
Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

I. S. Anureev

USL — THE LANGUAGE OF NATURAL STATE MACHINES

Preprint
114

Novosibirsk 2004

An approach to description of formal operational semantics of modern
programming languages is proposed. The approach yields specifications
of programming languages syntactically close to specifications in natural
languages, but with a formal semantics. The approach is based on natural
state machines, a new class of abstract machines. The language of natural
state machines called USL is presented and its formal semantics is defined.
A library of USL instructions destined for development of programming
language semantics is outlined. The examples of application of the approach
to the modern programming languages are given.

c© A. P. Ershov Institute of Informatics Systems, 2004

Российская академия наук
Сибирское отделение

Институт систем информатики
им. А. П. Ершова

И. С. Ануреев

ЯЗЫК МАШИН ЕСТЕСТВЕННЫХ СОСТОЯНИЙ USL

Препринт
114

Новосибирск 2004

Предложен новый подход к описанию формальной операционной се-
мантики современных языков программирования. Этот подход позво-
ляет задавать спецификации языков программирования в виде текста,
близкого к естественному языку, но имеющего формальную семанти-
ку. Он основан на машинах естественных состояний, новом классе аб-
страктных машин. Представлен язык машин естественных состояний,
названный USL, и определена его формальная семантика. Дан обзор
библиотеки инструкций этого языка, предназначенных для разработки
семантики языков программирования. Рассмотрены примеры примене-
ния подхода к современным языкам программирования.

c© Институт систем информатики им. А. П. Ершова СО РАН, 2004

1. INTRODUCTION

In his survey of programming language semantics [1], Peter Mosses states
that one of the main hindrances to greater use of formal semantics in prac-
tical applications is a lack of user-friendliness of most semantic frameworks.
The same is true for semantics description languages based on these frame-
works.

The languages AsmL [2], Montages [3], VDM-SL [4] and AN2 [5], most
applicable to real-life programming languages, have conventional user-friend-
ly features, such as modularity and compositionality, to a greater or lesser
extent.

We focus on two extra user-friendly features of a semantics description
language, its compactness and closeness of the described semantics to a
natural language text. None of the above-mentioned languages turns out to
possess these features.

To fill up the gap, we suggest a new very compact language called USL
(Unified Semantic Language) [6] that defines a programming language se-
mantics in a form close to the natural language texts.

A semantic framework of the USL language is natural state machines
(NSMs), a version of abstract machines in which states are defined in terms
of sentences close to natural language sentences.

This research has been partially supported by a gift from Microsoft Re-
search in 2002 and is partially supported by the RFBR grant 04-01-00114a.

2. PRELIMINARIES

2.1. Extended Backus-Naur Formalism

To give syntactic notions, we use a variant of Backus-Naur formalism.
A non-terminal is defined as follows:
Non-terminal ::= definition
where constraint1,. . . , constraintn.

A definition is a sequence of terminals, variables and the symbols ::=,
|, (,), [,]. Alternatives are separated by a vertical bar |. Round brackets
(and) are used for grouping. Square brackets [and] indicate that the
enclosed instruction is optional. If the symbols ::=, |, (,), [,] are used as
terminals, they are enclosed in quotes. For example, "(". Terminals and
nonterminals are in small letters. Variables are in capital letters.

Constraints are given in any of the three forms

5

• non-terminal ::= VARIABLE,
• non-terminal ::=

VARIABLE1, E, VARIABLEn or
• VARIABLE is predicate.

Predicates are functions that return the value true or false.
Example. The grammar of arithmetical instructions without a priority

of the operations + and * is defined as follows:
instruction ::=
V | C | X + Y | X * Y | "(" X ")" where
variable ::= V, constant ::= C, instruction ::= X,Y
variable ::= X where X is variable
constant ::= X where X is constant

2.2. Mathematical notation

Let M be a set and f be a function.
Let 2M denote a set of all subsets of M, dom of f denote the domain of

f and range of f denote the range of f.

