
Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

A. V. Zamulin

A STATE-BASED SEMANTICS OF A PASCAL-LIKE
LANGUAGE

Preprint
104

Novosibirsk 2003

A formal model of a Pascal-like language with storable locations is pre-
sented. A storable location can both store values and be stored as a value
in another location. Such a location is part of the state of an imperative
program. An access function is associated with a set of locations of the same
type. An update of an access function causes the update of the content of
the corresponding location. The parameter of a function or procedure de-
clared as a reference parameter accepts only locations as arguments so that
a value associated with the location can be updated by the procedure. In
this way, the mechanism of call-by-reference in addition to the mechanism
of call-by-value is modeled. Formal semantics of some typical statements
and function/procedure definition is given in the paper.

Keywords: formal semantics, formal model, imperative language, Ab-
stract State Machines, formal methods, storable locations.

c© A. P. Ershov Institute of Informatics Systems, 2003

Российская академия наук
Сибирское отделение

Институт систем информатики
им. А. П. Ершова

А. В. Замулин

ФОРМАЛЬНАЯ МОДЕЛЬ ПАСКАЛЕПОДОБНОЙ
ПРОГРАММЫ

Препринт
104

Новосибирск 2003

Представлена формальная модель Паскалеподобного языка с храни-
мыми ячейками. Хранимая ячейка может как хранить значение, так и
храниться сама как значение в другой ячейке. Такая ячейка является
частью состояния императивной программы. С множеством однотипных
ячеек связывается функция выборки. Модификация этой функции вызы-
вает обновление состояния соответствующей ячейки. Параметр процеду-
ры, объявленный как параметр-ссылка, замещается ячейкой при ее вызове,
так что содержимое этой ячейки может быть изменено данной процедурой.
Таким путем моделируется механизм подстановки ссылкой, дополняющий
механизм подстановки значением. В препринте определена также фор-
мальная семантика типичных операторов и описания процедуры Паска-
леподобного языка программирования.

c© Институт систем информатики им. А. П. Ершова СО РАН, 2003

1. INTRODUCTION

Abstract State Machines [5, 7] are now widely used for the formal def-
inition of programming languages [6, 8, 9, 15, 16, 19]. An Abstract State
Machine (ASM) is usually a state represented by an algebra and a transition
rule reminding a statement of an imperative language. The algebra con-
sists of a superuniverse subdivided into universes and a number of co-called
dynamic functions. Transition rules are recursively built from function up-
dates and the skip rule by a number of rule constructors. The interpretation
of a transition rule generally causes an update of the current state either by
modifying a dynamic function or inserting a new element into a universe.

With the use of this technique, the semantics of a programming language
is usually defined by the work of an abstract interpreter whose behavior is
expressed in terms of transition rules. A number of dynamic functions are
declared in the interpreter, representing its state. The semantics of a pro-
gram component (expression, statement, etc.) is described by a correspond-
ing transition rule, which indicates in what way one or another dynamic
function should be updated in the process of execution of the component.

In this paper, we propose another way of defining the semantics of an
imperative programming language with the use of ASMs. Instead of using
transition rules, we suggest to construct, for each programming language,
a particular abstract model based on the ideas of ASMs. When such a
model is constructed, the semantics of a program component is defined in
the terms of the model.

We concentrate on modeling program components involving operations
with locations. In the traditional ASMs, transformations of the state are
performed by means of update sets. Each update in the set is a pair (loc, val),
where loc is a location and val a value to be associated with it. A location
is a pair (f, 〈a1, ..., an〉) representing an n-ary function f applied to a tuple
of elements 〈a1, ..., an〉, the value val is then the value to be produced by
f(a1, ..., an) in the new state. In this approach, a location is not a value that
can be used and/or produced by another function. It can only be considered
as the name of a value.

At the same time, locations as values are typical of modern imperative
languages. For example, a location value (l-value of C) is used in the left-
hand side of the assignment statement. Pointers are another example of

1This research is supported in part by Russian Foundation for Basic Research under
Grant 01-01-00787.

5

location values. Thus, if loc(t) is the type of locations of type t, then
program variables declared in C as t x and t∗ p can be considered as having
respective types loc(t) and loc(loc(t)). When a location is used in the right-
hand side of the assignment statement or as value parameter in the function
call, it is first implicitly dereferenced (i.e., the value stored in the location is
extracted); any further dereferencing is explicit. For instance, p is implicitly
dereferenced to produce a value of type t∗ and then explicitly dereferenced to
produce a value of type t. The strict rules of implicit dereferencing permit
the compiler to correctly type-check a program and generate the correct
code. Locations as values also permit another kind of function parameter
substitution, call-by-reference. In this case a location itself is passed as
argument to a function, and its content can be updated by the function
(although this kind of parameters is discarded in such a modern language
as Java [2], it is reintroduced in C# [11]).

Thus, our purpose is to suggest a state model with storable locations,
i.e., locations that can both store values and be stored as a value in other
locations. In this way, a state model close to that of an imperative pro-
gramming language can be designed. A dynamic access function should be
associated with each location type. An update of the access function must
lead to the update of the corresponding location. A function parameter
declared as a reference parameter must serve as an alias of an argument
location so that a value associated with the location can be updated by the
function. So, formal definition of call-by-reference parameter substitution is
another purpose of this work.

