/she acquire knowledge about the number of the false coin
from these sequences. Moreover, the agent can not distinguish between two
sequences of states iff he/she has made equal sequences of queries and read
equal results along these sequences. We would like to refer to this property
as synchronous perfect recall hypothesis. In general, a synchronous perfect
recall hypothesis is a property of an agent to remember a sequence of exe-
cuted actions with a sequence of corresponding distinguishing information
for intermediate states, and his/her ability to distinguish between sequences
of states in accordance with these “memories”. An agent knows some fact iff
this fact holds in all indistinguishable situations. Fig. 3 illustrates knowl-
edge evolution and acquisition under assumption of synchronous perfect
recall.

2. BACKGROUND LOGICS

All logics we are going to discuss are some propositional polymodal log-
ics. Let {true, false} be boolean constants, Prp and Rlt be disjoint finite
alphabets of propositional variables and relational symbols. Syntax of our
logics consists of formulae which are constructed from boolean constants,
propositional variables, and connectives1 ¬, ∧, ∨ and necessity/eventuality
modalities associated with relation symbols: if r ∈ Rlt and φ is a formula
then (�rφ) and (�r φ) are formulae2. We would like to define semantics of
logics in models, which are called Kripke structures. A model M is a triple
(DM , IM , VM ), where the domain DM is a nonempty set of possible worlds,
the interpretation IM maps relation symbols into binary relations on DM ,

1→ and ↔ are admissible too but as standard abbreviations only.
2They are read as “box/diamond r φ” or “after r always/sometimes φ”, respectively.
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1, l, ini
b{1,2},{5,6}−−−−−−→ 1, l, <

b{1},{2}−−−−−−→ 1, l, <
false coin

number is 1

2, l, ini
b{1,2},{5,6}−−−−−−→ 2, l, <

b{1},{2}−−−−−−→ 2, l, >
false coin

number is 2

5, h, ini
b{1,2},{5,6}−−−−−−→ 5, h, <

b{1},{2}−−−−−−→ 5, h, =
false coin

number is 5

︸ ︷︷ ︸
false coin num-
ber is in [1..N ]

︸ ︷︷ ︸
false coin is lighter with number 1 or 2,

xor it is heavier with number 5

︸ ︷︷ ︸
knowledge of false coin number

Fig. 3. Evolving knowledge in a synchronous system with perfect recall

and the valuation VM maps propositional variables into subsets of DM . A
model can be considered as a labeled oriented graph with nodes and edges
marked by sets of propositional variables and action symbols, respectively.
Semantics of our logics is defined in terms of satisfiability: for every model
M and every formula φ, M(φ) is the set of all possible worlds which satisfy
the formula φ in the model M . For every model M , every possible world
w and every formula φ, let us write w |=M φ iff w ∈ M(φ). For boolean
constants |=M is defined in a standard way. For propositional variables we
have: w |=M p iff w ∈ VM (p). For connectives |=M is defined in a standard
way too. Semantics of modalities is:

• w |=M (�r φ) iff (w,w′) ∈ IM (r) and w′ |=M φ for some w′,
• w |=M (�rφ) iff (w,w′) ∈ IM (r) implies w′ |=M φ for every w′.

A very useful general notion is abstraction for polymodal logics. Let Φ
be a set of formulae, M1 = (I1, D1) and M2 = (I2, D2) be two models and
g : D1 → D2 be a mapping. The model M2 is called an abstraction 3 of the
model M1 with respect to formulae in Φ iff for any formula φ ∈ Φ and any
state s ∈ D1 the following holds: s |=1 φ ⇔ g(s) |=2 φ.

3g is called an abstraction mapping in this case.
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A particular example of propositional polymodal logics is Propositional
Logic of Knowledge (PLK) [12]. A special terminology, notation and models
are used in this framework. Let n > 0 be an integer number. An alphabet of
relational symbols consists of agents [1..n]. Another notation for modalities
is adopted: if i ∈ [1..n] and φ is a formula, then (Kiφ) and (Siφ) are
formulae4 instead of (�i φ) and (�i φ). Agents should be interpreted in
models by equivalence relations: IM (i) should be a symmetric, reflexive,
and transitive binary relation for every i ∈ [1..n] and every model M =
(DM , IM , VM ). Every model M , where all agents in [1..n] are interpreted
in this way, is denoted as (DM ,

1∼, .. n∼, VM ) instead of (DM , IE , VM ) with
IM (i) = i∼ for every i ∈ [1..n]. Thus, Propositional Logic of Knowledge for n
agents (PLKn) is defined. We would like to note that PLKn is a polymodal
variant of the basic propositional modal logic S5 [3].

Common knowledge of several agents is a very important notion for
distributed systems [12]. We would like to define Propositional Logic with
Common knowledge (PLC) in the following manner. Let n > 0 be an
integer number. In this case an alphabet of relational symbols consists of
the sets of agents 2[1..n]. Another notation for modalities is adopted: if
G ⊆ [1..n] and φ is a formula, then (CGφ) and (JGφ) are formulae5 instead
of �Gφ and �G φ. Agents should be interpreted in models by equivalence
relations (as in PLKn). Sets of agents should be interpreted in models by
equivalence relations generated by participating agents: IM (G) should be

a reflexive-transitive closure
(⋃

i∈G IM (i)
)∗

for every G ⊆ [1..n] and every
model M = (DM , IM , VM ). Every model M , where all agents [1..n] are
interpreted by equivalence relations 1∼, .. n∼, is denoted as (DM ,

1∼, .. n∼, VM )
instead of (DM , IE , VM ) with IM (i) = i∼ for every i ∈ [1..n]. We would like
to adopt the same notation for PLCn models too, instead of (DM , IE , VM )

with IM (G) =
(⋃

i∈G IM (i)
)∗

for every G ⊆ [1..n]. Thus, Propositional
Logic with Common knowledge for n agents (PLCn) is defined. We would
like to note that PLCn is an extension of PLKn, since C{i} and J{i} are just
Ki and Si for every i ∈ [1..n].

Elementary Propositional Dynamic Logic (EPDL) [15] is another par-
ticular propositional polymodal logic. In its framework, another special

4They are read as “(agent) i knows” and “(agent) i supposes”.
5They are read as “φ is common knowledge of (agents) in G” and “φ is joint hypothesis

of (agents) in G”.
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terminology and notation are used. In this case an alphabet of relational
symbols consists of action symbols Act. Another notation for modalities is
adopted: if a ∈ Act and φ is a formula, then ([a]φ) and (〈a〉φ) are formulae6
instead of (�aφ) and (�a φ), respectively. But in contrast to PLK, no restric-
tion on models is imposed. Thus, EPDL is just a polymodal variant of the
basic propositional modal logic K [3].

Another propositional polymodal logic which we would like to define is
the basic propositional branching time temporal logic Computational Tree
Logic (CTL) [10, 4, 6] extended by action symbols. We would like to refer
to this logic as CTL with actions (Act-CTL). Syntax of Act-CTL exploits
special constructors associated with action symbols: if a ∈ Act, φ and ψ
are formulae, then (AXaφ), (EXaφ), (AGaφ), (AFaφ), (EGaφ), (EFaφ),
(AφUaψ), and (EφUaψ)7 are formulae too. For every sequence seq =
s1...sj ... and every finite j ≤ |seq|, let us denote an element sj by seqj
and a suffix sj ... by seqi. For every a ∈ Act, an a-trace in a model M is
a sequence of possible worlds w1...wjwj+1... such that (wj , wj+1) ∈ IM (a)
for every component j; an a-run is a maximal a-trace. (Sic! A run can be
finite.) Semantics of special constructors follows:

• w |=M AXaφ iff wrld2 |=M φ for every a-run with wrld1 = w,
• w |=M EXaφ iff wrld2 |=M φ for some a-run with wrld1 = w,
• w |=M AGaφ iff wrldj |=M φ for every a-run with wrld1 = w

and every 1 ≤ j ≤ |wrld|,
• w |=M AFaφ iff wrldj |=M φ for every a-run with wrld1 = w

and some 1 ≤ j ≤ |wrld|,
• w |=M EGaφ iff wrldj |=M φ for some a-run with wrld1 = w

and every 1 ≤ j ≤ |wrld|,
• w |=M EFaφ iff wrldj |=M φ for some a-run with wrld1 = w

and some 1 ≤ j ≤ |wrld|,
• w |=M A(φUaψ) iff wrldj |=M φ and wrldk |=M ψ

for every a-run with wrld1 = w,
for some 1 ≤ k ≤ |wrld| and every 1 ≤ j < k,

• w |=M E(φUaψ) iff wrldj |=M φ and wrldk |=M ψ
for some a-run with wrld1 = w,

for some 1 ≤ k ≤ |wrld| and every 1 ≤ j < k.
6They are read as “box/diamond a φ” or “after a always/sometimes φ”, respectively.
7A is read as “for all futures”, E — “for some futures”, X — “next time”, G — “always”,

F — “sometime”, U — “until”, and a sup-index a is read as “in a-run”.
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In particular, CTL = Act-CTL for a singleton alphabet Act. In general,
Act-CTL is an extension of EPDL, since AXa and EXa are just [a] and 〈a〉
for every a ∈ Act.

The propositional µ-Calculus (µC) [20, 21] is the next logic which we
would like to discuss. It is EPDL extended with fixpoints. Syntax of µC
expands EPDL syntax: if p ∈ Prp and φ is a formula with positive in-
stances8 of p, then (µp.φ) and (νp.φ) are formulae9. Informally speaking,
µp.φ and νp.φ in finite models (by the finite-case of the Tarski—Knaster fix-
point theorem) are “abbreviation” of infinite disjunctions and conjunctions:

• false ∨ φp(false) ∨ φp(φp(false)) ∨ . . . =
∨
i≥0 φ

i
p(false),

• true ∧ φp(true) ∧ φp(φp(true)) ∧ . . . =
∧
i≥0 φ

i(true),

where φp(ψ) is a result of substitution of a formula ψ instead of p, φ0
p(ψ) is

ψ, and φi+1
p (ψ) is φp(φip(ψ)) for i ≥ 0. But in general, semantics of µ and ν

can be defined in the following way. For every modelM , every set S ⊆ DM ,
and every p ∈ Prp, let us denote by MS/p a model which agrees with M
everywhere, but IM (p) = S. For every model M , every p ∈ Prp, and every
formula φ without negative instances of p, λS. MS/p(φ) : S �→ MS/p(φ)
is a monotonous non-decreasing mapping on 2DM . By the Tarski—Knaster
theorem [27], this function has a non-empty set of fixed points S = MS/p(φ)
and, in particular, the least and the greatest fixed points (with respect to
set inclusion ⊆): µ(λS. MS/p(φ)) and ν(λS. MS/p(φ)). In these conditions

• w |=M (µp.φ) iff w ∈ µ(λS. MS/p(φ))
(or iff w ∈ S for every S ⊆MS/p(φ)),

• w |=M (νp.φ) iff w ∈ ν(λS. MS/p(φ))
(or iff w ∈ S for some S ⊇MS/p(φ)).

