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This paper discusses the problem of object-oriented compiler construc-
tion, with a bias to the design of components operating on abstract syntax
tree (AST) and responsible for certain compilation phases. Employing tra-
ditional modular design, it would be natural to organize such components as
modules. However, in the case of canonical object-oriented design, the code
previously put in a separate module has to be distributed over a variety
of classes. This may negatively affect further system maintainability. This
work describes a novel approach that combines advantages of both modu-
lar and OO techniques of the compiler design. The proposed method has
proved its viability during the creation of production level compiler com-
ponents. An implementation technique for the advocated approach using
modern object-oriented languages (e.g. Java, C++) is also described.
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В работе рассматривается возможность применения методов объект-
но-ориентированного проектирования к созданию трансляторов с тради-
ционных императивных языков. Особое внимание уделяется компонентам
транслятора, работающим с представлением программы в форме абстракт-
ного синтаксического дерева. Применение традиционного подхода приводит
в выражению каждого компонента как отдельного модуля, в то время
как ОО-подход диктует разделение каждого компонента на множество
классов, распределенных по нескольким единицам компиляции. В работе
описывается комбинированный (bi-directional) подход к проектированию
компонентов, позволяющий сочетать методы декомпозиции, присущие
как традиционному, так и объектно-ориентированному стилю проек-
тирования. Кроме того, обсуждаются проблемы реализации, возникающие
при использовании индустриальных языков программирования (C++ и
Java).

c© Институт систем информатики им. А. П. Ершова СО РАН, 2003



1. INTRODUCTION

Object-oriented design (OOD) [2] addresses fundamental aspects of soft-
ware systems creation such as strict coding discipline, ease of modification,
maintenance and code reuse, etc. The next step after the modular design
[4], OOD is widely acknowledged as a suitable technology for the design of
Graphical User Interfaces, class libraries [17], reusable software components
[3], and so on. However, the application of OOD to compiler construction
has been less investigated so far. On the one hand, using OOD is justified be-
cause compilers and translators are large long-living systems whose problem
domain entities may be neatly expressed in OO terms. On the other hand,
translator systems have a distinctive feature — they include a wide vari-
ety of sophisticated algorithms. For instance, modern optimizing compilers
[14][6] employ numerous algorithms for static analysis, type inference, regis-
ter allocation, code selection, etc. Having a multi-component architecture,
such systems benefit from traditional modular design, shaping optimization
algorithms into separate modules. As a rule, the algorithms share common
data, namely the internal program representation. Obviously, that violates
encapsulation, a fundamental OOD principle, which requires a tight cou-
pling of code with data. This paper presents a bidirectional decomposition,
an approach to the translator system design that combines both OO and
modular technique.

The solution is preceded by an overview of translator design techniques
currently used in the industry, with emphasis on the on pros/cons of each
one.

The rest of the paper is organized as follows: Sections 2 and 3 describe
the typical architecture of a translation system and the requirements on
the design of its components. Section 4 sets out the known approaches.
The proposed design technique is presented in Sections 5 and 6. Sections
7 and 8 describe certain aspects of translator implementation in modern
OO languages. Section 9 highlights related works and, finally, Section 10
summarizes the paper.

2. TYPICAL TRANSLATOR ARCHITECTURE

Let a translator be a program that automatically transforms source text
written in a programming language to another form. Typical examples
are compilers, source-to-source converters, metric compilers, static analysis
tools. We consider only translators for imperative programming languages,
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because the overall translator architecture strongly depends on the family
to which the input language belongs.

A typical translator consists of the following components:
• Intermediate Representation (IR)
• Front-end (FE), source program parser and IR builder
• Middle-end (ME), IR analyzer and transformer
• Back-end (BE), output generator
• Project system, or “driver”

Note that the design of the front-end and project system components
mostly depends on translator purposes, execution environment, interface of
the parser generator used, etc. That is, the design of these components and
of the other parts of a translator have only a minor interference. Further, we
focus on the elaboration of an intermediate representation and IR-processing
components (ME, BE).

We realize that the above description is applicable to simple (one-step)
translators, which exploit only one kind of IR (so called single-IR transla-
tors). Among them are most of source-to-source converters, source analyz-
ing tools etc. More complex translators (e.g. highly optimizing compilers
[6]) are built as chains of basic blocks, where each block is a single-IR trans-
lator. In such case, the back-end of each block becomes the front-end of the
next one.