Several works have already been devoted to formal treatment of ad-
dresses, pointers and call-by-reference parameter substitution. The major-
ity of them refer to demonstration of a definition method to a specifically
constructed language. For example, a number of axioms are devised in [1]
for operations that allocate and dispose memory. A simple memory model is
used in the work: stack variables are not locations (and therefore cannot be
passed as reference arguments to a function), heap locations contain records
whose fields are not locations (and therefore a field cannot be passed to a
function as a reference argument), the problems of function definitions are
not considered at all. Similarly, an extension of Hoare logic that permits
reasoning about programs using shared data structures is proposed in [14].
Once again, a very simple memory model capturing the low-level character
of machine language (for example, one cannot have the address of an array
or record and pass it as argument to a function) is proposed. An attempt

6

to define pointers by means of the algebra of partial maps has been under-
taken in [12]. However, the problem has not been tightly coupled with the
problem of parameter substitution, which is our aim.

The paper is organized as follows. A way of constructing a program
signature is described in Section 2. A program algebra of a given program
signature is elaborated in Section 3. A formal notion of the program is
presented in Section 4. Examples of expression and statement construction
and their interpretation in a program are given in Sections 5 and 6 respec-
tively. Formal semantics of the function definition and constant definition
is presented in Section 7. Some conclusions and directions of further work
are outlined in Section 8.

2. THE PROGRAM SIGNATURE

2.1. The type system

The program model described in this paper is based on a simple type
system with the following grammar:

T ::= BASE | array(BASE, BASE) | loc(T), (1)

where BASE is a set of primitive types, array a Pascal-like array type con-
structor and loc a location (pointer) type constructor. The elements of T
are called types. In the sequel, T ∗ stands for the set of all sequences with
an element of a sequence being either t or ref t, where t ∈ T , and T v

stands for T ∪{void}, where void is a special type not belonging to T and
possessing a single value ⊥.

So, our type system includes the part BASE with the signature Σdat =
(Sdat, Fdat), which defines primitive data types (sorts and operations) using
the facilities of an algebraic specification language. We do not describe a
mechanism for the specification of this part of the language. Any specifica-
tion language whose semantics is given as a class of many-sorted algebras
is suitable for this purpose.

We also do not provide array types and location types with their own
operations. All needed operations will be introduced as special kinds of
expressions. This is caused by the fact that the operations with pointer
and arrays variables (as well as with many other structured variables) in
programming languages normally produce locations, and algebraic specifi-
cations are not well suited for dealing with this kind of data. For brevity,
we consider only arrays of elements of primitive types.

7

2.2. The program schema

The program schema defines symbols used in a program. It is formed on
the base of variable, constant and function declarations. Let IDENT be an
enumerable non-empty set representing identifiers, then the program schema
S over the type system T consists of:

• a finite set of array types AT ,
• a finite set of location types LT ,
• three finite mappings var : IDENT −→ T , const : IDENT −→ BASE,
and func : IDENT× T ∗ −→ T v

such that:
• if loc(t) ∈ LT , then t ∈ (BASE ∪ AT ∪ LT),
• if x ∈ IDENT, then either var(x) or const(x) may be defined and its
result is a type belonging to BASE ∪ AT ∪ LT .

Thus, only the types defined in S can be used for the definition of lo-
cation types and declaration of variable and constants, and there may be
no variable and constant with the same identifier. Note that constants are
not provided with values and functions are not provided with bodies in the
program schema, they are part of the program specification discussed later.

In the sequel, the elements of the mappings var(x) and const(x) are
denoted by pairs (x, t), and the elements of the mapping func are denoted
by triples (f, r, t), where r is a sequence of parameter types. Functions with
the result type void are called procedures.

The program schema S naturally defines the signature Σ = (S, F) ex-
tending the signature Σdat = (Sdat, Fdat) as follows:

• S = Sdat ∪ AT ∪ LT ∪ {loc(t) | ∀x, t.(x, t) ∈ var};
• F = Fdat ∪ var ∪ const ∪ func ∪ Facc, where Facc is a set including
an access function symbol _ ↑loc(t),t for each loc(t) ∈ S.

Thus, a location type is created for each variable in the schema, and an
access function symbol is created for each location type.

3. PROGRAM ALGEBRA

A program algebra is a counterpart of the state of an object program.
It contains basic data type operations and constant and variable locations
in static (stack) or dynamic (heap) memory. Each of them has a static part
(basic algebra) mainly consisting of the basic data types and a dynamic
part mainly consisting of variable locations. The static and dynamic parts
together are a state algebra representing a program state.

8

3.1. Basic algebra

A basic algebra B associates with each type t a set Bt, its carrier, and
with each operation of t a partial function, its implementation. The carriers
of our types are defined as follows:

• the carrier of each primitive type t is a set Bt. The carriers of prim-
itive types are assumed to be pairwise disjoint;

• the carrier of each loc(t) is a special set BLocs disjoint from all basic
types carriers; elements of BLocs are locations.

We also assume the existence of the value nil that does not belong to any
carrier.

Each primitive type is supposed to be endowed with some operations,
and each of them is implemented as a function opB : Bt1 × · · · × Btn −→ Bt
when n > 0, otherwise opB ∈ Bt. The only predefined operation on locations
is comparison operation “=” such that l = l′ is true iff both l and l′ are
the same element of BLocs. As it was mentioned above, array and location
types are not provided with predefined operations.