In general, µC is an extension of Act-CTL according to the following:

AXaφ↔ [a]φ EXaφ↔ 〈a〉φ
AGaφ↔ νp. (φ ∧ [a]p) AFaφ↔ µp. (φ ∨ [a]p)
EGaφ↔ νp. (φ ∧ 〈a〉p) EFaφ↔ µp. (φ ∨ 〈a〉p)
A(φUaψ)↔ µp. (ψ ∨ (φ ∧ [a]p)) E(φUaψ)↔ µp. (ψ ∨ (φ ∧ 〈a〉p))

8I.e, p is in the range of even number of negations (otherwise it is negative instance).
9They are read as “mu/nu p φ” or “the least/greatest fixpoint p of φ”, respectively.
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3. COMBINING KNOWLEDGE AND FIXPOINTS

We are going to define a combined Propositional Logic with fixpoints
and Common knowledge (µPLC). Let [1..n] be a set of agents (n > 0), and
Act be a finite alphabet of action symbols. Syntax of this logic admits all
knowledge modalities CG, and JG for G ⊆ [1..n], all action modalities [a]
and 〈a〉 for a ∈ Act, all fixpoints µp and νp for p ∈ Prp (which are applicable
to formulae with non-negative instances of p). Semantics is defined in terms
of satisfiability. An environment is a tuple E = (DE ,

1∼, .. n∼, IE , VE) such
that (DE ,

1∼, .. n∼, VE) is a model for PLCn and (DE , IE , VE) is a model
for µC. For every environment E and every formula φ, E(φ) is the set of
all possible worlds which satisfy formula φ in E. For every environment
E, every possible world w and every formula φ, let us write w |=E φ iff
w ∈ E(φ). For integrity of definition, let us briefly recall the definition of
|=:

• w |=E true and w |=/ Efalse;
• for p ∈ Prp, w |=E p iff w ∈ VE(p);
• w |=E (¬φ) iff w |=/ Eφ;
• w |=E (φ ∧ / ∨ ψ) iff w |=E φ and/or w |=E ψ;
• for G ⊆ [1..n],
w |=E (CG/JGφ) iff
for every/some finite sequence of worlds wrld,
for every/some finite sequence of agents agn ∈ G∗,
such that
w is the first world in wrld, |wrld| = |agn|+ 1
and wrldj

agnj∼ wrldj+1 for all j ∈ [1..|agn|]
implies/and w′ |=E φ, where w′ is the last world in wrld;

• for a ∈ Act and {} ≡ [ ]/〈〉, w |=E ({a}φ) iff
(w,w′) ∈ IM (a) implies/and w′ |=E φ for every/some w′;
• w |=E (µ/νp.φ) iff w ∈ µ/ν(λS. ES/p(φ)).

Thus, Propositional Logic with fixpoints and Common knowledge of n
agents (µPLCn) is defined. For n agents we can similarly define Propo-
sitional Logic of Knowledge with fixpoints (µPLKn), as well as CTL with
actions and Common knowledge (Act-CTL-Cn) and CTL with actions and
Knowledge (Act-CTL-Kn), EPDL with Common knowledge (EPDL-Cn)
and EPDL with Knowledge (EPDL-Kn).
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Proposition 1. All expressibilities between logics listed above are pre-
sented below:
n = 1: EPDL-Cn < Act-CTL-Cn < µPLCn

‖ ‖ ‖
EPDL-Kn < Act-CTL-Kn < µPLKn

n > 1: EPDL-Cn < Act-CTL-Cn < µPLCn
∨ ∨ ‖

EPDL-Kn < Act-CTL-Kn < µPLKn

All expressibilities have linear complexity. All non-expressibilities can be
justified in finite environments which represent finite games for two players.

Proof (sketch).
All the logics with knowledge can be expressed with linear complexity by

their counterparts with common knowledge, since (as we have mentioned)
C{i} and J{i} are just Ki and Si for all i ∈ [1..n]. Thus, EPDL-Kn ≤
EPDL-Cn, Act-CTL-Kn ≤ Act-CTL-Cn, and µPLKn ≤ µPLCn for every
n > 0 in general, and EPDL-K1 = EPDL-C1, Act-CTL-K1 = Act-CTL-C1,
and µPLK1 = µPLC1 for a single agent (n = 1) in particular.

Next, EPDL-Kn ≤ Act-CTL-Kn and EPDL-Cn ≤ Act-CTL-Cn with
linear complexity for every n > 0, since (as we have also mentioned) AXa

and EXa are just [a] and 〈a〉 for every a ∈ Act.
Then Act-CTL-Kn ≤ µPLKn and Act-CTL-Cn ≤ µPLCn with linear

complexity for every n > 0, since (as we have also mentioned)

AXaφ↔ [a]φ EXaφ↔ 〈a〉φ
AGaφ↔ νp. (φ ∧ [a]p) AFaφ↔ µp. (φ ∨ [a]p)
EGaφ↔ νp. (φ ∧ 〈a〉p) EFaφ↔ µp. (φ ∨ 〈a〉p)
A(φUaψ)↔ µp. (ψ ∨ (φ ∧ [a]p)) E(φUaψ)↔ µp. (ψ ∨ (φ ∧ 〈a〉p))

All horizontal inequalities follow immediately from EPDL < Act-CTL
< µC. Really, let us assume that every agent i ∈ [1..n] has perfect knowl-
edge about worlds, i.e. it is interpreted as identity: i∼ = =. In this perfect
knowledge case EPDL = EPDL-Kn = EPDL-Cn, Act-CTL = Act-CTL-Kn
= Act-CTL-Cn, and µC = µPLKn = µPLCn. For justification of inequal-
ities in the perfect knowledge case, let P and ¬P be models depicted in
Fig.4. We have:

• for every EPDL formula φ, there exists an integer k ≥ 0 such that
(l) |=P φ ⇔ (l) |=¬P φ for every l ≥ k,
while (m) |=P (AGnextp) and (m) |=/ ¬P (AGnextp) for every m ≥ 0;

14



P :

p︷ ︸︸ ︷
. . .

k+1◦ next−→k◦ . . . 1◦next−→0◦

¬P : . . .
k+1◦ next−→k◦ . . . 1◦︸ ︷︷ ︸

p

next−→0◦
¬p

Fig. 4. Models which distinguish EPDL, Act-CTL and µC

thus no EPDL formula is equivalent to Act-CTL formula (AGnextp)
(i.e., CTL formula (AGp));
• for every Act-CTL formula φ, there exists an integer k ≥ 0 such that

(l) |=P φ ⇔ (k) |=P φ for every l ≥ k,
while (2m) |=¬P (µq.(〈next〉[next](¬p ∨ q))) and
(2m+ 1) |=/ ¬P (〈next〉[next](¬p ∨ q))) for every m ≥ 0;
thus no Act-CTL formula is equivalent to µC formula
(µq.(〈next〉[next](¬p ∨ q))).

For every k ≥ 0, finite intervals [0..k] of both models P and ¬P can be
represented as very simple finite games Pk and ¬Pk for two players, where

• positions are integers in the interval [0..k],
• both players have equal possible moves next,
• the winning position is a position where (¬p) holds (i.e., only 0 in
¬P ).

Thus, in a class of parameterized finite games Pk and ¬Pk (k ≥ 0):
• EPDL can not express existence of a winning position, while Act-
CTL can, by formula ¬(AGnextp),
• Act-CTL can not express existence of a winning strategy, while µC
can, by formula (µq.(〈next〉[next](¬p ∨ q))).

All vertical inequalities follow immediately from PLK2 < PLC2. Really,
let us assume that every action a ∈ Act is trivial, i.e., it is interpreted as
the empty set ∅. In this trivial case PLKn = EPDL-Kn = Act-CTL-Kn and
PLCn = EPDL-Cn = Act-CTL-Cn. For justification of inequalities in the
trivial case, let EO and ¬EO (Even-Odd) be models depicted in Fig. 5.

• For every PLK2-formula φ, there exists an integer k ≥ 0 such that
(l) |=EO φ ⇔ (l) |=¬EO φ for every l ≥ k.
But (m) |=EO (C{1,2}p) and (m) |=/ ¬EO(C{1,2}p) for every m ≥ 0.
Thus, no PLK2 formula is equivalent to PLC2 formula (C{1,2}p).
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EO :

p︷ ︸︸ ︷
. . .

2k+2◦ 1←→2k+1◦ 2←→2k◦ . . . 2←→0◦

¬EO : . . .
2k+2◦ 1←→2k+1◦ 2←→2k◦ . . .︸ ︷︷ ︸

p

2←→0◦
¬p

Fig. 5. Models which distinguish PLKn and PLCn for n > 1

For every k ≥ 0, finite intervals [0..k] of both models EO and ¬EO can
be presented as very simple finite games EOk and ¬EOk for two players,
where

• positions are integers in the interval [0..k],
• both players have trivial moves,
• the winning position is a position where (¬p) holds (i.e., 0 in ¬EO).

Thus, in a class of parameterized finite games EOk and ¬EOk (k ≥ 0),
PLK2 can not express common knowledge about existence of a winning
position, while PLC2 can.

Finally, µPLKn = µPLCn due to equivalencies

CGφ↔ νp.(φ ∧ (
∧
i∈GKip)) JGφ↔ µp.(φ ∨ (

∨
i∈G Sip))

�

4. ALGORITHMIC PROBLEMS FOR COMBINED LOGICS

In general, model checking is a problem of checking whether w |=M φ for
an input world w, a model M , and formula φ. A particular model checking
problem is to check whether w |=E φ for an input world w, a finite envi-
ronment M , and a formula φ of a combined logic EPDL-Kn, EPDL-Cn,
ACT -CTL-Kn, ACT -CTL-Cn, µPLKn, or µPLCn. Let us discuss param-
eters used for measuring the model checking complexity in this particular
case. We can assume that presentation of every world has some fixed com-
plexity and hence we can ignore complexity of this input data. In contrast,
this assumption is invalid for complexity of two other input data (a model
and a formula). If E is a finite environment presented as a finite graph, then
let dE and rE be the number of nodes and the number of edges (including
knowledge); let mE be an overall complexity (dE + rE) of the model. If
an environment E is implicit, then we would like to use these parameters

16



without subscripts, i.e., just d, r and m. If φ is a formula, then let fφ be
a size of φ. Alternating fixpoint depth is another complexity parameter. If
φ is a formula, then let aφ be 1 plus the number of alternations in nesting
µ and ν with respect to the syntactical dependence and positive/negative
instances. Formally this parameter is defined by induction on the formula
structure:

• aφ = 1 iff φ does not contain any fixed point,
• aφ∧ψ = aφ∨ψ = max(aφ, aψ),
• a〈a〉φ = a[a]φ = aKiφ = aSiφ = aCGφ = aJGφ = aφ,
• aµx.φ = max(aφ ,

{(1 + aνy.ψ) : (νy.ψ) is a positive subformula of φ
and ψ contains an instance of x} ,

{(1 + aµy.ψ) : (µy.ψ) is a negative subformula of φ
and ψ contains an instance of x}),

• aνx.φ = max(aφ ,
{(1 + aµy.ψ) : (µy.ψ) is a positive subformula of φ

and ψ contains an instance of x} ,
{(1 + aνy.ψ) : (νy.ψ) is a negative subformula of φ

and ψ contains an instance of x}).
If a formula φ is implicit then we would like to use these parameters fφ and
aφ without subscripts i.e., just f and a.

Proposition 2. There exists a model checking algorithm for worlds of
finite environments which runs

• in linear time O(m×f) for formulae of fixpoint-free logics with (com-
mon) knowledge EPDL-Kn, EPDL-Cn, Act-CTL-Kn, and Act-CTL-
Cn;
• in exponential time O(m× f)× (d×fa )a−1 for formulae of logics with

fixpoints and (common) knowledge µPLKn and µPLCn.

Proof (sketch).
First we would like to reduce the model checking problem for all these

logics in finite models to the model checking problem for µC in finite models.
Then we would like to apply an efficient model checking algorithm for µC in
finite models and evaluate the overall complexity for original logics. In ac-
cordance with proposition 1, all logics EPDL-Kn, EPDL-Cn, Act-CTL-Kn,
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Act-CTL-Cn and µPLCn are expressible in µPLKn with linear complexity:

AXaφ↔ [a]φ EXaφ↔ 〈a〉φ
AGaφ↔ νp. (φ ∧ [a]p) AFaφ↔ µp. (φ ∨ [a]p)
EGaφ↔ νp. (φ ∧ 〈a〉p) EFaφ↔ µp. (φ ∨ 〈a〉p)
A(φUaψ)↔ µp. (ψ ∨ (φ ∧ [a]p)) E(φUaψ)↔ µp. (ψ ∨ (φ ∧ 〈a〉p))
CGφ↔ νp.(φ ∧ (

∧
i∈GKip)) JGφ↔ µp.(φ ∨ (

∨
i∈G Sip))

Formulae of EPDL-Kn are automatically formulae of µPLKn and their
alternating fixpoint depth is 1 (since they are fixpoint-free). Formulae of
EPDL-Cn, Act-CTL-Kn, and Act-CTL-Cn have alternating fixpoint depth
1 (since they are fixpoint-free). They are equivalent to formulae of µPLKn
with alternating fixpoint depth 1, since a new bounded variable introduced
in translation never occurs in subformulae.