We consider the architecture of a single-IR translator that uses an in-
termediate representation in the form of an AST (abstract syntax tree),
also called attributed parse tree [1], [7], [11]. For our purposes it would be
sufficient to give an informal definition of AST using OO terminology. AST
is based on

• Class inheritance, to structure the IR according to “is-a” relations
between the input language entities.

• Object relations (associations), to tackle semantic relations between
the entities.

• Encapsulation, to hide low-level implementation details.

3. REQUIREMENTS ON TRANSLATOR DESIGN

We recognize the following specific features of translators:
• Production translators are large systems. Booch et al. [2] state that
structural design fails if the amount of source code exceeds approxi-
mately 100,000 lines. A typical translation system is of comparable
size, so the application of object-oriented design is encouraged.
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• Translators used in the software industry live over ten years. They
are among the longest-living software products. Therefore, easy
maintenance is one of the crucial requirements on such systems.

• During their lifetime, translators incorporate support for several in-
put language dialects and target environments. Ideally, they also
have to be updated to employ the most current analysis and op-
timization techniques. Thus, a well-designed translator should be
flexible to a considerable extent.

• Dynamic replacement of components is often desirable, for instance,
in multilingual translator systems [13].

In the following sections, we consider approaches to the translator design,
taking the above requirements into account.

4. KNOWN APPROACHES

Known approaches to translator design can be split into two categories:
algorithm-centric and data-centric. Translation systems that fall into the
first category may be considered as a set of algorithms, sequentially applied
to data (an intermediate representation). For instance, a typical sequence
may be: semantic checking followed by constant evaluation, variable life-
time analysis and, finally, code generation. In data-centric systems, input
language entities are represented as classes, and translation algorithms are
implemented as class behavior. An example of such a system would be a
Java source-to-bytecode translator that contained classes named Variable,
Type, Expression with methods semantic_check(), inline(), generate() and
the like. In this section we discuss the advantages and shortcomings of both
approaches in detail.

4.1. Algorithm-Centric Approach

Since the systems exploiting the algorithm-centric approach may be
thought of as a “data processing conveyer”, they have to address three main
issues:

1. Choice of a suitable IR (format of “conveyer data”).
2. Component segregation (an exact set of “conveyer components”).
3. IR processing (how components operate on IR elements).

IR. So far, the following IR architectures have been established:
• Structural IR, a canonical form representing a program as a graph
of ’nodes’ where each node is an instance of a structure type. The
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semantics of particular structure fields often depends on the value of a
’selector’ field. Union type instances are frequently used to represent
different entities.

• Object-based IR1. The characteristic feature of this approach is sep-
arating the internals of IR elements from data access interfaces. For
instance, IR element properties may be encoded as bit array (repre-
sented as an integer field), and accessed through analyzing methods,
thus providing data abstraction.

• Object-oriented IR in which objects’ classes form an inheritance hier-
archy. We would call this approach “pseudo object-oriented” because
AST objects have state but no associated behavior.

The implementation language often dictates a particular IR organiza-
tion, but an object-oriented IR is preferable.

Component Segregation. Another important question is component
decomposition, that is, identifying the set of processing components and
the tasks they are responsible for. We believe that a simple partitioning
into FE/ME/BE is not sufficient to get a flexible system. In fact, a trans-
lator may include smaller sub-components, such as:

• Analysis algorithms
• Optimizing transformations
• Semantic checks
• Constant evaluation
• Transforming IR to another form suitable for the next component.

IR Processing. The last topic to discuss in this section is the means
of interaction between processing components and IR. The main problem
arising here is that components have to dynamically recognize the actual
types of IR elements. Any approach to IR design assumes generality of IR
elements, achieved through union types, common base types and so on. This
implies that processing components have to identify the actual IR elements
they deal with. In other words, their implementation always includes some
kind of dispatching code, which maps IR object properties to actions of
processing components. Typical examples:2

1Booch et al. identify this as object rather than object-oriented design, since inheri-
tance is not used.

2The examples use a mix of Java and C++ syntax, because using pure Java, as we
do in other sections, would essentially increase code size.
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• Usage of property methods or selector fields of IR objects:
switch(node.getKind()) {

case IntegerType: ... // here follows the handling code
case PointerType: ...

}
• Usage of dynamic type information or the meta-programming tech-
nique:
if(node instanceof IntegerType)

... // handling logic follows here
else if(node instanceof PointerType)

...
else ...