3.2. State algebra

A state algebra represents a program state. In what follows, B is a base
algebra and Σ = (S, F) a program signature. A state algebra A of signature
Σ = (S, F), called a Σ-state in the sequel, is created in the following way:

• At = Bt for any primitive type t.
• A finite set Aloc(t) = Aoloc(t) ∪ {nil}, where Aoloc(t) ⊂ BLocs, is associ-
ated with each type loc(t) so that Aoloc(t) ∩ Aoloc(t′) = ∅ for two differ-
ent types t and t′;

• a set of finite injective mappings Aind → Aoloc(t) is associated with
each array type array(ind, t);

• an element, cA ∈ At, is associated with each constant declaration
(c, t);

• an element, xA ∈ Aoloc(t), called location constant, is associated with
each variable declaration (x, t);

• a partial function _!A : Aloc(t) → At is associated with each _!loc(t),t

∈ Facc so that xA ↑ is defined for each location constant xA in A.
In this way, each location type is provided with a number of locations

and a special element nil, each constant is provided with a value, and each
variable is provided with an initialized location. Note that, according to the
last item in the above definition, an array variable will be provided with a

9

location initialized with a corresponding finite mapping. In this way, both
an array variable and an array element are provided with a location.

A state algebra is well-formed if:
• each location constant is supplied with a different location,
• the range of the finite mapping associated with an array variable does
not intersect with both the range of the finite mapping associated
with any other array variable and the set of locations assigned to
variables.

It is clear that in a well-formed state algebra a location constant is a
real counterpart of a program variable having an address different from the
addresses of all the other variables, and a finite mapping associated with
an array is a counterpart of a program array where elements have different
addresses and there is a unique address for each index value (note that the
mappings are injective).

A location l is said to be allocated in a state A if l ∈ Aloc(t) for some
loc(t) ∈ S. Locations associated with variable identifiers and array compo-
nents are part of the static memory, other locations that may be dynamically
created are part of the dynamic memory (heap). The set of all allocated
locations in A is denoted by Aloc in the sequel.

If l and a are elements of respective sorts loc(t) and t, such that l↑ = a,
then a is the content of the location l (a is stored in l). The application
of the function "↑" to its argument l is called the dereferencing of l.

A location sort and access function can be different in different states.
This reflects the fact that locations can be dynamically created in a heap.
However, different Σ-states must have the same base algebra. We denote
the set of all Σ-states with the same base B by stateB(Σ) and mean by a
ΣB-state a Σ-state with the base algebra B. The set of elements associated
with a type in a state algebra is called a sort in the sequel.

3.3. State updates

One state can be transformed into another by a state update, which is
either a location update or sort update. The first one serves for an update
of a program variable and the other one serves for extending a location sort
with a new location.

Definition 1. A location update in a ΣB-state A is a triple
(loc(t), l, a), where t is a type from S different from an array type,
l an element of sort Aloc(t), and a an element of sort At.

10

A location update α = (loc(t), l, a) serves for transformation of a ΣB-state
A into a new ΣB-state Aα in the following way:

• gAα = gA for any function symbol g in F different from _!loc(t),t;
• xAα = xA for any constant or variable name x in F ;
• (l!)Aα = a;
• (l′!)Aα = (l′!)A for any l′ ∈ Aloc(t) different from l;
• Aαt = At for any t ∈ S.

Following Gurevich [5], we say that Aα is obtained by firing the update α on
A, which changes the content of a location (and nothing else). In this way,
a variable defined in the program schema may be updated. Note that an
array location cannot be updated, i.e., it cannot be supplied with a different
finite mapping (however, an array element location may be updated).
Definition 2. A sort update δ in a ΣB-state A is a pair (loc(t), l), where

l is an element such that l ∈ BLocs and l /∈ Aloc.

A sort update δ = (loc(t), l) transforms a ΣB-state A into a new ΣB-state
Aδ in the following way:

• Aδloc(t) = Aloc(t) ∪ {l},
• Aδloc(t′) = Aloc(t′) for any t′ ∈ S different from t,
• fAδ = fA for any f in F .

Thus, the sort update δ = (loc(t), l) extends the set of elements of a
certain location sort by a new element different from any location existing
in A. A set of location/sort updates is called an update set. The update set
is inconsistent if it contains

• two location updates α1 = (loc(t), l, a) and α2 = (loc(t), l, a′) s.t.
a = a′ (two location updates differently defining an access function
for the same location), or

• a δ1 = (loc(t), l) and δ2 = (loc(t′), l) and t = t′ (there is an at-
tempt to use one and the same location in different location sorts);

the update set is consistent otherwise. A consistent update set Γ applied to
a ΣB-state A transforms A into a new ΣB-state A′ by simultaneous firing all
α ∈ Γ and all δ ∈ Γ. If Γ is inconsistent, the new state in not defined. If Γ is
empty, A′ is the same as A. We consider only consistent update sets in the
sequel and denote the application of Γ to a state A by AΓ.

The sequential union of two update-sets Γ1 and Γ2, denoted by Γ1;Γ2, is
a consistent update set created as follows: delete from Γ1 ∪ Γ2 any α1 ∈ Γ1
for which there is an α2 ∈ Γ2, such that {α1, α2} is inconsistent.

11

4. PROGRAM

The model of a program defined in this section is a counterpart of an
object program possessing a number of states and a number of functions
and procedures manipulating the state. In what follows, the set of all con-
sistent update sets in a ΣB-state A is denoted by ΓΓA(Σ). For any ΣB-state
A and any sequence of types r = t1 . . . tn, we denote At1 × · · · × Atn by Ar,
which is a singleton set if n = 0. We also introduce a notion of a pair 〈Γ, v〉,
where Γ is an update set (possibly empty) and v an algebra element. The
set ΓΓAt(Σ) is the set of all pairs 〈Γ, v〉 such that v ∈ At and Γ ∈ ΓΓA(Σ).