Translation of µPLCn to µPLKn does not change the alternating fixpoint
depth of formulae for the same reason as above: no bounded propositional
variable introduced in translation occurs in subformulae.

Let us think of agents as auxiliary action symbols. Every environment
is a model where these auxiliary action symbols are interpreted as corre-
spondent agents. In these models formulae of µPLKn can be translated
to formulae of µC with the same alternating fixpoint depth in linear time:
Kiφ ↔ [i]φ and Siφ ↔ 〈i〉φ. Thus we can summarize: formulae of EPDL-
Kn, EPDL-Cn, Act-CTL-Kn, Act-CTL-Cn, µPLKn, and µPLCn can be
translated to equivalent (in environments) formulae of µC with the same
alternating fixpoint depth in linear time.

There are several correct model checking algorithms for worlds of fi-
nite models and formulae of µC. Unfortunately, NP ∩ co-NP is the best
known complexity class for model checking problem for worlds of finite
models and formulae of µC [11], and all known algorithms of this kind
are exponential. In particular, the so-called Faster Model Checking al-
gorithm (FMC-algorithm) has been described in [7]: FMC-algorithm is a
correct model checking algorithm for µC in finite models which runs in time
O(m × f) × (d×fa )a−1. Combining this upper bound with a linear time
translation which preserves the alternating fixpoint depth, we prove the
proposition. �

Decidability is another general algorithmical problem: whether there
exists a model M and a world w such that w |=M φ for an input formula
φ. A particular decidability problem is to check whether there exists an
environment E and a world w such that w |=M φ for an input formula φ
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of a combined logic EPDL-Kn, EPDL-Cn, ACT -CTL-Kn, ACT -CTL-Cn,
µPLKn, or µPLCn. For this problem the size of formulae is a single relevant
complexity parameter.

Proposition 3. EPDL-Kn is PSPACE-complete, while EPDL-Cn, Act-
CTL-Kn, Act-CTL-Cn, µPLKn, and µPLCn are EXPTIME-complete.

Proof (sketch).
It is known [12] that polymodal variants of the basic propositional modal

logicK and S5 are PSPACE-complete. EPDL-Kn is PSPACE-hard, since
it contains EPDL, i.e., polymodal K with a special notation. EPDL-Kn is
in PSPACE, since the decidability problem for EPDL-Kn can be reduced
to the decidability problem for polymodal S5 in a linear time. We would
like to reduce EPDL-Kn to PLK(n+2|Act|) as follows.

Let main and aux be new propositional variables, and for every a ∈ Act
let inda and erra be new agents. For every EPDL-Kn formula φ, let S5(φ)
be PLK(n+2|Act|) formula which results from φ after substitutions

• (main→ Kinda(aux→ Kerra(main→ ...))) instead of ([a]...),
• (main ∧ Sinda(aux ∧ Serra((main ∧ ...))) instead of (〈a〉...)

for every a ∈ Act. Then EPDL-Kn formula φ is satisfiable iff PLK(n+2|Act|)
formula S5(φ) is satisfiable.

Correctness of this reduction for every EPDL-Kn formula φ is based on
the ability to simulate every binary relation by a pair of special equivalences
and a pair of auxiliary monadic predicates. For simplicity of its justifica-
tion, we would like to exploit a notation of Propositional Dynamic Logic
(PDL) [13, 17, 21, 18] for S5(φ) representation. In particular, for every
PLK(n+2|Act|) model, (Ki...) and (Si...) are equivalent to ([i]...) and (〈i〉...)
for every i ∈ [1..n], as well as for every a ∈ Act

• (main→ Kinda(aux→ Kerra(main→ ...))) is equivalent to
([main?; inda; aux?; erra; main?]...),

• (main ∧ Sinda(aux ∧ Serra((main ∧ ...))) is equivalent to
(〈main?; inda; aux?; erra; main?〉...).

Thus we can assume that PLK(n+2|Act|) formula S5(φ) is written in the
PDL notation. Satisfiability of PLK(n+2|Act|) formula S5(φ) trivially implies
satisfiability of EPDL-Kn formula φ, since every a ∈ Act can be interpreted
as a PDL program (main?; inda; aux?; erra; main?). For validation of a
backward implication, let us assume that φ is satisfiable in some EPDL-Kn
environment E. For every a ∈ Act and all possible worlds u,w ∈ DE, let
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triple (u, a, w) be a new artificial distinguishable world. Let us define a
PLK(n+2|Act|) model M as follows:

• DM = DE ∪ {(u, a, w) : u,w ∈ DE, a ∈ Act};
• for every i ∈ [1..n], i∼ in M is
i∼ in E extended by equality = on {(u, a, w) : u,w ∈ DE , a ∈ Act};

• for every a ∈ Act, inda∼ in M is the least equivalence which contains
{(u , (u, a, w)) : u,w ∈ DE , a ∈ Act, (u,w) ∈ IE(a)};
• for every a ∈ Act, erra∼ in M is the least equivalence which contains
{((u, a, w) , w) : u,w ∈ DE , a ∈ Act, (u,w) ∈ IE(a)};
• for every p ∈ Prp, VM (p) = VE(p);
• VM (main) = DE and VM (aux) = DE \DM .

In this model M , the input-output semantics of a PDL program

(main?; inda; aux?; erra; main?)

is equal to IE(a) for every a ∈ Act. Hence, for every world w ∈ DE :
w |=E φ iff w |=M S5(φ). So the PLK(n+2|Act|) formula S5(φ) is satisfiable
in the constructed model M . Thus PSPACE-completeness for EPDL-Kn
is proved.

Let us prove EXPTIME-completeness for Act-CTL-Kn, EPDL-Cn,
Act-CTL-Cn, µPLKn, and µPLCn. EXPTIME-completeness is known
for a variant of the basic propositional modal logic K extended with ne-
cessity/eventuality modalities for reflexive and transitive closure of a back-
ground single binary relation [12]. Hence Act-CTL-Kn is EXPTIME-hard,
since CTL can express necessity/eventuality modalities for reflexive and
transitive closure by AG and EF. EPDL-Cn, Act-CTL-Cn, µPLKn, and
µPLCn are also EXPTIME-hard by proposition 1. The logic µPLKn is in
EXPTIME, since the decidability problem for µPLKn can be reduced in
a linear time to the decidability problem for the propositional µ-Calculus
with converse (µC−)10. In µC−, if a ∈ Act and φ is a formula, then ([a−]φ)
and (〈a−〉φ are formulae such that

• w |=M (〈a−〉φ iff (w′, w) ∈ IM (r) and w′ |=M φ for some w′,
• w |=M ([a−]φ) iff (w′, w) ∈ IM (r) implies w′ |=M φ for every w′.

EXPTIME inclusion for µC− was demonstrated in [29] three years ago.
Reduction of µPLKn to µC− follows below. It implies that EXPTIME
includes µPLKn, as well as Act-CTL-Kn, EPDL-Cn, Act-CTL-Cn, and

10This logic is a variant of µC extended with inverse of binary relations.
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µPLCn (by proposition 1). For every i ∈ [1..n] let guyi be a new action
symbol. For every µPLKn formula φ, let MU(φ) be µC− formula which
results from φ after substitutions

• νp.(... ∧ [guyi]p ∧ [guyi−]p) instead of (Ki...),
• µp.(... ∨ 〈guyi〉p ∨ 〈guyi−〉p) instead of (Si...)

for every i ∈ [1..n]. Then µPLKn formula φ is satisfiable iff µC− formula
MU(φ) is satisfiable.

Correctness of this reduction for every µPLKn formula φ is based on the
ability to simulate every equivalence relation by a symmetric, reflexive and
transitive closure of a binary relation. We would like to exploit the PDL
notation for MU(φ) representation. In particular, for every model and for
every i ∈ [1..n],

• νp.(... ∧ [guyi]p ∧ [guyi−]p) is equivalent to ([(guyi ∪ guyi−)∗]...),
• µp.(... ∨ 〈guyi〉p ∨ 〈guyi−〉p) is equivalent to (〈(guyi ∪ guyi−)∗〉...),

while input-output semantics of a PDL program (guyi∪guyi−)∗ is an equiv-
alence relation. �

Let us summarize propositions 1, 2, and 3.
Theorem 1. The expressive power (E), model checking upper bounds

(M) and decidability complexities (D) of the combined logics EPDL-K, EPDL-
C, Act-CTL-K, Act-CTL-C, µPLK and µPLC in general case of semantics
enjoy the properties depicted on Fig. 1.

5. FORGETFUL ASYNCHRONOUS SYSTEMS

In this section we would like to examine trace-based forgetful asyn-
chronous environments generated from background environments. “Trace-
based” means that possible worlds are some sequences. “Forgetful” means
that information about the origin and generation of worlds is not available
for agents. “Asynchronous” means that traces of different lengths can be
indistinguishable.

Let E be an environment (DE ,
1∼, .. n∼, IE , VE). A trace-based Forgetful

Asynchronous environment generated by E is another environment
FAS(E) = (DFAS(E),

1∼fas, .. n∼fas, IFAS(E), VFAS(E)), where
• DFAS(E) is D+

E , i.e., the set of all non-empty sequences of states;
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• for every i ∈ [1..n] and for all wrld′, wrld′′ ∈ DFAS(E),

wrld′ i∼faswrld′′ iff w′ i∼ w′′,

where w′ and w′′ are the last elements in wrld′ and wrld′′, respec-
tively;
• for every a ∈ Act and for all wrld′, wrld′′ ∈ DFAS(E),

(wrld′, wrld′′) ∈ IFAS(E)(a) iff11 wrld′′ = wrld′∧w′′, (w′, w′′) ∈ IE(a),

where w′ and w′′ are the last elements in wrld′ and wrld′′, respec-
tively;
• for every p ∈ Prp and for every wrld ∈ DFAS(E),

wrld ∈ VFAS(E)(p) = iff wrld|wrld| ∈ VE(p).

Let us use some special notation in the study of the model checking problem
for forgetful asynchronous systems. Let D be a set of elements. For D let

• last-D : D+ → D be a function which maps every non-empty finite
sequence of elements of D to the last element of this sequence;
• D-past : D → 2D

+
be a function which maps every element d ∈ D

to the set of all finite sequences with this last element d.
Both functions can be extended on power-sets in the standard manner:

• last-D : 2D
+ → 2D be a function which maps every set of non-

empty finite sequences to the set of last elements of these sequences;
• D-past : 2D → 2D

+
be a function which maps every set of elements

to the set of all finite sequences with these last elements.
We would not distinguish these functions from their extensions.

Proposition 4. For every formula φ of the combined Propositional Logic
with fixpoints and Knowledge µPLK and for every environment E, the fol-
lowing holds:

• FAS(E)(φ) = DE-past(E(φ)),
• E(φ) = last-DE(FAS(E)(φ))

(i.e., the formula φ holds on a non-empty finite sequence of worlds in the
corresponding forgetful asynchronous environment FAS(E) iff φ holds on
the last world of the sequence in the background environment E).