3. NATURAL STATE MACHINE SYNTAX

This section contains the main syntactic notions associated with NSMs.

3.1. Natural state machine signatures, sentences

A natural state machine signature Sig is a pair (WS,BPS) of sets. The
elements of the sets WS are called words. The set BPS consists of the pairs
of elements called left and right brackets, respectively. It includes the pair
((,)). The sets of words and brackets are disjoint.

The set SS of sentences of the signature Sig is defined as follows:
sentence ::= (X | Y Z | L Y R | L R)
where X is word, sentence ::= Y, Z,
(L, R) is bracket pair

Let WordSet(S) be a set of all words of S∈SS. For the set M of sentences,
WordSet(M) =

⋃
S∈MWordSet(S)

A sentence is said to be unary if it does not have the form X Y where
X, Y ∈ SS. The set USS of unary sequences is defined as follows:
unary-sequence ::= X | X , Y where X is unary sentence, unary-sequence
::= Y

6

3.2. Substitutions

A function from unary sentences to sentences is called a substitution. Let
sub be a substitution and V∈SS. A set of all unary sentences X such that
sub(X) �= X is called the domain of the substitution sub and is denoted by
dom of sub. An application sub(V) of the substitution sub to the sentence
V is defined by the following:

• sub(V) = sub(X) if V has the form X where X∈WS;
• sub(V) = sub(X) sub(Y) if V has the form X Y where X,Y∈SS;
• sub(V) = L sub(X) R if V has the form L X R where

(L,R)∈BPS, X∈SS;
• sub(V) = L R if V has the form L R where (L,R)∈BPS.

For a set X = {X1,. . . ,Xn}, sub(X) denotes
{sub(X1),. . . ,sub(Xn)}

For a function f from X to Y, sub(f) denotes a function from sub(X) to
sub(Y) such that sub(f)(sub(x)) = sub(f(x)).

Let (X1->Y1,. . . ,Xn->Yn) denote the substitution sub with a domain
{X1,. . . ,Xn} such that sub(Xi) = Yi for each 1 ≤ i ≤ n.

The length len of V of V is defined as follows:
• len of V = len of X + len of Y if V has the form X Y where X,Y∈SS;
• len of V = 1 otherwise.

3.3. States, configurations, natural state machines

A partial function from sentences to sentences is said to be a state if it
has a finite domain.

Let StS denote a set of all states, S ∈ SS and state ∈ StS. We postulate
that state(S) = () iff S �∈ dom of state. Let upd(state, X, Y) denote the
state state′ such that

• state′(Z) = state(Z) for each Z∈(dom of state)\{X}.
• dom of state′ = (dom of state)∪{X} and state′(X) = Y if Y �= ().
• dom of state′ = (dom of state)\{X} if Y = ().

A set conf = {val, state, Rules, IWords, GWords} is said to be a configu-
ration if val is a sentence, state is a state, Rules is a finite set of rules, IWords
and GWords are finite sets of words such that IWords ∩ GWords = ∅.

Let CNF be a set of all configurations of the signature Sig. Let {m1 :=
e1,. . . ,mk := ek}, where m1,. . . ,mk ∈ conf, denotes a configuration obtained
from conf by replacement of its elements m1,. . . ,mk by the values e1,. . . ,ek.

7

An NSM is a pair (Sig,II) where Sig is an NSM signature, II is a partial
function of the scheme SS → USS → (CNF→2CNF) called an instruction
implementation. The elements of dom of II are called instruction names.

3.4. Matching rules and forms

Matching rules and matching forms are sentences defined in the following
way:
matching-rule ::=
associate instruction (X) with Y where
X is sentence, matching-form ::= Y

matching-form ::= pattern (X)
[with parameters (Y)] [provided Z]
where X,Z are sentences, Y is unary sequence

A matching form X is said to be associated with a matching rule Y if Y
has the form associate action (Z) with X where Z is an instruction.