• Usage of the “visitor” design pattern [9] with callback methods:
interface Visitor { ... }

// Methods from a base and derived IR classes:
abstact void Type::accept(Visitor v);
void PointerType::accept(Visitor c) {

c.visitPointerType(this);
}
void IntegerType::accept(Visitor c) {

c.visitIntegerType(this);
}

// Code of a processing component that
// initiates the dispatching:
// (visitor is instance of a class that
// implements Visitor interface)
node.accept(visitor);

// Examples of the visitor methods:
void VisitorImplementation::visitPointerType(PointerType node) {

... /* handling logic follows here */
}

void VisitorImplementation::visitIntegerType(IntegerType node) {
... /* handling logic follows here */

}

Although the application of object-oriented programming style in the
algorithm-centric approach is possible, it is rather used as a means of coding
and does not affect the architecture of the whole system. Thus we conclude
that the algorithm-centric approach adheres to the modular design, as can
be seen from the list of benefits and drawbacks.

The benefits are:
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• Translation rules and algorithms may be clearly identified. This eases
the creation of flexible multi-purpose translation frameworks (e.g.
[13]) and results in the higher levels of maintainability and code reuse.

• Dynamic replacement of components can be achieved, including the
support for many input languages and target platforms, extensibil-
ity with new analysis and optimization techniques, etc. Although
the processing components may be implemented as objects (several
instances of the same class defining a component interface), we find
that it is an example of the modular design.

Among the drawbacks are:
• Violation of the encapsulation principle, because code and data are
distributed across different components. This leads to a “fragile”
software design — any change in the IR element semantics entails a
(possibly unpredictable) number of changes in the processing com-
ponents.

• Absence of well-defined rules for the intra-component design.
There are a number of compilers and compiler-related tools [8][13][21]

built in accordance with this approach 3.

4.2. Data-Centric Approach

According to the OOD principles, IR and processing code should be cou-
pled together. This is the key idea of the data-centric approach. Taking
the approach, IR is an abstract syntax tree designed using object-oriented
techniques. Front-end builds the program internal representation formed
as a system of interrelated objects, whose classes correspond to the input
language entities. Inheritance is used to provide generality, e.g. both “bi-
nary expression” and “unary expression” classes are derived from a “generic
expression” class. Aggregation is employed to represent the hierarchy of
entities — variables belong to a function, functions belong to a module,
etc. Thus, the translator architecture is a graph of objects, whose rela-
tions and type structure are similar to the syntax structure of the input
language. Translation algorithms are implemented as methods, e.g. each
class has methods like generate(), const_evaluate(), etc. Eventually, we get
a translation system as IR with associated behavior.

The advantage of the data-centric approach is a well-designed class and
3These references actually present massive compiler systems that consist of several

“basic blocks”, each of the block can be viewed as application of the algorithm-centric
design.
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object hierarchy. Processing code may be decomposed and bound to the
respective IR objects providing the desirable level of encapsulation. This
essentially eases the process of adding new language features and the modifi-
cation of their semantics. The obvious drawback of the approach is that each
translation algorithm is scattered among multiple methods of IR classes,
whereas different algorithms are mixed together in the same class. In partic-
ular, this hinders reuse of the translator’s code. Papers on Aspect-Oriented
Programming refer to this drawback as to code tangling [22].

We conclude that the data-centric approach is only suitable for relatively
simple translation systems that neither require high flexibility, nor incorpo-
rate complex translation algorithms, and therefore avoids the mentioned
problem.

The data-centric approach is not as widespread as the algorithm-centric
approach. One of the main reasons, to our opinion, is that the apporach
relies on object-oriented design, and therefore, cannot be applied if the im-
plementation language does not support the OO paradigm of programming.

We have encountered its application oin several research and educational
projects [11][12] and the Sun javac compiler [17] which is a good example
of a single-purpose translation system.

4.3. Visitors

In the last years, with the development of parser generators targeting
OO languages, new standard for interface to internal representation has
been established, employing a Visitor design pattern [9].

One can say that the use of the pattern helps the developer to com-
bine benefits of the algorithm-centric and data-centric approaches. Different
analysis and translation algorithms, represented as classes that implement
the Visitor interface, are separated into different components. At the same
time, each component is naturally partitioned into methods that visit con-
crete classes of IR.

An example: if an internal representation contains instances of classes
UnaryOperation and BinaryOperation, then a processing component will
include the methods visitUnaryOp and visitBinaryOp.