11Here ∧ is concatenation of words.
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Proof (sketch) by induction on the formula structure.
A basic case for elementary formulae true and false is trivial:
• FAS(E)(true) = DFAS(E) = D+

E = DE-past(DE)
= DE-past(E(true)),

• E(false) = ∅ = last-DE(∅) = last-DE(FAS(E)(false))
for every environment E. Another basic case for propositional variables
immediately follows from the definition of a valuation for forgetful asyn-
chronous semantics:

• FAS(E)(p) = VFAS(E)(p) = {wrld ∈ DFAS(E) : wrld|wrld| ∈ VE(p)}
= DE-past(VE(p)) = DE-past(E(p)),

• E(p) = VE(p) = last-DE({wrld ∈ DFAS(E) : wrld|wrld| ∈ VE(p)})
= last-DE(VFAS(E)(p)) = last-DE(FAS(E)(p)).

for every environment E and every propositional variable p.
Inductive cases can be classified as follows:
1. φ ≡ (¬ψ) for some ψ,
2. (a) φ ≡ (ψ1 ∧ ψ2) or (b) φ ≡ (ψ1 ∨ ψ2) for some ψ1 and ψ2,
3. (a) φ ≡ ([a]ψ) or (b)φ ≡ (〈a〉ψ) for some action symbol a and some
ψ,

4. (a) φ ≡ (Kiψ) or (b) φ ≡ (Siψ) for some agent i and some ψ,
5. (a) φ ≡ (µp.ψ) or (b) φ ≡ (νp.ψ) for some variable p and some ψ.

Below we sketch out one subcase of each of these cases (since proofs for
both subcases are similar to each other but differ from case to case). We
use notation ind= for some equalities when they hold due to the induction
assumption.
Inductive case 1: φ ≡ (¬ψ) for some ψ. For every environment E the
following holds:

• FAS(E)(φ) = DFAS(E) \ FAS(E)(ψ) ind= D+
E \DE-past(E(ψ))

= D+
E \ {wrld ∈ D

+
E : wrld|wrld| ∈ E(ψ)}

= {wrld ∈ D+
E : wrld|wrld| /∈ E(ψ)}

= {wrld ∈ D+
E : wrld|wrld| ∈ E(φ)}

= DE-past(E(φ));

• E(φ) = DE \ E(ψ) ind= DE \ last-DE(FAS(E)(ψ))
ind= last-DE(D+

E \ FAS(E)(ψ)) = last-DE(FAS(E)(φ)).
Inductive case 2(a): φ ≡ (ψ1 ∧ ψ2). For every environment E the following
holds:
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• FAS(E)(φ) = FAS(E)(ψ1) ∩ FAS(E)(ψ2)
ind= DE-past(E(ψ1)) ∩DE-past(E(ψ2))
= {wrld ∈ D+

E : wrld|wrld| ∈ E(ψ1)}
∩{wrld ∈ D+

E : wrld|wrld| ∈ E(ψ2)}
ind= {wrld ∈ D+

E : wrld|wrld| ∈ E(φ)}
= DE-past(E(φ));

• E(φ) = E(ψ1) ∩ E(ψ2)
ind= last-DE(FAS(E)(ψ1)) ∩ last-DE(FAS(E)(ψ2))
ind= last-DE(FAS(E)(ψ1) ∩ FAS(E)(ψ2)))
= last-DE(FAS(E)(φ)).

Inductive case 3(b): φ ≡ (〈a〉ψ). For every environment E the following
holds:

• FAS(E)(φ) = {wrld∧w′ : wrld ∈ D∗E , w′ ∈ DE

and (wrld∧w′ ∧w′′) ∈ FAS(E)(ψ)
for some w′′ ∈ DE such that (w′, w′′) ∈ IE(a)}

ind= {wrld∧w′ : wrld ∈ D∗E , w′ ∈ DE and w′′ ∈ E(ψ)
for some w′′ ∈ DE such that (w′, w′′) ∈ IE(a)}

= {wrld∧w′ : wrld ∈ D∗E , w′ ∈ DE and w′ ∈ E(〈a〉ψ)}
= {wrld ∈ D+

E : wrld|wrld| ∈ E(φ)} = DE-past(E(φ));
• E(φ) = {w′ : w′ ∈ DE and w′′ ∈ E(ψ)

for some w′′ ∈ DE such that (w′, w′′) ∈ IE(a)}
ind= last-DE

(
{wrld∧w′ : wrld ∈ D∗E , w′ ∈ DE

and (wrld∧w′ ∧w′′) ∈ FAS(E)(ψ)
for some w′′ ∈ DE such that (w′, w′′) ∈ IE(a)}

)
= last-DE(FAS(E)(φ)).

Inductive case 4(b): φ ≡ (Siψ). For every environment E the following
holds:

• FAS(E)(φ) = {wrld′∧w′ : wrld′ ∈ D∗E , w′ ∈ DE

and (wrld′′∧w′′) ∈ FAS(E)(ψ)
for some wrld′′ ∈ D∗E

and w′′ ∈ DE such that w′ i∼ w′′}
ind= {wrld′ ∧w′ : wrld′ ∈ D∗E , w′ ∈ DE and w′′ ∈ E(ψ)

for some w′′ ∈ DE such that w′ i∼ w′′}
= {wrld′ ∧w′ : wrld ∈ D∗E , w′ ∈ DE and w′ ∈ E(φ)}
= {wrld ∈ D+

E : wrld|wrld| ∈ E(φ)} = DE-past(E(φ));
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• E(φ) = {w′ : w′ ∈ DE and w′′ ∈ E(ψ)
for some w′′ ∈ DE such that w′ i∼ w′′}

ind= last-DE

(
{wrld′ ∧w′ : wrld′ ∈ D∗E , w′ ∈ DE

and (wrld′′ ∧w′′) ∈ FAS(E)(ψ) for some wrld′′ ∈ D∗E
and w′′ ∈ DE such that w′ i∼ w′′}

)
= last-DE(FAS(E)(φ)).

Inductive case 5(a): (a) φ ≡ (µp.ψ). In accordance with the Tarski-Knaster
theorem [27], the least fixpoint µ(λs. f(s)) of a non-decreasing mapping
(λs. f(s)) : S → S over a complete lattice S is equal to the least upper
bound lubαf

α(⊥), where ⊥ is the least element of S, an ordinal α is less
than an ordinal number for S, and for every ordinal α within this range

fα(⊥) =

⎧⎨
⎩
⊥, if α = 0,
f(fβ(⊥)), if α = β + 1 for some β,
lubβ<αf

β(⊥), otherwise.

Let E be an environment. In this particular case we have

E(φ) : FAS(E)(φ) :

S = 2DE S = 2D
+
E

(λs. f(s)) = (λs. f(s)) =
(
λWRLD ⊆ D+

E .
=

(
λW ⊆ DE . (EW/p(ψ)

)
(FAS(E)WRLD/p(ψ)

)
(the set-theoretic union

⋃
is the least upper bound in S the empty set ∅ is

the least element in S)

For every ordinal α, let

Eα =

⎧⎨
⎩

E⊥/p, if α = 0,
E(Eβ(ψ))/p, if α = β + 1 for some β,
E(∪β<αEβ(ψ))/p, otherwise;

FAS(E)α =

⎧⎨
⎩

FAS(E)⊥/p, if α = 0,
FAS(E)(FAS(E)β(ψ))/p, if α = β + 1 for some β,
FAS(E)(∪β<αFAS(E)β(ψ))/p, otherwise.

Due to the induction assumption for ψ, it is easy to prove by the ordinal
induction that FAS(E)α = FAS(Eα) for every ordinal α. It implies that

last-DE(FAS(E)α(ψ)) = Eα(ψ) and DE-past(Eα(ψ)) = FAS(E)α(ψ)
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also for every ordinal α. It implies that

last-DE(FAS(E)(φ)) = E(φ) and DE-past(E(φ)) = FAS(E)(φ),

since φ ≡ µp.ψ and

E(µp.ψ) = Eα(ψ) , FAS(E)(µp.ψ) = FAS(E)α(ψ)

for some ordinal α in accordance with the Tarski—Knaster theorem.
This finishes the proof of the inductive case (5a). But we would like to

demonstrate below how to exploit the theory of abstract interpretation12

[8, 9] instead of the direct use of the Tarski—Knaster theorem.
First let us recall some rudiments of the related theory.
Let A and B be partially ordered sets, f : A → B and g : B → A be

total mappings. These mappings are a Galois connection iff for every a ∈ A
and b ∈ B :

f(a)
B
� b ⇔ a

A
� g(b).

If these mappings are a Galois connection, then the following standard nota-

tion A
g
←−
−→

f

B is used. The following least fixpoint property has been proven

in [9]:

Let A and B be complete partial orders, A
g
←−
−→

f

B be a Galois

connection with continuous f such that F (⊥A) = ⊥B, and
F : A→ A and G : B → B be monotone mappings such that
f ◦ F = G ◦ f . Then f(µF ) = µG.

Let E be an environment. The sets C = 2DE and
D = {WRLD ⊆ D+

E : for all wrld ∈WRLD and wrld′ ∈ D+
E

if wrld|wrld| = wrld′|wrld′| then wrld
′ ∈WRLD }

are complete partial orders. Let P be λWRLD ∈ D . FAS(E)WRLD/p(ψ)
and R be λW ∈ C . EW/p(ψ). These P and R are monotone mappings.

• D
D-past
←−
−→

last-D

C is a Galois connection. Let us consider

D as A and C as B,
P as F and R as G,

last-DE as f .

12Do not mix with abstraction from section 2.
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This f is a continuous function which preserves the least elements in
A and B. For every S ∈ D the following holds due to the induction
assumption for ψ:

(f ◦ F )(S) =
(
last-DE(λWRLD ∈ D . FAS(E)WRLD/p(ψ))

)
(S)

ind=
(
λW ∈ C . E(W/p(ψ)

)(
last-DE(S)

)
= (G ◦ f)(S).

Hence last-DE(FAS(E)(φ)) = µ(f ◦F ) = µG = E(φ) in accordance
with the least fixpoint image property.

• C
last-DE←−
−→

DE -past

D is also a Galois connection. Let us consider

C as A and D as B,
R as F and P as G,

DE-past as f .
This f is a continuous function which preserves the least elements in
A and B. For every S ∈ C the following holds due to the induction
assumption for ψ:

(f ◦G)(S) =
(
DE-past(λW ∈ C . EW/p(ψ))

)
(S)

ind=
(
λWRLD ∈ D . FAS(E)WRLD/p(ψ)

)(
DE-past(S)

)
= (F ◦ f)(S).

Hence DE-past(E(φ)) = µ(f ◦G) = µF = FAS(E)(φ) in accordance
with the least fixpoint image property.

�
From proposition 4, we can deduce the following

Proposition 5. Every environment E is an abstraction of the corre-
sponding forgetful asynchronous environment FAS(E) with respect to for-
mulae of the combined Propositional Logic with fixpoints and Common knowl-
edge µPLC. The corresponding abstraction function maps every non-empty
finite sequence of states to the last element of the sequence.

This proposition together with Theorem 1 implies the following theorem.

Theorem 2. The expressive power, the model checking problem and de-
cidability of the combined logics EPDL-Kn, EPDL-Cn, Act-CTL-Kn, Act-
CTL-Cn, µPLKn and µPLCn in forgetful asynchronous settings are equiv-
alent to the expressive power, the model checking problem and decidability
of these logics in general case of semantics.
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EXPTIME-complete D︷ ︸︸ ︷
linear M

EPDL-Cn
E
<

linear M
Act-CTL-Cn

E
<

exp. M
µPLCn

n=1
‖

n>1
∨

n=1
‖

n>1
∨ ‖

linear M
EPDL-Kn︸ ︷︷ ︸
PSPACE-
complete D

E
<

linear M
Act-CTL-Kn

E
<

exp. M
µPLKn︸ ︷︷ ︸

EXPTIME-complete D

Let us conclude this section with a remark on an admissible modification
of the definition of forgetful asynchronous systems, which does not change
the algorithmic properties. In the above original settings, information about
origin and generation of worlds is not available for agents in forgetful seman-
tics: an agent can not distinguish between two traces iff their last states are
indistinguishable. In other words, the agents are people who do not know
either their own history or that they have a history. It turns out that it
is acceptable (without violating propositions 4, 5 and 2) to afford them to
remember that they have some history. In this new case of semantics an
agent can not distinguish between two traces iff their last states are indis-
tinguishable (as in the original settings) and both traces are generated by
some (may be different) sequences of actions.