3.5. Explanations of key notes

Let M be an NSM of the form (Sig,II) and conf be a configuration.
The signature Sig defines the alphabet of M. Sentences of the signature

Sig are syntactic presentations of instructions of M that change configura-
tions of M. The function II defines the semantics of the base instructions
of M.

Matching rules allow us to define new instructions. A matching form
specifies a class of sentences to which a matching rule associated with this
form is applied.

The sentence val is a value of M, state is a state of M, Rules is a set of
rules that can be applied in conf, IWords is a set of words appeared in the
earlier executed instructions of M, and GWords is a set of words generated
by the earlier executed instructions of M.

4. SEMANTICS OF A NATURAL STATE MACHINE

Semantics of natural state machines is defined by three transition rela-
tions over configurations: the global transition relation →G

S , local transition
relation →L

S and constrained transition relation →(m,n)
S , where m and n are

nonnegative integers.

8

First we introduce some auxiliary notions. These notions are mutually
recursive with the local transition relation.

Let a configuration conf have the form
{val, state, Rules, IWords, GWords}

sub be a substitution and S∈SS.

4.1. Notions

Let Y be a sentence of the form Y1, . . . , Yn.
The sentence S is said to be an instance of the matching form pattern

(X) with parameters (Y) provided Z in conf with respect to sub if dom of
sub = {Y1,. . . ,Yn}, sub(X) = S and there exists val′ such that conf →L

sub(Z)

conf′ and val′ �= ().
Let m, n, k be nonnegative integers, R be a matching rule of the form as-

sociate instruction (U) . . . , and a sentence F be a matching form associated
with R.

A pair (m, k) of nonnegative integers is said to be a replacement position
in S in conf if there exist R ∈ Rules and sub such that S has the form X I
Z, where I is an instance of F in conf with respect to sub, len of X = m-1
and len of I = k.

The pair (R,sub) is called by a replacement parameter of the position
(m, k).

4.2. Transition relations

Let R be a matching rule of the form associate instruction (U) . . . with
parameters (V).

The transition relations →G
S , →L

S and →(m,n)
S are defined as if-then rules

in the following way:
1. If conf →G

S conf′ and conf′ →G
S conf′′, then

conf →G
S conf′′

2. If
{sub(val), sub(state), sub(Rules),

IWords ∪ WordSet(S), sub(GWords)} →L
S conf′,

where sub is a substitution that replaces variables of the set GWords
∩ WordSet(S) by new variables that do not belong to the set IWords
∪ WordSet(S) ∪ GWords, then conf →G

S conf′

3. If conf →(1,1)
S conf′, then conf →L

S conf′

9

4. If
• m+n-1 ≤ len of S
• (m, k) is a replacement position in S in conf with the replace-

ment parameter (R,sub), where k ≥ n
• there is no replacement position (m, k′) in S in conf such that

k′ > k
• if U ∈ dom of II then conf′ ∈ II(U)(sub(V))(conf) else conf
→L

sub(U) conf′

• conf →(m, len of sub(U) + 1)
X val′ Y conf′′, where S = X I Y,

len of X + 1 = m and len of I = k
then conf →(m,n)

S conf′′

5. If conf →(m+n−1, 1)
S conf′ where m+n-1 ≤ len of S and for any k ≥ n

there is no replacement position (m,k) in S in conf, then conf →(m,n)
S

conf′
6. If m+n-1 > len of S, then conf →(m,n)

S conf

4.3. Explanations of key notes

Let S be a sentence of the form S1 . . . Sk, where S1 , . . . , Sk ∈ USS.
The constrained transition relation →(m,n)

S applies matching rules only
to subsentences of S of the form Sm . . . Sl, where l ≥ n. This relation defines
a strategy of application of the local transition relation →L

S . This strategy
is analogous to function calls in the functional programming languages.

The global transition relation →G
S is different from the local transition

relation →L
S only in renaming the words of the sets IWords and GWords to

avoid confusion.