Our work may be interpreted as an extension of this idea by decomposi-
tion of the processing code into classes instead of methods and addition of
dynamic relationships between the IR and processing code.
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5. BIDIRECTIONAL TRANSLATOR DECOMPOSITION

As can be seen, the sets of benefits and drawbacks of both approaches are
orthogonal to each other. This fact is implied by the difference between the
system decomposition principles used. Each problem domain entity that is
considered as a whole abstraction in one approach is spread among abstrac-
tions used in the other. Let us consider the example shown in Fig. 1. In
the algorithm-centric approach we may identify the following abstractions:
front-end, IR (consisting of Module, Type and Variable classes), semantic
checker and code generator. In the data-centric architecture, only one of
them is present, namely, the front-end. IR elements become parts of more
complex objects, which form the entire translation system. Functionality of
the semantic checker and code generator is implemented in the methods of
those objects.

Whereas the data-centric approach identifies IR classes (module, type,
variable, statement) with associated behavior as abstractions, their coun-
terparts in the algorithm-centric system are distributed over IR, semantic
checker and code generator.

Fig. 1. Decomposition principles

5.1. Decomposition Principles

We propose to combine the approaches and to obtain a system design
that amalgamates the advantages of both of them. To this end, we consider
a translator system from two points of view at the same time:

• as a set of components (front-end, IR and processing components)
• as a graph of objects whose relations and class hierarchy reflect the
syntax structure of the input language
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We call the algorithm-centric approach a vertical decomposition, and the
data-centric one — a horizontal decomposition. Each may be sequentially
applied to the system being designed. We have found that the resulting
design (i.e., sets of classes, objects, components, and their communication
rules) does not depend on which of the methods is used first.

Vertical-First Decomposition. At first, we divide the system into sev-
eral components responsible for the main translation stages (or algorithms),
exactly as described in Section 4.1. Notice that we separate IR into a dis-
tinct component. After that, we design each processing component as a
graph of objects, whose relations and class structure are similar to that of
IR.

The key observation made here is that the nature of the AST implies
further decomposition of each component to blocks, where each block per-
forms the analysis and transformation of one AST element. An example of
the resulting design is shown in Fig. 2.

IntType

size: Int
IntTypeGen

declare()
define()

PtrTypeGen

declare()
define()

TypeGenerator

declare()
define()

PtrType

base: Type

BinaryExpression

left : Expression

right : Expression

Expression

type : Type

Type

base

type ExprGeneretor

generate()

BinExprGen

generate()

IR component Code generator component

Fig. 2. Example of the system architecture

Horizontal-First Decomposition. Following the data-centric approach,
let us consider the translator as a system of AST objects. Then we provide
each AST class with methods that implement the necessary transforma-
tions of class instances during translation. Note that this implies extension
of AST objects with additional states (attributes) that were not present in
the original IR, as defined in Section 4.1. The behavior of each class is nat-
urally partitioned into groups of methods so that each group is dedicated
to a specific translation phase. We call such group a facet. Thus, for each
AST class we define a core facet that implements the original IR proper-
ties, and operating facets providing the specific translation functionality. In
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Fig. 2, entities Type, PtrType, IntType are core facets, and TypeGenerator,
PtrTypeGen, IntTypeGen are operating facets.

The main characteristics of the operating facets are listed below:
• They introduce a new state and behavior to the original IR elements
(core facets). Note that the behavior may be very complex, depend-
ing on the translation rules employed.

• An operating facet essentially depends on its core counterpart, but
not vice versa. That is, the relations of core and operating facets are
similar to that of the base and derived classes. In other words, the
operating-to-core interface is ’protected’ rather than ’public’.

• Relations between different operating facets are considerably weaker.
We have noticed that each operating facet can be designed as a separate

class, which is tightly coupled to its core. Then we can group operating
facets together into components according to their functionality and, finally,
we have the same system design as in the vertical-first decomposition.

6. COMPOSITE OBJECTS AND CLASSES

Following the advocated principles, we decompose a translator into sev-
eral class hierarchies, each of them corresponding to a specific processing
component. Unfortunately, the decomposition violates the encapsulation
principle, since we distribute the AST’s data and code (state and behav-
ior) among different classes. That leads to a complicated interdependency
between components and makes the system difficult to maintain.

This is why we prefer not to think of operating facets as stand-alone
classes until we have elaborated the overall design thoroughly. As mentioned
above, operating facets are tightly coupled to core ones, so a more fruitful
approach would be to exploit the idea of composite objects and classes.