6. SYNCHRONOUS SYSTEMS WITH PERFECT RECALL

We are especially interested in trace-based perfect recall synchronous
environments generated from background finite environments. Here “trace-
based” means that possible worlds incorporate traces. “Perfect recall” means
that every possible world incorporates information how it was generated.
“Synchronous” means that traces of different lengths can be distinguished.

Let E be an environment (DE ,
1∼, .. n∼, IE , VE). A trace-based Perfect

Recall Synchronous environment generated by E is another environment
PRS(E) = (DPRS(E),

1∼prs, ..
n∼prs, IPRS(E), VPRS(E)), where

• DPRS(E) is the set of all pairs (wrld, acts), where
wrld ∈ D+

E , acts ∈ Act∗, |wrld| = |acts|+ 1, and
(wrldj , wrldj+1) ∈ IE(actsj) for every j ∈ [1..|acts|];
• for every i ∈ [1..n] and for all (wrld′, acts′), (wrld′′, acts′′) ∈ DPRS(E),

(wrld′, acts′) i∼prs(wrld′′, acts′′) iff
acts′ = acts′′ and wrld′j

i∼ wrld′′j for every component j;
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• for every a ∈ Act and for all (wrld′, acts′), (wrld′′, acts′′) ∈ DPRS(E),
((wrld′, acts′), (wrld′′, acts′′)) ∈ IPRS(E)(a) iff acts′∧a = acts′′, and
wrld′′ = wrld′∧w′′, (w′, w′′) ∈ IE(a), where w′ and w′′ are the last
elements in wrld′ and wrld′′, respectively;
• for every p ∈ Prp and for every (wrld, acts) ∈ DPRS(E),

(wrld, acts) ∈ VPRS(E)(p) iff wrld|wrld| ∈ VE(p).
In this section we are going to have a close look at the simulation power

of the synchronous perfect recall semantics. In particular, we would like to
simulate computations of Turing machines in some special class CL and sat-
isfiability for formulae of the Weak Second-order logic of a single Successor
WS(1)S.

Tape alphabets of machines in CL include three special fixed distinguish-
able symbols L, R, and B: L and R are markers for the left and the right
end of the working space, while B is a special disjoint blank symbol for the
outer space. Machines in CL never stay on a tape cell while in work. They
never moves to the left of the marker L, but they can move the right marker
R cell by cell from left to right as far as required. In the initial configuration
the working head is observing the marker L in the leftmost position. In the
accepting configuration the working head is observing the marker R in the
rightmost position. The following proposition is inspirited by [22]:

Proposition 6. Let ’next’ be a fixed action symbol.
There exists a PLC2 formula φ such that for every machine M ∈ CL

there exists a finite environment E such that for every m ≥ 0 and every
input α for M there exists a sequence of worlds wrld with |wrld| = m such
that

M halts on α utilizing m cells iff (wrld, next(m−1)) |=PRS(E) φ.
The formula φ can be constructed in the constant time, the environment
E — in time O(|M|), the sequence wrld — in time O(|α|).

Proof (sketch).
Let M be a Turing machine in CL with the tape alphabet Σ, control

states Q and a program Π. A configuration cnfg of a Turing machine is a
word in the alphabet Σ

⋃
(Σ×Q) with a single instance of Σ×Q. Let α be

an input forM, and m ≥ 0. Let us begin from a finite environment E for
two agents. Let domain DE be a union of the following sets:
Σ, (Σ×Q), (Σ×{left, right}), and (Σ×{left, right}× {next, prev}×Q).
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Let 1∼ be the least equivalence relation such that

σ
1∼ (σ, dir) 1∼ (σ, dir, next, q) and (σ, q) 1∼ (σ, dir, prev, q)

for every σ ∈ Σ, every dir ∈ {left, right}, and every q ∈ Q.
Let 2∼ be the least equivalence relation such that

(σ, q) 2∼ (σ, dir, next, q) , σ 2∼ (σ, dir) , and σ′′ 2∼ (σ′, dir, prev, q)

for all σ, σ′, σ′′ ∈ Σ and every q ∈ Q such that
(
(σ′, q)→ (σ′′, ..., dir)

)
∈ Π.

Let interpretation IE of a single action symbol next ∈ Act comprises all
pairs of worlds of the following kinds for all σ, σ′, σ′′ ∈ Σ and all q, q′, q′′ ∈ Q:

• B next−→ B and (B, q) next−→ B,
• σ′ next−→ σ′′, σ′ next−→ (σ′′, q) and (σ′, q) next−→ σ′′, where σ′ ≡/ B,
• (σ′, left) next−→ (σ′′, left) and (σ′, left) next−→ (σ′′, left, next, q),
• (σ′, left, next, q′) next−→ (σ′′, left, prev, q′′)
iff

(
(σ′′, q′′)→ (..., q′, left)

)
∈ Π,

• (σ′, left, prev, q) next−→ (σ′′, left),
• (σ′, right) next−→ (σ′′, right) and (σ′, right) next−→ (σ′′, right, prev, q),
• (σ′, right, prev, q′) next−→ (σ′′, right, next, q′′)
iff

(
(σ′ , q′)→ (..., q′′, right)

)
∈ Π,

• (σ′, right, next, q) next−→ (σ′′, right).
Let valuation VE of propositional variables IsL, IsR, and IsB be worlds

L, R, and B. Let valuation VE of a propositional variable AtA be a single
world (B, accept).

Thus a finite environment E is defined13. Now we can define the PLCn
formula φ and the sequence of worlds wrld. Let φ be C{1,2}(AtA ∧ IsR)
and let wrld be LαRB(m−|α|−2).

The environment E enjoys the following step-simulation property that
holds for all sequences of worlds wrld′ and wrld′′:

1. if wrld′ is a configuration ofM, then

(wrld′, next(m−1)) 1∼prs(wrld′′, next(m−1)) iff wrld′ = wrld′′ or wrld′′

is a semi-next configuration ofM, where all cells have the same marks
13Please see Appendix A for an example.
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extended with consistent information about the movement direction,
the next active cell has information about the next control state, and
the active cell remembers the current control state;

2. if wrld′ is a configuration ofM, then

(wrld′, next(m−1)) 2∼prs(wrld′′, next(m−1)) iff wrld′ = wrld′′ or wrld′′

is a semi-previous configuration ofM, where all cells have the same
marks extended with consistent information about the movement
direction, the active cell has information about the control state,
and the previous active cell remembers the previous control state
and the previous mark.

Due to the step-simulation property, we have:
M halts on α utilizing m cells

�
there exists a finite sequence of configurations cnfg such that

every configuration is of length m,
cnfg1 is LαRB(m−|α|−2), cnfg|cnfg| is accepting,
and cnfg(j+1) is a consequent of cnfgj for every j

�
there exists a finite sequence of sequences of E worlds cnfg such that

every sequence is of length m,
cnfg1 is LαRB(m−|α|−2), cnfg|cnfg| |=E (AtA ∧ IsR),

and (cnfgj, next(m−1))( 1∼prs◦ 2∼prs)(cnfg(j+1), next
(m−1)) for every j

�
(LαRB(m−|α|−2), next(m−1)) |=PRS(E) C{1,2}(AtA ∧ IsR).

�
The Weak Second-Order logic of 1 Successor WS(1)S can be defined in

different manners [2, 25, 24, 26, 1]. We would like to exploit the following
notation. Terms and elementary formulae of WS(1)S are constructed from

• first- and second-order variables x, y, ... and Z, ...,
• a constant symbol e and a single monadic functional symbol S,
• binary predicate symbols = and ∈.

Formulae of WS(1)S are constructed from elementary formulae by means
of

• standard propositional connectives ¬, ∧, etc.,
• first- and second-order quantifiers ∀ and ∃.
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Natural numbers {0, 1, 2, 3, ...} are the model for WS(1)S, where e repre-
sents 0 and S represents the successor function λj.(j + 1). Evaluation is a
mapping which assigns a natural number to every first-order variable and a
finite set of natural numbers to every second-order variable. Semantics of
formulae of WS(1)S in this standard model is defined in terms of satisfia-
bility of formulae on evaluations in a natural way, with first-order variables
and quantifiers ranging over natural numbers and second-order variables
and quantifiers ranging over finite sets of natural numbers.

The Second-Order logic of 1 Successor S(1)S [2, 25, 24, 26, 1] has the
same syntax as WS(1)S and a very similar semantics. The only difference
is semantics of the second-order variables and quantifiers: in S(1)S they
range over all sets of natural numbers instead of finite sets in S(1)S.

Proposition 7. Let ’next’ be a fixed action symbol.
For every formula φ of WS(1)S, there exist a finite environment E and

a set of worlds T such that for every m ≥ 0 there exist
1. a one-to-one correspondence vt between evaluations in [0..(m−1)] of

variables occurring in φ and next-traces of length m in E that finish
in T ,

2. a translation tr of subformulae φ into formulae of Act-CTL-K2 with
next ∈ Act

such that for every evaluation ev in [0..m − 1] of variables occurring in φ
and every subformula ψ of φ the following holds:

ev |= ψ iff (vt(ev), next(m−1)) |=PRS(E) tr(ψ).
The environment E and the set T can be constructed in time exp(|φ|), the
correspondence vt — in time O(m × |φ|), and the translation tr — in time
O(|φ|).

Proof (sketch).
Let φ be a formula of WS(1)S. We can assume that all bounded vari-

ables are pairwise disjoint, i.e., there is no name collisions. We would like to
begin from a multiple-agent case and then we hint at simulation of multiple-
agents by 2-agents.

n-agent case.
Let us define E and T first, then – vt and tr.
The worlds DE are vectors of 0, 1 and U with positions corresponding

to variables and elementary subformulae in φ, but the value U can occur in
positions corresponding to the second-order variables only. For every vector
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• (...,
x:
0 , ...)

next−→× (...,
x:
1 , ...) for every first-order variable x;

• (...,
Z:

U, ...)
next−→× (...,

Z:
1 , ...), (...,

Z:

U, ...)
next−→× (...,

Z:
0 , ...)

(...,
Z:
0 , ...)

next−→× (...,
Z:

U, ...) for every second-order variable Z;

• (...,
(x=y):

0 , ...) next−→× (...,
(x=y):

1 , ...), (...,
(x=y):

1 , ...) next−→× (...,
(x=y):

0 , ...),

(..., ,
x:
1 , ...

y:

1, ...
(x=y):

0 , ...) next−→× (..., ,
x:
0 , ...

y:

0, ...
(x=y):

0 , ...),

(..., ,
x:
1 , ...

y:

0, ...
(x=y):

1 , ...) next−→× (..., ,
x:

? , ...
y:

0, ...
(x=y):

1 , ...),

(..., ,
x:
0 , ...

y:

1, ...
(x=y):

1 , ...) next−→× (..., ,
x:
0 , ...

y:

?, ...
(x=y):

1 , ...)
for all first-order variables x and y;

• (...,
(x∈Z):

0 , ...) next−→× (...,
(x∈Z):

1 , ...), (...,
(x∈Z):

1 , ...) next−→× (...,
(x∈Z):

0 , ...),

(..., ,
x:
1 , ...

Z:
1 , ...

(x∈Z):

0 , ...) next−→× (..., ,
x:
0 , ...

Z:

? , ...
(x∈Z):

0 , ...),

(..., ,
x:
1 , ...

Z:
0 , ...