A program P(B) over a program signature Σ consists of:
1. A subset |P(B)| of stateB(Σ) called the carrier of P(B) (each A ∈ |P(B)|
is a program state).
2. For each (f, r, t) ∈ func, where r = u1, · · · , un and ui is either ti or
ref ti, and each A ∈ |P(B)|, a partial function

fAr : Au1 × ... × Aun → ΓΓAt(S),

where Aui is Aoloc(ti) if ui is ref ti and Ati in the opposite case.
Thus, a program possesses a number of states, and, in each state, a func-

tion associated with the corresponding function declaration. Each function
uses a location sort Aoloc(t) for a parameter declared as ref t to provide call by
reference substitution. Note that functions associated with the same func-
tion declaration may be different in different states (for instance, because
they depend on the content of global variables).

The carrier |P(B)| must satisfy the following program invariant: any
constant (including a location constant) and a mapping associated with an
array variable must be the same in any A ∈ |P(B)|. This is a natural require-
ment stating that a constant may not have different values and neither a
variable nor an array element may be provided with different locations in
different program states. Note that the location update described in the
previous section cannot violate the program invariant.

5. EXPRESSIONS

Now we introduce several rules for creating some typical expressions of
a Pascal-like language. They extend the usual rules of expression (term)
construction, which are part of the base of recursion.

12

The rules of the function call evaluation normally state that each next
argument in a list of function arguments is evaluated after the previous one
and the evaluation of both the argument and the function may change the
state. Therefore, given a program signature Σ, a program P(B) over Σ and
a program state A ∈ |P(B)|, the interpretation of an expression f(e1, · · · , en)
produces a pair 〈Γ, v〉 ∈ ΓΓAt(Σ). The first component of this pair is the
empty set when neither the function nor any of the expressions e1, ..., en

produces an update set (i.e., does not change the state). For this reason,
the interpretation of any expression is defined in terms of the pairs. The
interpretation of an expression e in the state A with the base B is denoted
by [[e]]A(B).
1. If (x, t) is a variable declaration, then x is an expression of type loc(t).
Interpretation: [[x]]A(B) = 〈∅, xA〉. Thus, the location assigned to x is
produced as the second element of the pair, and the first element is the
empty update set.
2. If (p, loc(t)) is a location (pointer) variable declaration, then p ↑ is an
expression of type loc(t).
Interpretation: [[p ↑]]A(B) = 〈∅, pA ↑loc(loc(t)),loc(t)〉. Thus, the location
stored in p is produced as the second element of the pair, and the first
element is the empty update set. The interpretation of the expression is not
defined if pA = nil.
3. If (f, r, t) is a function declaration, where r = u1, ...un and ui is either ti
or ref ti, and

ei is
{

an expression of type loc(ti) when ui is ref ti,
an expression either of type ti or loc(ti) in the opposite case,

then f(e1, ..., en) is an expression of type t called a function call.
Interpretation: Let A0 be a program state, then

[[f(e1, . . . , en)]]A0(B) = 〈Γ, v〉,
where Γ = Γ1; . . . ;Γn+1, v = snd(fAnr (v1, . . . , vn)), Γ1 = fst([[e1]]A0(B)), A1 = AΓ1,
. . . , Γn = fst([[en]]An−1(B)), An = An−1Γn,

vi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

snd([[ei]]Ai−1(B)) if ui is ref ti
and ei is an expression of type loc(ti)

snd([[ei]]Ai−1(B)) if ui is ti
and ei is an expression of type ti,

snd([[ti ↑]]Ai−1(B)) if ui is ti
and ei is an expression of type loc(ti),

13

and Γn+1 = fst(fAnr (v1, . . . , vn)), provided each ei, i = 1, . . . , n,
is defined in Ai, and fAnr is defined for the tuple (v1, . . . , vn);
[[f(e1, . . . , en)]]A0(B) is undefined otherwise.

Thus, the interpretation of a function call in A causes the invocation of
the function associated with f in An. An argument is dereferenced when a
location is substituted where its content is needed, and it is directly substi-
tuted in all other cases.
4. If ar is an expression of type loc(array(ind, t)) and i an expression either
of type ind or loc(ind), then ar[i] is an expression of type loc(t).
Interpretation: [[ar[i]]]A(B) = [[ar ↑ (i ↑)]]A(B) if i has type loc(ind) and
[[ar[i]]]A(B) = [[ar ↑ (i)]]A(B) if i has type ind.

6. STATEMENTS

Each statement is described in two parts: definition and semantics. The
definition generally states what a well-formed statement is. The semantics
indicates the kind of the statement, the type of the result that can be
produced, the update set, and value that can be produced by the execution
of the statement.

A statement can be provided with a label used in a goto statement for
control transfer. A label is visible only in the block where it is declared, i.e.,
one cannot transfer control into a block or a function body, one cannot also
leave the function body by the goto statement or jump from one branch
of the conditional statement to another branch. However, one can transfer
control from an inner block into an outer block.

We assume in this section that Σ0 is a program signature and any other
signature is an extension of Σ0. The semantics of a statement St is denoted
in the same way as the semantics of an expression, i.e. [[St]]A(B) means
execution of St in the state A with the base B.

6.1. Results of statement inspection and execution

Taking into account the fact that some statements do not transfer control
and some others do, we distinguish three kinds of statement: ordinary,
break and return statements. For this reason, the semantics of a statement
produces a quadruple 〈t, k, Γ, v〉, where t is a type, k is one of the symbols
O, B, or R denoting, respectively, an ordinary, goto or return statement, Γ
is an update set and v is a value of the type t. The value vmay be either the
label of the statement indicated in the goto statement or the value produced

14

by the return statement (the value ⊥ if no value is produced).
The sequential union operation over update sets is extended to the cor-

responding operation on the quadruples 〈t, k, Γ, v〉 in the following way:

Γ;〈t, k, Γ′, v〉 = 〈t, k, (Γ;Γ′), v〉.