A composite object is a combination of a single core facet and several
operating ones. This allows us to minimize superfluous object dependencies.
If each facet is an object, a composite object is a tuple consisting of N+1
objects, where one of them represents the core facet and the rest — operating
facets. It implies a simple definition of a composite class as a combination
of N+1 classes — one for core objects, and N — for operating ones.

As composite classes contain core facets, they directly correspond to the
entities of the input language. Thinking in terms of composite classes and
objects, one may notice that modification of the input language semantics
causes either the introduction of new composite classes, or a change in
implementation of existing composite classes. As a rule, the inter-class
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communication protocol remains unchanged. Similar conclusions are drawn
in [5].

On the other hand, modification of a particular translation algorithm
(analysis, optimization, etc.) affects only the code of one operating facet
for each IR class, leaving other facets almost unchanged.

Summarizing the above, a translator becomes a system of composite ob-
jects.

Below, we argue that the low-level design of processing components
slightly deviates from the “one facet — one object” principle in order to
achieve more flexibility in facet relationships. Hence, the composite object
is in fact an abstraction used at the design phase, that allows us to make
system decomposition simple and effective.

6.1. Proposed System Design

Now we describe the design of a translator in the terms introduced in
the previous section. A translator consists of:

• project system,
• front-end,
• IR.

IR is a system of composite objects, whose class hierarchy is organized
as an AST. Each composite object consists of N+1 facets, where one is a
core facet and the other are operating facets. The number N of operating
facets is equal to the number of the processing components identified at the
specification and design phases.

As implemented in an imperative OO language (e.g. Java, C++, Oberon-
2), each core and operating facet is a separate object. Below we apply the
terms “core” and “operating” to both objects and their classes.

Operating classes related to a single processing component form an in-
heritance hierarchy similar to the hierarchy of core classes. Since composite
objects are distributed across components, support for composite objects
is implemented through object references. Processing components may be
shaped with the aid of the modular facilities of the implementation language
(e.g. Java packages, C++ compilation units and namespaces, Oberon-2
modules etc).

Initially, the front-end builds an IR as comprising only core facets. After
that, operating facets are created on demand, following the logic of the
translation process. The code that creates operating facets and attaches
them to core ones is the only translator part that depends on both core
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and operating facets. We place this code into processing components (along
with facet classes) making the core completely independent of the other
parts of the system. Thus, the architecture possesses the benefits of the
algorithm-centric approach.

The advantages of the proposed system design are:
• Flexible design of class and object relationships w.r.t. multiplicity:
We are free to link a single operating object with two or more core
ones, for instance, if it is stateless, or has a reduced state as in the fly-
weight pattern [9]. This is an example of a many-to-one relationship
at the object level.
If two core objects of the same class are to be processed by essentially
different rules, we are free to provide them with operating objects of
different classes, for instance:
A core class BinaryExpression is used to represent operations on
both integer and floating-point values. Let us consider a processing
component that performs code generation for Intel x86. Code gen-
eration rules for integer and floating operations differ significantly,
so using two separate operating classes (IntegerBinopGenerator and
FloatBinopGenerator) would be appropriate. This is an example of
a one-to-many relationship at the class level.

• Easy extension of the system with new translation algorithms (in
the form of processing components), and with new input language
entities (represented as composite classes).

• Dynamic configuration of the system — the required components are
created at runtime following the logic of the translation process.

• Opportunity for code reuse due to fine-grained system decomposition.
Note that application of the design to a translator makes its system

architecture somewhat complicated. For instance, the design applied to a
three-phase translator for a language with a hundred of abstractions (such as
C), results in a system containing several hundred classes and many lines of
auxiliary code4, which obviously makes the source text less comprehensible.

We deem that this drawback appears when the translation code is not
semantically rich. In this case, the design-level abstractions (represented as
classes and objects) are transformed into classes with rudimentary behavior.

As it happens, real-world translators usually incorporate complex algo-
rithms, and the syntactic overhead imposed by our design “dissolves” within
the translator code.

4Class headers, creation of operating facets, linking them with core, etc.
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7. IMPLEMENTATION NOTES

We are aware of dynamically-typed languages (e.g. Self [18], Smalltalk
[10]), that would allow us to implement composite objects in a more elegant
manner. It is sufficient to note that operating objects dynamically inherit
the core ones. However, due to practical considerations, we were restricted
to using either Java or C++.