(x∈Z):

1 , ...) next−→× (..., ,
x:
0 , ...

Z:

? , ...
(x∈Z):

1 , ...),

(..., ,
x:
1 , ...

Z:

U, ...
(x∈Z):

1 , ...) next−→× (..., ,
x:

? , ...
Z:

U, ...
(x∈Z):

1 , ...)
for every first-order variable x and every second-order variable Z.

Fig. 6. Constraints for interpretation of next

vec of this kind and every position pst, the value of the correspondent
position in vec is denoted as vecpst. In particular, let T be a set of worlds
which comprises all vectors vec such that

• vecx = 0 for every first-order variable x,
• vecZ = U for every second-order variable Z.

For every variable i which occurs in φ, let i∼ be an equivalence relation
such that for all worlds vec′ and vec′′

vec′ i∼ vec′′
iff

vec′pst = vec′′pst
for every position pst

that does not correspond to i or to a subformula with instances of i
(i.e., i∼ can vary a component for i and all components which depend on i).

Let interpretation IE of a single action symbol next comprises all pairs
of worlds which meet the prohibition constraints presented in Fig. 6 (where
“?” stays for “any value”).
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For every elementary subformula ξ, let valuation VE of a propositional
variable chξ be worlds vec with vecξ = 1. Let term be a new propositional
variable and valuation VE of this variable be the set T .

Thus the environment E and the set T are defined.
For every j ≥ 0 and every evaluation ev of variable which occurs in φ, let
us postulate that

• ev(x, j) =
{

1, if ev(x) ≥ j
0, otherwise

for every first-order variable x;

• ev(Z, j) =

⎧⎨
⎩

1, if j ∈ ev(Z)
0, if j ∈/ ev(Z) but k ∈ ev(Z) for some k > j
U , otherwise

for every second-order variable Z;

• ev(ξ, j) =
{

1, if ev |= ξ
0, otherwise

for every elementary subformula ξ.
For every m ≥ 0, let vt : ev �→ vec1...vecm be a mapping from evaluations
in [0..(m − 1)] of variables in φ to sequences of worlds wrld of length m:
(wrldj)elm = ev(elm, j) for every j ∈ [1..m] and every first- or second-order
variable or elementary subformula elm. It is straightforward that vt(ev) is
a next-trace of length m that finishes in the set T for every evaluation ev
in [0..(m − 1)] of variables in φ. Vice versa, for every next-trace wrld of
length m that finishes in the set T , there exists a unique evaluation ev in
[0..(m − 1)] of variables in φ such that wrld = vt(ev), since wrld encodes
ev as follows:

• (wrld1)x...(wrldm)x is a monadic representation of a value ev(x) ∈
[0..(m− 1)] for every first-order variable x;
• (wrld1)Z ...(wrldm)Z is a ternary14 representation of the character-
istic function of a set ev(Z) ⊆ [0..(m − 1)] for every second-order
variable Z;
• (wrld1)ξ...(wrldm)ξ is a constant in {0, 1} for ev |= ξ and ev |=/ ξ for
every elementary subformula ξ.

Thus vt is a one-to-one correspondence.
Let us define a translation tr as follows:
• tr(ξ) = (term ∧ chξ) for every elementary subformula ξ;

14Here 1 is used for elements and 0 and U are used for non-elements less and, respec-
tively, greater than max(ev(Z)).
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• tr(¬ψ) = ¬(tr(ψ)), tr(ψ′ ∧ ψ′′) = (tr(ψ′) ∧ tr(ψ′′)), tr(ψ′ ∨ ψ′′) =
(tr(ψ′) ∨ tr(ψ′′)) for all subformulae ψ, ψ′, and ψ′′;
• tr(∃x.ψ) = EF Sx (term ∧ tr(ψ)), tr(∀x.ψ) = AG Kx (term →
tr(ψ)) for every first-order variable x and every subformula ψ;
• tr(∃Z.ψ) = EF SZ (term ∧ tr(ψ)), tr(∀Z.ψ) = AG KZ (term →
tr(ψ)) for every second-order variable x and every subformula ψ.

The property ev |= ψ iff (vt(ev), next(m−1)) |=PRS(E) tr(ψ) for all m ≥
0, evaluation in [0..(m−1)] and subformula ψ can be proved by induction on
the structure of a subformula. Inductive steps for elementary subformulae
and propositional combinations are straightforward. Inductive steps for
quantifiers are similar to each other, so we would like to consider only a
second-order case (∃Z.ψ):

ev |= (∃Z.ψ)
�

ev′ |= ψ for some ev′ which agrees with ev everywhere but Z
inductive � hypothesis

vt(ev′) |=PRS(E) tr(ψ) for some ev′ which agrees with ev everywhere but Z
definition of � correspondence vt

vt(ev) |=PRS(E) (EFKZtr(ψ))
�

vt(ev) |=PRS(E) tr(∃Z.ψ).
Thus the n-agent case is over.
2-agent case.
In this case each world has 2 reserved positions for every variable i: the

position v(i) for a value and c(i) — for a copy. In general, the value and
copy positions can be different, but we are interested essentially in good
worlds which contains equal values in the corresponding positions. For ev-
ery variable i let V r(i) be a distinct special propositional variable. Every
world has a single position for every special propositional variable. A spe-
cial propositional variable is valid in those worlds where the corresponding
position contains 1. An interpretation of a single action symbol next should
meet the following additional constraint: if vec′ next−→ vec′′ then for every i

vec′′V r(i) = vec′V r(i) ∧
(

for every j ≡/ i
vec′v(j) = vec′c(j)

)
∧

(
for every j ≡/ i

vec′′v(j) = vec′′c(j)

)

i.e., vec′′V r(i) accumulates differences between the value and copy positions
for all variables but i in vec′ and vec′′. There are only 2 agents: agent
1 sees only the copy positions and agent 2 sees only the value positions.
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Every step through K1 changes values of variables, but keeps the copies
the same. Checking V r(i) restricts all changes to changes of values of a
variable i. Every step through K2 changes copies of variables, but keeps the
values the same. Checking V r(i) for all variables i makes all copies equal
to values. Thus we can simulate the n-agent case constructions (Ki...) and
(Si...) by the 2-agent case constructions K1(V r(i) → K2(OK → ...)) and
S1(V r(i) ∧ S2(OK ∧ ...)), where OK is conjunction of V r(i) for all i. �

7. MODEL CHECKING OF KNOWLEDGE ACQUISITION

We are going to examine the model checking problem for combined logics
EPDL-Kn, EPDL-Cn, Act-CTL-Kn, Act-CTL-Cn, µPLKn, and µPLCn in
perfect recall synchronous environments generated from finite environments
in the following conditions: what is complexity of the set CHECK(L) ≡
{(E, (wrld, acts), φ) : E is a finite environment, (wrld, acts) ∈ DPRS(E), φ
is a formula of L, and (wrld, acts) |=PRS(E) φ}, where L is a particular
combined logic?

Let us discuss parameters used to measure the model checking com-
plexity. We can assume that presentation of every world has some fixed
complexity, as well as presentation of every action symbol. If E = (DE ,

1∼
, ...

n∼, IE , VE) is a finite background environment presented as a finite
graph, then let dE and rE be the number of worlds in DE and the num-
ber of pairs of worlds in IE ; let mE be an overall complexity (dE + rE).
If (wrld, acts) ∈ DPRS(E), then let l(wrld,acts) be |wrld| = |acts| + 1. If
(wrld, acts) is implicit, then we would like to use these parameters with-
out subscripts, i.e., just l. If φ is a formula, then let fφ be the size of
φ. A natural complexity measure for triples (E , (wrld, acts) , φ), where
E is a finite environment, (wrld, acts) ∈ DPRS(E), and φ is a formula, is
(mE + l(wrld,acts) + fφ).

Proposition 8. For all n > 1 and Act �= ∅, CHECK(EPDL-Cn) is
PSPACE-complete.

Proof. By proposition 6, every polynomial computation of every Turing
machineM can be represented as a model checking problem for some fixed
formula φ of PLC2 in an environment E which can be constructed in time
O(|M|) on some (wrld, acts) ∈ DPRS(E) of a polynomial length. It implies
that CHECK(EPDL-Cn) is PSPACE-hard.

Let us prove that CHECK(EPDL-Cn) is in PSPACE. Without loss
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of generality it is possible to consider only the so-called normal formu-
lae, i.e., the formulae with negation applied only to propositional variables,
due to classical DeMorgan rules and standard modal logic equivalencies
¬([...]...) ↔ 〈...〉(¬...), ¬(〈...〉...) ↔ [...](¬...), ¬(C......) ↔ J...(¬...), and
¬(J......) ↔ C...(¬...). Let us define an alternating Turing machine ATM
with its input alphabet consisting of triples (E, (wrld, acts), φ), where E
is an environment, (wrld, acts) ∈ DPRS(E), and φ is a normal formula of
EPDL-Cn:

• ATM on (E, (wrld, acts), (¬)p) should check, whether (¬)p holds in
the last world of the sequence wrld (where p ∈ Prp);
• ATM on (E, (wrld, acts), (φ′ ∧∨φ

′′)) should enter an universal
existential con-

trol state where it initiates two independent computations on
(E, (wrld, acts), φ′) and on (E, (wrld, acts), φ′′);
• ATM on (E, (wrld, acts), ( [a]

〈a〉φ
′)) where a ∈ Act, should enter an

universal
existential control state, where it initiates independent computations
on (E, ((wrld∧w), (acts∧a)), φ′) for every required world w;
• ATM on (E, (wrld, acts), (CG

JG
φ′)), where G ⊆ [1..n], should enter an

universal
existential control state where it initiates independent computations
on (E, (wrld′, acts), φ′) for every possible sequence of worlds wrld′,
such that (wrld′, acts) G∼prs(wrld, acts).

For every environment E, every (wrld, acts) ∈ DPRS(E), and every EPDL-
Cn normal formula φ, the following two statements are equivalent:

• (wrld, acts) |=PRS(E) φ;
• ATM accepts (E, (wrld, acts), φ).

Computations of ATM on an input (E, (wrld, acts), φ) have O(|φ|) alterna-
tions. They utilize a polynomial space, since the most complicated checking
along these computations (wrld′, acts′) G∼prs(wrld′′, acts′′) can be examined
according to the strategy “divide and conquer”15. It is known that alter-
nating computations which utilizes the space s and k alternations can be
simulated by deterministic computations within the space O(k× s+ s2) [5].
It implies that CHECK(EPDL-Cn) is in PSPACE. �
Proposition 9. For all n > 1 and Act �= ∅, CHECK(Act-CTL-Kn) is

decidable with the upper and lower bounds 22·
·2 }

O(t), where t is the overall

15For every finite oriented graph (N, R) with nodes N and edges R, for all nodes
n′ and n′′, the problem whether there is a path from n′ to n′′ can be solved in time
O(|E| × lg(|N |)) [19].
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Fig. 7. The model for CLE with two functional symbols g and h

complexity of an input triple.

Proof. It is known that the Weak Second-Order logic of 1 Successor

WS(1)S is decidable with a non-elementary lower bound 22·
·2 }

O(f), where f
is the size of an input formula [24] (see also [25, 26, 1]). By proposition 7, the
decidability problem for WS(1)S can be reformulated as a model checking
problem for CTL-K2 in perfect recall synchronous settings. Complexity
of this encoding is exponential. These arguments imply a non-elementary
lower bound for CHECK(Act-CTL-Kn).

A principle decidability of CHECK(Act-CTL-Kn)with a non-elementary

upper bound 22·
·2 }

O(t) is based on reduction of Act-CTL-Kn to the Chain
Logic with Equal-length predicate CLE [28].