It is not difficult to prove that the operation is both left-associative and
right-associative, i.e.,

(Γ1;Γ2);〈t, k, Γ3, v3〉 = Γ1;(Γ2;〈t, k, Γ3, v3〉).

For this reason, we will omit parentheses when several tuples are sequentially
united. The result of the infinite sequence of the sequential union operations

Γ1;Γ2;...;〈t∞, k∞, Γ∞, v∞〉

is not defined.

6.2. Basic statements

We consider the following basic statements: assignment statement, pro-
cedure call, dynamic variable creation, return statement, and goto statement.

Assignment statements

If el is a Σ-expression of type loc(t) and er a Σ-expression either of type
t or type loc(t), then el := er and el = null are Σ-statements called the
assignment statements, where the second statement is valid only if t is a
location type (i.e., el is a pointer).

We first define the semantics of the statement for the case where t is not
an array type and assume that the evaluation of both parts of the statement
may change the state.

Semantics. Let [[el]]A(B) = 〈Γl, l〉, A′ = AΓl, and [[er]]A
′(B) = 〈Γr, vr〉. Then

[[el.x = er]]A(B) = 〈void,O, (Γl;Γr;Γa),⊥〉,

where Γa = {(loc(t), l, vr)} if er has type t, and Γa = {(loc(t), l, vr ↑loc(t),t)}
if er has type loc(t);

[[el = null]]A(B) = 〈void,O, (Γl;Γa),⊥〉,

where Γa = {(loc(t), vl, nil)}.

15

The interpretation of the expression is not defined if vl = nil or vr is
not defined.

If ar1 and ar2 are array variables with n elements of type t, then the
interpretation of the assignment ar1 := ar2 produces the update set

Γa = {(loc(t), l1, v1), ..., (loc(t), ln, vn)},

where li = ar1 ↑ (i) and vi = ar2 ↑ (i) ↑. In this way, all element locations
of the first array are updated by the content of the corresponding element
locations of the second array.

Procedure calls

If (p, 〈u1, ...un〉, void) is a procedure declaration, where ui, i = 1, ..., n,
is either ti or ref ti, and

ei is
{

an expression of type loc(ti) when ui is ref ti,
an expression either of type ti or loc(ti) in the opposite case,

then p(e1, ..., en) is a Σ-statement called the procedure call.

Semantics. The semantics of the procedure call is the same as of the func-
tion call with the exception that a quadruple 〈void,O, Γ,⊥〉 is produced.

Dynamic variable creation

If p is a variable of type loc(t), then new(p) is a statement called the
dynamic variable creation.

Semantics. [[new(p)]]A(B) = 〈void,O, Γ,⊥〉, where Γ = {δ;α}, δ = (loc(t), l),
l ∈ BLocs and l /∈ Aloc, A′ = Aδ, and α = (loc(loc(t)), pA

′
, l).

In this way, the location sort loc(t) is extended with a new element, and
this element is assigned to p. If t is an array type array(ind, t′), then a set
L of elements of type loc(t′) and an injective finite mapping Bind → L are
additionally created and l is initialized with this mapping.

Return statements

If e is a Σ-expression of type t, then return and return e are Σ-
statements called the return statements.

16

Semantics. Let [[e]]A(B) = 〈Γ, v〉, then [[return]]A(B) = 〈void,R, ∅,⊥〉 and
[[return e]]A(B) = 〈t,R, Γ, v〉.

Goto statements

If M is a label, then goto M is a statement called the goto statement.

Semantics. [[goto M]]A(B) = 〈string,B, ∅, M〉.

6.3. Statement constructors

Complex statements are constructed recursively from basic statements
by means of several statement constructors. For convenience, we consider
separately the sequence of statements not containing local declarations and
the block statement containing declarations of local variables.

Sequences of statements

If St1, St2, . . . , Stn are Σ-statements, then {St1; St2; . . . ; Stn} is a state-
ment called the sequence of Σ-statements. For a sequence of statements
StSeq, the function length(StSeq) produces the number of component
statements, the set labels(StSeq) contains the labels of the statements
{ St1; St2; . . . ; Stn } (empty set if none of the statements has a label), and
the final mapping lmapStSeq : labels(StSeq) → Nat associate with each label
the sequential number of the corresponding statement.

Semantics. The semantics of a sequence of statements

StSeq = { St1; St2; . . . ; Stn }

is defined with the use of two parameters, the state A(B) and the sequen-
tial number i of the fist statement in StSeq to be executed and denoted
by [[StSeqi]]A(B). Since the sequence of statements starts execution from
the statement with the sequential number 1, we define: [[StSeq]]A(B) =
[[StSeq1]]A(B).

Now, let [[Sti]]A(B) = 〈t, k, Γi, v〉. If k is R (return statement has been
executed), then [[StSeqi]]A(B) = 〈t, k, Γi,R〉 (exit the sequence by return
statement). Otherwise:

17

If k = B (goto statement has been executed)
then if v ∈ labels(StSeq) (transfer of control to a statement

of this sequence)
then let j = lmapStSeq(v) and A′ = AΓi in [[StSeqi]]A(B) = Γi;[[StSeqj]]A

′(B)

else [[StSeqi]]A(B) = 〈string,B, Γi, v〉 (exit the sequence
by goto statement).

If k = O (an ordinary statement has been executed)
then if i < length(StSeq) (there are more statements in the sequence)

then let j = i + 1 and A′ = AΓi in [[StSeqi]]A(B) = Γi;[[StSeqj]]A
′(B)

(proceed with the next statement)
else [[StSeqi]]A(B) = 〈void,O, Γ, v〉 (the sequence of statements

is executed).