The proposed design was used in implementation of two industrial trans-
lators in Java. This section shortly describes the technique of composite
objects representation in Java and the problems we encountered during the
implementation.

7.1. Referencing composite objects

Since each composite class is a tuple of facet classes, a reference to a
composite object is represented as a tuple of references (to facet objects).

An interesting aspect is implementation of the methods of composite
classes. In terms of an implementation language, each of the methods be-
longs to a facet class. Let us consider the hierarchy of three composite
classes Type, IntType, PtrType as shown in Fig. 2. Suppose that each com-
posite class consists of a core facet and a generator (operating facet), which
has an instance method define() that emits a type definition clause to the
output file (this is an example of a source-to-source converter):
CompositeType = <Type, TypeGenerator>
void TypeGen::define(TypeGenerator this, Type core);

Note that according to the Java syntax, the ’this’ parameter is hidden.
We expose it only for a more illustrative description. The method define()
overridden in the derived classes should have a different signature, because
it always receives parameters of the derived facet classes:
void IntTypeGenerator::define(IntTypeGenerator this, IntType core);

Unfortunately, most of industrial programming languages (e.g. C++,
Java) require strict matching of the overridden method signatures, with the
only exception being the ’this’ parameter. This is why implementation of
such methods in the derived classes requires an explicit cast:
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void IntTypeGenerator::define(Type core0) {
if(core0 instanceof IntType) {

IntType core = (IntType)core0;
// access to the members of ’core’

} else {
throw new Error("Composite object integrity broken!");

}
}

We find that type casts hinder writing a compact code. Extension of
the implementation language with new constructs may help us to elaborate
a more elegant style for programming in terms of composite objects.

7.2. Creation of Composite Objects

We have employed the principles described in Section 6 for decomposi-
tion of translators to objects, classes and components. The core and op-
erating objects were associated through references (that is, references to
operating objects are attributes of the AST). The front-end builds an AST
consisting of “pure” core objects, whereas operating ones are created on de-
mand. We used Java metaprogramming facilities to determine the type of
an operating object to be created for a given core class (a “class → class”
mapping table is maintained).

After the operating facet is built, its methods can be called. Such calls
are performed not directly, but through a special interface designed for the
communication of tree-processing components.
An example. The semantic-checking component is working on an expres-
sion and wants to find out whether its value can be evaluated at compile
time or not. It is aware of the existence of a const-evaluating component,
but knows nothing about its internals:
package xxx.yyy.semantifier;
class BinaryChecker extends ExpressionChecker {
public boolean isCorrect(Expression e) {

BinaryExpression core = (BinaryExpression)e;
...
// need to inquire constancy
if( Evaluator.facet(core).isConstant() )

...
else

error("expression must be constant", core.getPosition());
}
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Here Evaluator is the base class for the whole const-evaluators hierarchy
and is responsible for maintaining the “core → operating” mapping, which
is what the Evaluator.facet() method does:
public static ExprEvaluator Evaluator.facet(Expression core) {

ExprEvaluator e = (ExprEvaluator)core.getAttribute(EVAL);
if(e == null) {
EvalFactory f = (EvalFactory)table.getFactory(core.getClass());
e = f.newInstance(core);
core.setAttribute(EVAL, e);

}
return e;

}

As can be seen from the example, we have a hashtable whose keys are
the classes of AST nodes and whose values are factories responsible for
creation of appropriate operating facets. In our implementation, the table
is static (filled at startup), but it can be altered dynamically to yield extreme
flexibility.

Note that the same result (maintaining the “core → operating” facet re-
lation) can be achieved by static techniques, e.g. double dispatching instead
of “class → class” tables, etc.

7.3. Restricted Type Polymorphism

According to Milner’s Type Theory [15], all parameter types are message
receivers, i.e. each method is considered as an operation of the types. Then,
the method lookup is performed among all of them. The industry standard
programming languages implement a restricted version of the concept, for
the sake of performance. In particular, only the first parameter type is the
message receiver.

We advocate a modified version of polymorphism that counts the types
of the method parameters with minimal overhead for execution. The mod-
ification affects two language facilities: the method overriding and virtual
call. Let us consider a method declared in a derived class that overrides a
method of a base class. According to the language syntax, the signature of
a derived method must exactly coincide with that of the base method. As
shown above, this is inconvenient for implementation of composite objects.
In order to overcome the drawback, we propose the following scheme:
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• Syntactically, a change of the method declaration rules:
The signature of the derived method is permitted to differ from the
base one in the types of parameters. Now the types may inherit those
from the base method signature.