The syntax of CLE is very similar to the syntax of WS(1)S, but there
are several monadic functional symbols f1,...fk instead of a single f and
two extra binary predicate symbols E and �. The model for CLE is just
a full ordered infinite k-ary tree whose nodes are first-order terms without
free variables generated from the constant symbol e and functional symbols
f1, ...fk. (For example, Fig. 7 depicts the model for two functional symbols
g and h.) A chain is a subset of this tree which is totally ordered by the
prefix relation. A path is a maximal chain with respect to the set inclusion.
Semantics of formulae of CLE in this standard model is defined similarly
to semantics of formulae of WS(1)S and S(1)S, but

• the second-order variables and quantifiers range only over chains in
contrast to Rabin logic where they range over arbitrary subsets of
the tree;
• the predicate symbol � is interpreted by the first-order binary pred-
icate {(t, t′) : t is a prefix of t′};
• the Equal-length predicate symbol E is interpreted by a first-order
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binary equal-length predicate {(t, t′) : |t| = |t′|}.
Let E = (DE ,

1∼, .. n∼, IE , VE) be a finite environment. We would like to
consider every world of this environment as a monadic functional symbol.
We would also like to consider every action symbol as a monadic functional
symbol too. (Thus, we assume k to be (|DE | + |Act|).) We are going to
encode every finite sequence of worlds w1..ws by a term ws(..w1(e)) and
every finite sequence of action symbols a1..at – by a term at(..a1(e)).

Let us consider the following property: a pair of terms ws(..w1(e)) and
at(..a1(e)) encodes an element (w1..ws, a1..at) of DPRS(E). This property
is expressible in CLE, and we would like to denote by INPRS(E)(x, y) a
formula of CLE which expresses this property for the values of x and y.

Let T be the following “semi-formal” algorithm:
• T (E, (w1..ws, a1..at), p) =

= INPRS(E)(ws(..w1(e)), at(..a1(e))) ∧ ws ∈ VE(p),
where p ∈ Prp;
• T (E, (w1..ws, a1..at), (¬φ)) =

= INPRS(E)(ws(..w1(e)), at(..a1(e))) ∧ ¬T (E, (w1..ws, a1..at), φ);
• T (E, (w1..ws, a1..at), (φ′ ∧∨φ

′′)) =
= T (E, (w1..ws, a1..at), φ′)∧∨T (E, (w1..ws, a1..at), φ′′);

• T (E, (w1..ws, a1..at), (AXa

EXa φ)) =

=
∧

(ws,w)∈IE (a)∨
(ws,w)∈IE (a)

T (E, (w1..wsw, a1..ata), φ),
where a ∈ Act;
• T (E, (w1..ws, a1..at), AE (φ′Uaφ′′)) =

= INPRS(E)(ws(..w1(e)), at(..a1(e))) ∧
∀
∃ path WRLD which starts with ws(..w1(e))
∀
∃ path ACTS which consists of terms ak(at(..a1(e)))
∃x ∈WRLD ∃y ∈ ACTS :

(INPRS(E)(x, y) ∧ T (E, (x, y), φ′′) ∧
∀u ≺ x ∀v ≺ y :
(ws(..w1(e)) � u∧at(..(a1(e)) � v∧INPRS(E)(u, v) →

→ T (E, (x, y), φ′)));
• T (E, (w1..ws, a1..at), (Ki

Si
φ)) = INPRS(E)(ws(..w1(e)), at..a1(e))) ∧

∧
∧

u1
i∼w1∨

u1
i∼w1

..

∧
us

i∼ws∨
us

i∼ws

(INPRS(E)(us(..u1(e)), at(..a1(e))) →∧
→
∧ T (E, (u1..us, a1..at), φ)), where i ∈ [1..n].

This algorithm has a polynomial complexity. For all environments E, finite
sequences of words wrld and actions acts, and the Act-CTL-Kn formula φ,
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the following two statements are equivalent:
• (wrld, acts) ∈ DPRS(E) and (wrld, acts) |=PRS(E) φ;
• T (E, (wrld, acts), φ) is a valid formula of CLE.

The following facts are proved in [28]: CLE and S(1)S are mutually inter-

pretable; CLE is non-elementary decidable with the upper bound 22·
·2 }

O(f).
These arguments implies an upper bound for CHECK(Act-CTL-Kn). �

Proposition 10. CHECK(Act-CTL-Cn), CHECK(µPLKn), and
CHECK(µPLCn) are undecidable for all n > 1 and Act �= ∅.

Proof. In accordance with proposition 6, every computation of ev-
ery Turing machine M which exploits a fixed space can be presented as
a model checking problem for some fixed formula φ of PLC2. Hence, the
halting problem for Turing machines can be represented as a model check-
ing problem for the CTL-C2 formula EFφ. It implies undecidability of
CHECK(Act-CTL-Cn). In accordance with proposition 1, it implies also
undecidability of CHECK(µPLKn) and CHECK(µPLCn). �

8. FORMULAE WITH BOUNDED KNOWLEDGE DEPTH

The above proposition 9 establishes a non-elementary lower bound for
the model checking problem for Act-CTL-K in the synchronous environ-
ments with perfect recall generated from finite background environments.
It exploits the overall complexity of the problem inputs and does not dis-
tinguish a complexity impact of every input. In this section we would like
to develop some techniques for evaluation of a contribution of every input
to this non-elementary overall complexity. First, let us redefine the knowl-
edge depth for formulae of Act-CTL-Kn and related sublogics Act-CTL-Kkn,
k ≥ 0, with a bounded knowledge depth, then redefine k-trees and revise
some related results [22], and finally let us prove that these trees are abstrac-
tion of the PRS-environments with respect to formulae of Act-CTL-Kkn. For
simplicity of presentation, let us fix a finite environment E = (DE ,

1∼, .. n∼
, IE , VE) in this section. Thus the corresponding synchronous environment
with perfect recall PRS(E) = (DPRS(E),

1∼prs, ..
n∼prs, IPRS(E), VPRS(E)) is also

fixed and we would like to refer to it simply as PRS.
The knowledge depth of a formula is the maximal nesting of knowledge

operators in that formula. For example, depth(K1(EXK2(q ∧K2r))) = 3.
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Let Act-CTL-Kkn be sublogics of Act-CTL-Kn with a bounded knowledge
depth k ≥ 0. Naturally, Act-CTL-Kn =

⋃
k≥0 Act-CTL-K

k
n.

For every integer k ≥ 0 we define by mutual recursion the set Tk of
k-trees over E, and the set Fk of forests of k-trees over E. Let T0 be the
set of all tuples of the form (w, ∅, ...∅), where w is a world and the number
of copies of the empty set ∅ is equal to the number of agents n. Once Tk
has been defined, let Fk as the set of all subsets of Tk. Now, define Tk+1

as a the set of all tuples of the form (w,U1, ...Un), where w is a world and
Ui �= ∅ is in Fk for each i ∈ {1..n}. Let us denote

⋃
k≥0 Tk by T .

Intuitively, a k-tree is a finite tree of height k whose vertices are labelled
by worlds of the environment E and edges are labeled by agents. In a tuple
(w,U1, ...Un), the world w represents the actual state of the universe, and for
each i ∈ {1..n} the set Ui represents knowledge of the agent i. Identifying a
0-tree (w, ∅, ...∅) with the world w, note that each component Ui in a 1-tree
is simply a set of states representing knowledge of the agent i about the
universe. For k > 1, the set Ui represents knowledge of the agent i about
both the universe and knowledge of the other agents, up to the depth k.

We would like also to remark that trees defined above are a little bit
different from the trees defined in [22]. For every i ∈ {1..n}, a k-tree
(≥ 1) a-la [22] can not have any i-child, while our trees must have some.
Let us remark that the main reason why we have modified the original
definition is that in PLKn the nested instances of a knowledge modality Ki,
i ∈ {1..n}, can be separated only by propositional connectives, so they are
“applied” to the same state and hence, roughly speaking, are idempotent
due to interpretation of knowledge modalities by equivalence relations. But
in the case of Act-CTL-Kn the nested instances of a knowledge modality
can be separated by action modalities, so they may be “applied” to different
states.

Let exp(a, b) be the following function:

exp(a, b) =
{
a, if b = 0,
a× 2exp(a,b−1), otherwise.

Proposition 11. Let k ≥ 0 be an integer and E be a finite environment
for n agents with d states. Then

• the number of k-trees over E Ck is less than or equal to exp(n×d,k)
n .

• if n < d then
the number of nodes in every (k + 1)-tree over E is less than C2

k .
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Proof (by induction on k ≥ 0.)
First, C0 = d = exp(n × d, 0)/n. Let us assume that the first assertion

holds for some j ≥ 0. Then it implies the following:
Cj+1 ≤ |{ (w,U1, ...Un) : w ∈ D, U1, ...Un ∈ P(Tj) }| = d× (2Cj )n =

= d× 2n×Cj
ind
≤ exp(n× d, (j + 1))/n.

The proof of the first assertion is done.
Next, each 1-tree can contain at most 1 +n× d < d2 = C2

0 nodes. Let
us assume that the second assertion holds for some (j − 1) ≥ 1. Then each
(j+1)-tree can contain at most 1+n×Cj× mj nodes, wheremj is a maximal

number of nodes in a j-tree. Since n×mj

ind
< d×C2

j−1 < d×2n×Cj−1 = Cj ,
then the number of nodes in a (j+ 1)-tree is less than C2

j . The proof of the
second assertion is done too. �

Let (wrld, acts) be a world of PRS(E). Knowledge available in this
world can be represented as an infinite sequence

tree0(wrld, acts)...treek(wrld, acts)...,

where each treek(wrld, acts), k ≥ 0, is a k-tree defined as follows.
Let tree0(wrld, acts) be (wrld|wrld|, ∅, ...∅), and for every k ≥ 0 let
treek+1(wrld, acts) be(
wrld|wrld|, {treek(wrld′, acts′) : (wrld′, acts′) 1∼prs(wrld, acts)},

...{treek(wrld′, acts′) : (wrld′, acts′) n∼prs(wrld, acts)}
)
.

Let us define some knowledge update functions for k-trees. Similar func-
tions has been used in [22] to provide an algorithm for model checking prob-
lem for formulae of PLKn in synchronous environments with perfect recall.

Let DE and IE be a domain and interpretation of relation symbols from
Acts in the environment E. For every number k ≥ 0, act ∈ Acts and
i ∈ {1..n}, the functions Gactk : Tk ×DE → Tk and Hact

k,i : Fk ×DE → Fk,
are defined by induction on k and mutual recursion. Let

Gact0 (tr, wrld) = (wrld, ∅, ...∅) iff (root(tr), wrld) ∈ IE(act).

Once Gactk has been defined, we can define for each i ∈ {1..n} the function
Hact
k,i by setting Hact

k,i (U,wrld) to be the set of k-trees Gactk (tr, wrld′), where

tr ∈ U and wrld′ i∼ wrld. Using the functions Hact
k,i , i ∈ {1..n}, we can

define Gactk+1 by setting Gactk+1((wrld, U1, ...Un), wrld′) to be

( wrld′ , Hact
k,1 [U1, wrld

′], ... Hact
k,n[Un, wrld′] ) iff (wrld, wrld′) ∈ IE(act).
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The following proposition is inspirited by [22]:

Proposition 12. For every k ≥ 0, every act ∈ Act, every finite envi-
ronment E, every (wrlds, acts) ∈ DPRS(E), every wrld ∈ DE, and every
act ∈ Act, the following incremental knowledge update property holds:
treek((wrlds, acts)∧{(wrld, act)}) = Gactk (treek(wrlds, acts), wrld).

Proof (sketch) by induction on k ≥ 0.
A basic case k = 0 is trivial, since 0-trees can be identified with their

roots (i.e., worlds). Let us assume that the property holds for some k > 0.
Let (ws, as), w′ and a be some world of PRS(E), a world of E and an action
symbol in Act. Let treek+1(ws, as) = (w,U1, ...Un) and (w,w′) ∈ IE(a).
Then

Gak+1(treek+1(ws, as), w′) =

= (w′, {Gak(tr, w′′) : tr ∈ U1, w
′ 1∼ w′′} ... {Gak(tr, w′′) : tr ∈ Un, w′ n∼ w′′}).

treek+1(ws∧w′, as∧a) = (w′,
{treek(ws′, as′) : (ws′, as′) 1∼prs(ws∧w′, as∧a)},
...
{treek(ws′, as′) : (ws′, as′) n∼prs(ws∧w′, as∧a)}).