Thus, to execute a sequence of statements starting with a state A, it is
sufficient to create the sequential union of their update sets and use it for
the transformation of A (which is equivalent to the sequential execution of
the statements one after another). Note that the creation of the update set
stops as soon as control is transferred outside of the sequence of statements.

The semantics of a sequence of statements is undefined if the semantics
of one of the component statements is undefined or the infinite sequence of
update sets is produced.

Blocks

For brevity, we consider that only non-initialized local variables can be
declared in a block, any array type and location type used in local decla-
rations belong to AT and LT , respectively, and declarations precede state-
ments.

First of all, we introduce a notion of signature increment. Let t1, ..., tn
be types and X = {x1, ..., xn} a set of identifiers, then the set

∆ = {(x1, t1), . . . , (xn, tn)}

is a signature increment.
The sequential union of a signature Σ = (S, F) and a signature incre-

ment ∆ = {(x1, t1), ..., (xn, tn)}, denoted by Σ;∆, is defined as follows:
Σ;∆ = (S, F1), where F1 = ∆ ∪ (F\{(x, t)}) for any (x, t) ∈ F if there is
an (x, t′) ∈ ∆. In this way any variable declared in a signature increment
hides the previously declared variable or constant with the same identifier.

18

Let Σ0 = (S0, F0) be a program signature and ∆1 a signature increment,
then

Σ1 = (S0, F1) = (Σ0;∆1)

is a block signature. Now, if Σn−1 = (Σn−2;∆n−1) is a block signature and
∆n is a signature increment, then Σn = (Σn−1;∆n) is a block signature.
Thus, a block signature generally looks as follows:

((((Σ0;∆1);...);∆n−1);∆n).

In the sequel, we denote a block signature by Σ′ = (Σ;∆n), where

Σ = (((Σ0;∆1);...);∆n−1).

We also denote ∆1;...;∆n by ∆.
Now, if Σ′ = (Σ;∆n) is a block signature and A is a Σ-algebra, then a

Σ′-algebra A′ is constructed by extending A with a constant xA
′
of type loc(t)

for each (x, t) ∈ ∆n (a finite mapping is also associated with xA
′
if x is an

array variable, as described in Section 3.2). Note that if Σ is the program
signature Σ0, then a state algebra A0 is extended.

The rules for the construction of expressions using local variables are
quite simple, for example:
– if (x, t) is a local variable from ∆, then x is a Σ′-expression of type t.
Interpretation: if A′ is a Σ′-algebra, then [[x]]A

′(B) = xA
′
.

Now, if ∆n = {(x1, t1), ..., (xk, tk)} is a signature increment, Σ′ = (Σ;∆n)
and St1, ..., Stm a sequence of Σ′-statements, then

begin ∆n; St1; St2; . . . ; Stm end

is a Σ-statement called the block.

Semantics. Let A′ be a Σ′-algebra and

[[{ St1; St2; . . . ; Stm }]]A
′(B) = 〈t, k, Γ′, v〉

if [[{ St1; St2; . . . ; Stm }]]A′(B) is defined. Then

[[begin ∆n; St1; St2; . . . ; Stm end]]A(B) = 〈t, k, Γ, v〉,

where Γ is obtained from Γ′ by deleting any location update α = (loc(t), xA
′
, a)

if x is a variable of type t from ∆n. In this way all updates of local variables
of the block are ignored.

If ∆n contains an initialized local variable declaration x : t = e, then
the algebra A′ is updated by the the evaluation of the statement x := e.

19

If statements

If g is a Σ-expression of type Boolean and St and Ste are Σ-statements,
then

if g then St and if g then St else Ste

are Σ-statements called the if statements.

Semantics. Let [[g]]A(B) = 〈Γg, g〉 and A′ = AΓg. Now,
if g = true
then if [[St]]A

′(B) is defined
then [[if g then St]]A(B) = Γg;[[St]]A

′(B) and
[[if g then St else Ste]]A(B) = Γg;[[St]]A

′(B)

else [[if g then St]]A(B) and [[if g then St else Ste]]A(B) are undefined
else [[if g then St]]A(B) = 〈void,O, Γg,⊥〉 and
if [[Ste]]A

′(B) is defined,
then [[if g then St else Ste]]A(B) = Γg;[[Ste]]A

′(B)

else [[if g then St else Ste]]A(B) is undefined.

Case statements

If e is a Σ-expression of a scalar type t, CL11, ..., CL1k1 , ... , CLm1,...,
CLmkm are different Σdat-expressions (constants) called case labels, and St1,
..., Stm are Σ-statements, then
case e of
CL11, ..., CL1k1 : St1;

. . .
CLm1, ..., CLmkm : Stm
end is a Σ-statement called the case statement.

Semantics. Let St =
case e of
CL11, ..., CL1k1 : St1;

. . .
CLm1, ..., CLmkm : Stm
end
Since any case label is a constant expression, all labels can be evaluated

in the same state A, and the evaluation produces the empty update set. Let
[[e]]A(B) = 〈Γe, ve〉, [[CLij]]A(B) = 〈∅, vij〉, and A′ = AΓe. Now, if CLij is the

20

first label in the sequence CL11, ..., CL1k1 , ..., CLm1, ..., CLmkm such that
ve = vij, then [[St]]A

′(B) = [[Sti]]A
′(B) else [[St]]A

′(B) = 〈void,O, ∅,⊥〉.
The semantics of St is not defined if [[Sti]]A

′(B) is not defined.