• Semantically, a change of the virtual method lookup:
when a derived method is invoked, the actual parameters are checked
for compatibility with the types of the derived method signature.
That should be accomplished for correct execution, because the method
signatures may differ. If the types are compatible, the actual param-
eters are cast and execution proceeds; otherwise a run-time error
occurs.

An example.
class Type { ... }
class FloatType extends Type { ... }

class TypeGenerator {
void define(Type parameter);
}

}

class FloatTypeGenerator extends TypeGenerator {
void define(FloatType parameter) {

// use of FloatType properties
}

}

Let the variable foo have a formal type TypeGenerator and an actual
type FloatTypeGenerator. Let us consider a method call:

foo.define(bar);

If bar’s actual type is FloatType, then execution continues; if not, a run-
time error occurs. That may be thought of as “restricted overriding” —
a derived class overrides a method declared in the base class, imposing
an additional restriction on parameters types. The technique resembles a
search for an exception handler matching the type of the exception object.

At first glance, the modification is just a “syntactic sugar” allowing one
to write a more compact code. However, changing rules for a virtual method
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invocation is an extension of the polymorphism concept. Actually, a support
for this facility in programming languages would affect designer’s “way of
thinking” during the development of system architecture. For instance, our
design would exploit it for implementation of composite objects.

In our opinion, this kind of dynamic parameter checking may find its
place in the next generation of OO languages.

8. PRACTICAL EXPERIENCE

We have built two translators based on the proposed design. This section
briefly describes their architecture and lists the exact functionality blocks
that are implemented as operating facets.

The translators (named C2F and F2C) form a toolchain translating C
source into the F-language, an assembler-like language based on an abstract
register machine, and then back to C source.

Each translator incorporates two kinds of IR — the first one (called pri-
mary) is built by the parser, and is used for program analysis and checking.
The second one is hidden inside the backend and is used only for generating
some pieces of the output text (such as a C expression).

Each translator incorporates the architecture described above, where the
core facets are the nodes of the primary IR, and the operating facets are
the classes analyzing and modifying the core.

The primary IR of C2F represents the C program, with class hierarchies
for Types, Values, Statements and Expressions, and standalone classes for
Variable, Function, Named Constant and Compilation Unit. There are three
processing components organized as hierarchies of facet classes: semantic
checker, constant evaluator, and back-end (code generator). The seman-
tic checker and back-end contain operating facets for each IR class, while
constant evaluator works only with expression and value hierarchies.

There is one processing component that is not organized as a hierarchy of
facet classes, this is the alignment and size computation component, called
“Aligner”. It contains separate pieces of code for each type in the type
hierarchy, so we could have implemented it as facet classes, but we decided
to use a Visitor pattern [9] instead, because the amount of useful code
was too small compared to the associated class headers, “core ↔ operating”
facets relation mechanism, etc. Finally, we had no need for all the flexibility
of our approach in this component.

In contrast, using facets for the implementation of back-end and constant
evaluator has proven to be the right solution, because the architecture has
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sustained 2 years of continuous enhancement and still looks well-shaped.
The internal architecture of F2C is quite similar, although it has only

two facet hierarchies, for semantic analysis and code generation.
Some operating facets in the code generation component have no state,

so they were implemented as flyweights [9], with many core facets referring
to the same operating one. Also we’ve employed the flexibility of object
relationships (see Section 6.1) to separate the code generation rules — we
have distinct generator objects for the F-language constructions that are
instances of the same IR class, but have essentially different representations
in the output C text.

An example. The F-language has a notion of “virtual registers” that re-
ally are scalar-type variables that have no defined placement and therefore
can be accessed only directly by the corresponding register-treatment op-
erations. When translating to C, not all registers are translated to local
variables: if a virtual register has only one definition (only one operation
writes to this register), and only one use, then the C-equivalent form or
defining operation can be substituted to the place of use, therefore the vir-
tual register itself gets no equivalent in the C output.

In practice some code analysis is needed to perform this substitution,
but we skip it for brevity.

So, OR of the the F-language has a class “Register” (this is core facet),
and the C backend provides an operating facet for this core class. When
the code generation logic first requests the generator for a register, the flow
analysis is performed that determines how the register should be gener-
ated. After that, an operating facet is created and attached to the core
one. Depending on the results of analysis, the facet is either an instance of
PermanentRegisterGenerator or instance of TempRegisterGenerator. These
classes have common predecessor (an interface), so the rest of the back-
end treats them identically, while the translation logic encapsulated in the
classes is quite different.