Every Gak(tr, w
′′) is treek(ws′′ ∧w′′, as′′ ∧a) for some ws′′, as′′ in accordance

with the induction assumption. But due to the definition of Ui,

treek(ws′′ ∧w′′, as′′ ∧a) ∈ {treek(ws′, as′) : (ws′, as′) i∼prs(ws∧w′, as∧a)}.

This proves the inclusion
{Gak(tr, w′′) : tr ∈ Ui, w′′ i∼ w′} ⊆

⊆ {treek(ws′, as′) : (ws′, as′) i∼prs(ws∧w′, as∧a)}.
The backward inclusion
{Gak(tr, w′′) : tr ∈ Ui, w′′ i∼ w′} ⊇

⊇ { treek( ws′, as′) : (ws′, as′) i∼prs(ws∧w′, as∧a)}
is similar. �

Let Act be an alphabet of action symbols and [1..n] be agents. Let
Act+n be Act ∪ [1..n], i.e., Act extended with new action symbols associ-
ated with agents [1..n]. A natural translation of formulae of Act-CTL-Kn
to the formulae of Act+n-CTL is simple: just replace every instance of Ki

and Si by corresponding AXi and EXi, respectively (i ∈ [1..n]). For ev-
ery formula φ of Act-CTL-Kn, let us denote by φ+n the resulting formula of
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Act+n-CTL. This translation is supported by a corresponding natural trans-
formation of environments for Act-CTL-Kn to the models for Act+n-CTL:
the environment E = (DE ,

1∼, ... n∼, IE , VE) can be represented naturally as
a model E+n = (DE , I

+n
E , VE), where I+n

E is equal to IE on action sym-
bols, but I+n

E (i) = i∼ for every agent i ∈ [1..n]. The following proposition is
straightforward:

Proposition 13. E(φ) = E+n(φ+n) for every environment E and every
formula φ of Act-CTL-Kn. In particular, PRS(E)(φ) = (PRS(E))+n(φ+n)
for every environment E and every formula φ of Act-CTL-Kn.

The above model PRS(E)+n is not a single model which can be associ-
ated with the synchronous environment with perfect recall PRS(E). Below
we define a class of associated models based on k-trees. For every k ≥ 0, let
TRk(E) be a model (DTRk(E), ITRk(E), VTRk(E)) for Act+n-CTL such that

• DTRk(E) is the set of all 0-,..., k-trees over E for n agents;
• ITRk(E)(act) = {(tr′, tr′′) ∈ DTRk(E) :

tr′′ = Gactj (tr′, wrld) for some j ∈ [0..k] and some wrld ∈ DE }
for every act ∈ Act;
ITRk(E)(i) = {(tr′, tr′′) ∈ DTRk(E) :

tr′′ ∈ Ui and tr′ = (wrld, U1, ...Un) for some wrld ∈ DE }
for every i ∈ [1..n];
• VTRk(E)(p) = {tr : root(tr) ∈ VE(p)} for every p ∈ Prp.

Let k ≥ 0 be an integer. Let us expand the mapping treek : DPRS(E) →
DTRk(E) on the sets of DPRS(E) in a natural manner (i.e., element-wise).
We would not like to distinguish between the original function treek :
DPRS(E) → DTRk(E) and its element-wise extension treek : 2DPRS(E) →
2DT Rk(E) . A backward function trace : 2DTRk(E) → 2DPRS(E) is also quite
natural: it maps every set TR of k-trees to the set of traces {(wrlds, acts) :
treek(wrlds, acts) ∈ TR}. The following proposition can be proved by in-
duction on the formula structure with the help of proposition 12.

Proposition 14. For every n ≥ 1 and k ≥ 0, for every formula φ of
Act-CTL-Kn with the knowledge depth k at most, and for every finite envi-
ronment E, the following holds:

• treek(PRS(E)(φ)) = TRk(E)(φ+n),
• PRS(E)(φ) = trace(TRk(E)(φ+n)).

This proposition can be reformulated as follows:
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Proposition 15. For every integer k ≥ 0 and n ≥ 1 and every envi-
ronment E, the model TRk(E) is an abstraction of the model (PRS(E))+n

with respect to the formulae of Act+n-CTL which correspond to the formu-
lae of Act-CTL-Kn with the knowledge depth k at most. The corresponding
abstraction function maps every trace to the k-tree of this trace.

In accordance with proposition 2, the complexity of model checking of
an Act-CTL formula in a finite model is O(m × f), where m is an overall
model complexity and f is a formula complexity. But the cited proposition
has been proved under the assumption that all worlds of the model have
some constant complexity. This assumption does not hold for models where
worlds are k-trees, since (in accordance with proposition 11) the complexity
of these trees is a non-elementary function of k and n. We should add
the corresponding world-complexity factor to the complexity bound of the
model checking problem. In this condition the above propositions 2, 11 and
15 lead to the following proposition.

Proposition 16. For every integer k ≥ 1 and n ≥ 1, synchronous en-
vironment with perfect recall PRS(E), every formula φ of Act-CTL-K−n
with the knowledge depth k at most, the model checking problem is decidable
with the upper bound

O
(
f × exp(n× d, k)× (exp(n× d, k − 1))2

n3

)
,

where f is the size of the formula, d is the number of states in DE, and
the function exp(a, b) is defined by induction as follows: exp(a, 0) = a and
exp(a, b+ 1) = a× 2exp(a,b).

The above propositions 8, 9, 10 and 16 lead to the following theorem.

Theorem 3. For all n > 1 and Act �= ∅, the model checking problem for
synchronous finitely generated environments with perfect recall

• is PSPACE-complete for EPDL-Cn;
• is decidable for Act-CTL-Kn with non-elementary upper and lower

bounds (which linearly depend on the formula size and non-elementa-
rily depend on the number of states, agents and knowledge depth);
• is undecidable for Act-CTL-Cn, µPLKn, and µPLCn.
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9. RELATED PAPERS AND CONCLUSION

The paper has studied, from the theoretical point of view, the algorith-
mic problems for several combinations of propositional program logics. It
focuses on the model checking problem in synchronous perfect recall settings
for logics which combine knowledge, actions, and fixpoints. It contributes
to model checking research and extends the results of the paper [23], where
the model checking problem in synchronous perfect recall settings has been
examined for fusions of logics PLK and PLC with the Propositional Logic
of Linear Time (PLLT). It has been proven in the cited paper [23] that the
problem is

• undecidable for PLLT-Cn;
• non-elementarily decidable for PLLT-Kn,
• PSPACE-complete for UNTIL-free PLLT-Cn.

Paper [23] has suggested a tree-like data structure for model checking
of linear time and knowledge with bounded nesting. This data structure is
very convenient for representation of knowledge evolution and update. It
comprises the trees whose depth is equal to knowledge nesting [22]. Paper
[23] has demonstrated that the model checking problem for PLLT-Kn in
the synchronous perfect recall semantics can be reduced to the problem of
emptiness of a Büchi automata whose inputs are infinite sequences of these
trees. We develop a similar data structure but exploit abstraction and
reduction to the model checking problem for a variant of CTL and models
where states are trees.

Another related problem is: whether automatic model checking is fea-
sible for PLLT-Kn and Act-CTL-Kn? Some experience with tree-like data
structures (which are similar to the data structure mentioned in the previous
paragraph) is reported in [14]. In this experimental research,

• input finite environments are specified in Multi Agent System Lan-
guage,
• input PLLT-Kn formulae should not have negative/positive instances
of knowledge modalities Ki/Si for any agent i ∈ [1..n],
• a model checking engine is a finite-state PLLT model checker SMV
[4, 6].

Another related paper is [16]. It has studied the decidability problem
for combinations of temporal logics PLLT and CTL with logics PLK and
PLC in synchronous perfect recall and forgetful settings. In particular, it
has demonstrated completeness of the problem in the following classes of
complexity:
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PRS FAS
CTL-Cn, n ≥ 2 Π1

1 EXPTIME
CTL-Kn, n ≥ 2 nonelementary time EXPTIME
CTL-K1 = CTL-C1 doubly-exponential time EXPTIME

Our paper extends the above table on some other combined logics in for-
getful asynchronous settings.

Finally, we would like also to point out that the computer science com-
munity comes to better understanding of importance of research in propo-
sitional program logics on traces. For example, several logics of these kinds
have been studied in the context of static analysis [9]. The most powerful of
these new logics is the so called reversible fixpoint calculus (

←
µC). Roughly

speaking, this calculus is a fusion of the propositional µ-Calculus with the
Propositional Logic of Knowledge for a single agent. It is defined on two-way
(backward/forward or past/future) infinite traces in forgetful asynchronous
settings. We hope that the above characterization of

←
µC can be formalized

and we contribute to the study of algorithmic problems of these new logics.

REFERENCES
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A p p e n d i x

A. AN EXAMPLE OF TURING MACHINE

In this section, we give an example of building a finite environment for
Turing machine to illustrate proposition 6. Let Turing machine MT =
〈 Σ, Q, qi, qf ,Π 〉 duplicate the number of "1" located between symbols L
and R. The alphabet of the MT is Σ = {1, 0, L,R,B}, control states are
Q = {qi, qf , q1, q2, q3, q4, q5, q6}, and the program is Π:

L, qi → q1, right; 1, q1 → 0, q1, right; R, q1 → 1, q2, right;
B, q2 → R, q3, left; 1, q3 → q3, left; 0, q3 → 1, q4, left;
0, q4 → q5, right; 1, q5 → q5, right; R, q5 → 1, q2, right;
L, q4 → q6, right; 1, q6 → q6, right; B, q6 → qf , left.

Look at the several first steps of run whenMT duplicates 2 (in this case,
number m from proposition 6 is equal to 7):

α = L11RB −→∗MT β = L1111RB
qi

L 11RB 1→ L
q1
1 1RB 2→ L0

q1
1 RB

3→
L00

q1
R B

4→ L001
q2
B B

5→ L001
q3
R B · · ·

By steps 4 and 5 of this run, we demonstrate that the step-simulation prop-
erty holds in moving of the working head both to the right and to the left,
i.e., cnfgi

i→ cnfgi+1 iff (cnfgi, next6)(
1∼ ◦ 2∼)(cnfg(i+1), next

6), i = 4, 5.
Fig. 8 shows that the first and the last lines are consecutive configura-

tions of Turing machine at step 4. And simultaneously they are traces of

L 0 0
q1

R B B

1"
L 0 0, right R, right, prev, q1 B, right, next, q2 B, right

2"
L 0 0 1

q2

B B

Fig. 8. L00
q1
R B

4→ L001
q2
B B
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L 0 0 1
q2

B B

1"
L 0 0, left 1, left, next, q3 B, left, prev, q2 B, left

2"
L 0 0

q3

1 R B

Fig. 9. L001
q2
B B

5→ L001
q3
R B

the induced environment that begins with the letter L. We need to show
that there exists another trace such that

• the first agent can not distinguish between this trace and the first
line;
• the second agent can not distinguish between this trace and the last
line.

The middle line is the trace with the required properties. Indeed, it is a trace
by the definition of the action next and all its elements are indistiguishable
from proper elements of the first (by the first agent) and of the last (by the
second agent) line (by the definition of indistiguishability relations). Notice
that the first agent knows neither the direction of the move, nor the next
state of the machine and the second agent knows neither the direction of
the move, nor the previous symbol on the tape, nor the previous state of the
machine. All these reasonings are suitable for step 5 represented on Fig.9.
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