While loops

If St is a Σ-statement and g a Σ-expression of type Boolean, then
while g do St is a Σ-statement called the while loop.

Semantics. Let [[g]]A(B) = 〈Γg, g〉 and A′ = AΓg. Now,
if g = false
then [[while g do St]]A(B) = 〈void,O, Γg,⊥〉
else let A′ = AΓg, [[St]]A

′(B) = 〈t, k, Γ, v〉 and A′′ = A′Γ in
if k = O (St completes normally)
then [[while g do St]]A(B) = Γg;Γ;[[while g do St]]A

′′(B)

else (St completes abnormally)
[[while g do St]]A(B) = 〈t, k, (Γg;Γ), v〉.

Note that [[while g do St]]A(B) is undefined if the semantics of St is unde-
fined at some level of iteration or the infinite sequence of sequential union
operations is produced.

Repeat loops

If St is a Σ-statement and g is a Σ-expression of type Boolean, then
repeat St until g is a Σ-statement called the repeat loop.

Semantics. Let [[St]]A(B) = 〈t, k, Γ, v〉 and A′ = AΓ if [[St]]A(B) is defined.
Now,
if k = O (St completes normally)
then let [[g]]A

′(B) = 〈Γg, g〉 and A′′ = A′Γg in
if g = false (iteration should be continued)
then [[repeat St until g]]A(B) = Γ;Γg; [[repeat St until g]]A

′(B)

else [[repeat St until g]]A(B) = 〈void,O, (Γ;Γg),⊥〉 (finish normally)
else (St completes abnormally)

[[repeat St until g]]A(B) = 〈t, k, (Γ;Γg), v〉.
[[repeat St until g]]A(B) is undefined if the semantics of St is undefined at
some level of iteration or an infinite sequence of sequential union operations
is produced.

21

For loops

If i is a variable of a scalar type t (i.e., of type possessing the operation
succ : t → t), e1 and e2 are Σ-expressions of type t such that [[e1]]A(B) =
〈∅, v1〉 and [[e2]]A(B) = 〈∅, v2〉, and St is a Σ-statement, then

for i := e1 to e2 do St

is a Σ-statement called the for loop.

Semantics. Let i be an algebraic variable and τ1 and τ2 ground terms
(constant expression) of type t evaluating in A to v1 and v2, respectively.
Then, according to the specification of Pascal, the above statement is equiv-
alent to the following one: for i = τ1 to τ2 do St.
This means that both i and τ1 and τ2 cannot be updated by St, and the
value of i is undefined when the loop is exited. In the sequel, the notation
St[τ1/i] means the substitution of each i in St by τ1. The semantics of

for i = τ1 to τ2 do St

can be defined as follows:

Let [[St[τ1/i]]]A(B) = 〈t, k, Γ, v〉 and A′ = AΓ if [[St[τ1/i]]]A(B) is defined. Now,
if k = O (St completes normally)
then if τ1 ≤ τ2 (iteration should be continued)
then [[for i = τ1 to τ2 do St]]A(B) = Γ;[[for i = succ(τ1) to τ2 do St]]A

′(B)

else [[for i = τ1 to τ2 do St]]A(B) = 〈void,O, ∅,⊥〉 (finish)
else (St completes abnormally)
[[for i = τ1 to τ2 do St]]A(B) = 〈t, k, Γ, v〉 (exit).

The semantics of for i = τ1 to τ2 do St is undefined if the semantics of St
is undefined at some level of iteration or an infinite sequence of sequential
union operations is produced.

7. PROGRAM SPECIFICATION

A program specification extends a program signature by the definition
of each function and each constant in the signature.

Let frt be a function symbol in Σ0, where r = u1...un such that ui is
either ti or ref ti, ∆ = {(p1, t1), ..., (pn, sn)} is a signature increment, and
St a Σ0-block with the signature increment ∆, then

22

f(p1 : u1, ..., pn : un) : t; St;

is a function definition.
A program specification PS for a program schema S is a set of function

definitions for all functions declared in S.

Semantics. Let f(e1, ..., en) be a function call in the signature Σ (it may
be the signature of some block), where e1, ..., en are Σ-expressions as de-
scribed in Section 5, item 3. Let also A be a Σ-algebra, v1, ..., vn results
of the evaluation of e1, ..., en, An a Σ-algebra resulting after the evaluation
of en as described in Section 5, item 3, A0 = An|Σ0 , and A′ a (Σ, ∆)-algebra
extending A0 in the following way: pA

′
i ↑ = vi if ui is ti and pA

′
i = vi if ui is

ref ti, i = 1, ..., n. Note that in the first case pi is a local variable initialized
by the value of the actual parameter, and in the second case pi is a local
constant equal to the actual parameter (both pA

′
i and vi are the same loca-

tion). Note also that, using the reduct An|Σ0 , we have obtained an algebra
of the signature where the block St is constructed (i.e. an algebra of the
signature (Σ0, ∆)). This algebra extends the state algebra existing at the
moment of the function invocation by the values of the actual parameters.
The reduct is safe under our restriction that only local variables can be
declared in a block (this means that all sorts in the reduct are the same as
in the original algebra). Now, let

[[f(e1, ..., en)]]A(B) = 〈Γ, v〉

and [[St]]A
′(B) = 〈tst, kst, Γst, vst〉.

If the result type t is void, then the function definition

f(p1 : u1, ..., pn : un) : t; St;

is well-formed iff kst is either O or R and tst is void (no return statement
or no expression in the return statement). If the result type t is not void,
the function definition f(p1 : u1, ..., pn : un) : t; St; is well-formed iff kst

is R and tst = t (the result of the expression in the return statement is of
type t).