Let us finish with a brief source code for this example:

class RegisterGenerator {
public abstract CExpression gen_use();
public abstract CExpression gen_address();
public abstract void emit_definition();
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public static RegisterGenerator facet(Register r) {
// determines what kind of generator is required for
// the given register and creates it
...
return makeVar ? new PermRegisterGenerator(r) :

new TempRegisterGenerator(r);
}

}

class PermRegisterGenerator extends RegisterGenerator {
// emits no definition
// but works with other generators in order to provide
// C expression for the defining operation of the register
...

}

class TempRegisterGenerator extends RegisterGenerator {
// generates local variable and returns references to that
...

}

9. RELATED WORK

The idea of the algorithm-centric approach is described in the “compiler
construction bible” [1]. Applications of the approach to the production
translators may be found in [8][13]. The design of internal representations
in the form of ASTs is considered in [7]. A data-centric approach is often
employed in educational projects and introductory courses to the object-
oriented compiler construction [11][12]. The Sun javac compiler [17] is an
example of industrial tool designed using the approach.

From the technical point of view, our work an extension of the “Visitor”
design pattern described in [9]. In [20] the pattern is extended by a more
sophisticated interface and applied to construction of parser generators. In
general, the Visitor pattern expresses each tree-processing component as a
class, while we extend it to hierarchies.

As for the translation architecture in the whole, our approach has some-
thing in common with the ideas proposed by the authors of the Vanilla
framework [5]. They concentrated on the support for many input languages
inside the same execution environment (interpreter). Their notion of “pods”
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as basic blocks of an interpreter is close to what we call “composite objects”.
However, the key abstractions used in the approaches have different origins
— ’pods’ are orthogonal (independent) elements of the input language, in
contrast to ’composite objects’, which are based on an AST. We aimed at
combining data-centric and algorithm-centric approaches, while Vanilla is
in the vein of the data-centric one.

The translator architecture we propose may be thought of as an example
of multi-dimensional separation of concerns described by Tarr et al [19].
In their terms, structuring the translator as a hierarchy of IR classes and
objects is a “dominant dimension”, and each IR-processing component is
a “hyperslice” — a unit of decomposition in a dimension other than the
dominant.

Multi-dimensional separation of concerns is also a basic principle of
Aspect-oriented programming methodology [22][23] which provides a pro-
grammer with new abstractions (Aspects) used for system decomposition in
the dimensions orthogonal to those of classes and objects.

Most of our results can be implemented in the aspect-oriented program-
ming framework, e.g. AspectJ [24][25], possibly, except for dynamics of
relationship between the core and operating facets.

However, we stay in the vein of OO programming. New abstractions
(facets and composite objects) can be thought of as extensions of classes
and objects, or just as another interpretation of the same things (yet with
extended relationship between them). In contrast, the aspects are orthogo-
nal to the OO features and cannot be implemented through (or expressed
with) them 5.

As for implementation, aspects require specific programming environ-
ment (source pre-processing is a minimal solution, specific IDE support +
compiler + runtime is preferred). As a result, the use of the technology in
industrial programming may be inappropriate.

In other words, we’ve found a point between a widespread, currently
used technology (object-oriented) that is ineffective for our needs, and a
new programming methodology (aspect-oriented) that is too heavy and not
commonly used yet.

5One can say that facets are objects while aspects are not.

24



10. CONCLUSION

In our experience, the technology described in this paper is particularly
useful in two cases:

• Rapid creation of source-to-source converters. Such systems usually
exploit only one intermediate program representation in the form of
an AST, so the advocated technology is an easy and direct route to
the system design.

• Creation of retargetable multilingual optimizing compilers [13]. As
noted in Section 2, such compilers are usually built as chains of single-
IR translators, or “basic blocks”. As a rule, these systems use ASTs as
one of their intermediate representations and therefore would benefit
from bidirectional decomposition.

In the future we hope to sharpen the technology by applying it to new
projects, especially on the following topics:

• Defining more clear rules for the application domain: when a pro-
cessing component should be decomposed to a hierarchy, and when
this is not a good idea.

• Applying our technology to translator components that use other
kinds of IR, such as bytecodes, SSA-form [16] etc.

Also we plan to investigate new language constructs allowing better
support for programming in terms of composite objects.
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