A program P(B) satisfies the function definition

f(p1 : u1, ..., pn : un) : t; St;

23

in the program specification PS iff for any Σ where the call of f is con-
structed, for any Σ-state A and any Σ-expressions e1, ..., en it holds:

AΓ = AΓst and v = vst.

Note that we require the equivalence of the resulting states rather than
equivalence of the resulting update sets because update sets may be different
due to some optimizations of the function body.

In a similar way, if (c, t) ∈ const is a constant declaration and e is a Σdat-
expression (a constant expression) of type t, then c : t = e is a constant
definition. A program P(B) satisfies the constant definition c : t = e iff for
any Σ-state A it holds: cA = eB.

A program P(B) satisfies the program specification PS iff it satisfies
each function definition and each constant definition in PS.

8. CONCLUSION

We have introduced a formal model of an imperative program in the style
of Abstract State Machines and have shown how some typical expressions
and statements can be constructed and interpreted in terms of this model.
The novelty of the approach consists in defining a specialized abstract state-
based model whose components naturally represent program components.
This makes our approach substantially different from traditional algebraic
approaches where the program behavior is described in terms of axioms or
rewriting rules [3] and the state is represented as a complex data type with
a large number of auxiliary operations [4, 17, 18].

A clear way of defining the semantics of an imperative language is thus
provided: basing on the type system of the language, define a program
signature and its model, then give the interpretations of expressions and
statements in terms of this model and use them for function specifications.
A simple Pascal-like language has been chosen in this work to illustrate the
approach. However, it can be easily adapted to a more complex language,
and our experience with formalization of Java has proved this [10]. A com-
bination of the location model described in this paper and object model of
[10] can be used for defining semantics of C# [11]. This remains a subject
of further work.

The author thanks Anureev I.S. for valuable comments on the first version
of the paper.

24

REFERENCES

1. C. Calcagno, S. Ishtiaq, and P.W. O’Hearn. Semantic Analysis of Pointer Aliasing,
Allocation and Disposal in Hoare Logic. Proc. 2nd Intern. Conf. on Principles and
Practice of Declarative Programming, 2000.

2. J. Cosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification
(Second Edition). Addison-Wesley, 2000.

3. A. van Deursen, J. Heering, and P. Klint, eds. Language Prototyping: An Algebraic
Specification Approach. AMAST Series in Computing, vol. 5, World Scientific, 1996.

4. J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs, The
MIT Press, 1996.

5. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. Specification and Validation
Methods, Oxford University Press, 1995, pp. 9-36.

6. Y. Gurevich and J. Huggins. The semantics of the C programming language. Com-
puter Science Logic, LNCS, vol. 702, 1993, pp. 274-309.

7. Y. Gurevich, May 1997 Draft of the ASM Guide. Available electronically from
http://www.eecs.umich.edu/gasm/.

8. Robert Eschbach, U. Glässer, Reinhard Gotzhein, and Andreas Prinz. On the For-
mal Semantics of Design Languages: A compilation approach using Abstract State
Machines. Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, eds., Abstract State
Machines: Theory and Applications, LNCS, vol. 1912, 2000, pp. 242-265.

9. Philipp W. Kutter and Alfonso Pierantonio. The Formal Specification of Oberon,
Journal of Universal Computer Science, 1997, vol. 3, no. 5, pp. 443–503.

10. K. Lellahi, A. Zamulin. Implicit State Approach for Formalization of Sequential
Java-like Programs. Technical report of LIPN, Univ. Paris 13, 2002.

11. Microsoft Corp., et al. C# language specification.Drafts of the ECMA TC39/TG3
standartization process. http://msdn.microsoft.com/net/ecma/, 2001.

12. B. Möller. Towards Pointer Algebra. Science of Computer Programming, vol. 21,
1993, pp. 57-90.

13. P.D. Mosses. The Varieties of Programming Language Semantics (And Their Uses).
Perspectives in System Informatics, LNCS, vol. 2244, pp. 165-190.

14. J. C. Reynolds. Separation Logic: A Logic fro Shared Mutable data Structures. Proc.
7th Annual IEEE Symp. on Logic in Computer Science, 2002.

15. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer-Verlag, 2001.

16. Charles Wallace. The Semantics of the C++ Programming Language. Specification
and Validation Methods, ed. E. BЎrger, Oxford University Press, 1995, pp. 131–164.

17. A.V. Zamulin. Algebraic Modelling of Imperative Languages With Pointers. Formal
Methods in Programming and Their Applications, LNCS, vol. 735, 1993, pp. 81 - 97.

18. A.V. Zamulin. Algebraic Semantics of Imperative Statements. Australian Computer
Science Communications, vol. 17, No 1, 1994, pp. 581-587.

19. Wolf Zimmerman, and Thilo Gaul. On the Construction of Correct Compiler Back-
Ends: An ASM Approach, Journal of Universal Computer Science, 1997, vol. 3, no.
5, pp. 504–567.

25

А. В. Замулин

ФОРМАЛЬНАЯ МОДЕЛЬ ПАСКАЛЕПОДОБНОЙ
ПРОГРАММЫ

Препринт
104

Рукопись поступила в редакцию 20.01.2003
Рецензент И.С.Ануреев
Редактор Н.А. Черемных

Подписано в печать 15.03.2003
Формат бумаги 60×84 1/16 Объем 1,5 уч.-изд.л., 1,6 п.л.
Тираж 50 экз.

НФ ОООИПО“Эмари” РИЦ, 630090, г. Новосибирск, пр. Акад. Лаврентьева, 6