5. THE USL LANGUAGE

The USL language is a language of description of NSMs. It consists of
two sublanguages, a signature language and an instruction language.

All constructs of the USL language are sequences of symbols separated
by one or more delimiters. The sets of symbols and delimiters are imple-
mentation-defined. Here we use blanks and new line symbols as delimiters.

5.1. Signature language

The signature language specifies the sets BPS and dom of INS of an
NSM. A program of the signature language is defined in the following way:

10

signature-language-program ::=
[set of bracket pairs includes X]
[set of instructions includes Y]
where bracket-pair-sequence ::= X,
instruction-sequence ::= Y

bracket-pair-sequence ::=
left "(" L ")" right "(" R ")" |
left "(" L ")" right "(" R ")" X
where L,R are symbol sequences,
bracket-pair-sequence ::= X

instruction-sequence ::=
action "(" X ")" |
instruction "(" X ")" Y
where X is symbol sequence,
instruction-sequence ::= Y

Example. A signature language program
set of bracket pair includes
left({) right(}) left([) right(])
set of instructions includes
instruction(*) instruction(&) instruction(+)
specifies that BPS = {((,)), ({,}), ([,])} and dom of INS =
{*, &, +}.

Mechanisms of addition and execution of instructions defined by INS are
implementation-defined.

The set WS is a set of all sequences of symbols that do not contain
delimiters and brackets.

5.2. Instruction language

The instruction language defines instructions that are executed by NSMs
specified by signature language programs. A program of the instruction
language is defined in the following way:
instruction-language-program ::=
X | X Y where instruction ::= X,
instruction-language-program ::= Y

instruction ::= execute instruction X

11

where sentence ::= X
Let PS be a set of all instruction language programs, P, P′ ∈ PS and S

∈ SS. Semantics of the program P is defined by the transition relation →P

over CNF as follows:
• if P has the form S and conf →G

S conf′, then conf →P conf′
• if P has the form S P′ and conf →G

S conf′ →P ′ conf′′, then conf →P

conf′′

6. STANDARD INSTRUCTION LIBRARY

This section contains the Standard Instruction Library of the USL lan-
guage. Library instructions are defined in the form:
matching rule
• . . .
. . .
• . . .

⎫⎬
⎭ formal definition

The matching rule specifies the instruction name and the matching form F
associated with this rule, the formal definition defines the transition relation
→L

I for the instance I of the form F in the initial configuration conf with
respect to the substitution sub. For the derived instructions, the formal
definition is omitted.

6.1. Notions

The section contains notions used in the library instruction definitions.
Binders are sentences defined in the following way:

binder ::= binder of variables (X)
[of patterns (Y)] [provided Z]
where
unary-sentence-list ::= X,
sentence-list ::= Y, Z is sentence

unary-sentence-list ::= X | (X , Y)
where X is unary sentence,
unary-sentence-list ::= Y

sentence-list ::= X | (X , Y) where
X is sentence, sentence-list ::= Y

The binders

12

binder ::= binder of variables (X)
provided Z
and
binder ::= binder of variables (X) of
patterns (Y)
are short forms for
binder ::= binder of variables (X) of
patterns (X) provided Z
and
binder ::= binder of variables (X) of
patterns (Y) provided true,
respectively.

Let B denote a binder of the form
binder of variables (X) of patterns (Y)
provided Z
where X = X1,. . . ,Xn and Y = Y1,. . . ,Ym.

A substitution sub is said to be a syntactic candidate of B in conf if dom
of sub = {X1,. . . ,Xn} and sub(Yi) ∈ dom of state for each 1 ≤ i ≤ m.

A substitution sub is said to be a semantic candidate of B in conf if
• sub is a syntactic candidate of B in conf
• there exists val′ such that conf →L

sub(Z) {val′, . . . } and val′ does not
have the form ().

A function logsub(B, conf) is said to be a characteristic function of B in
conf if

• the domain dom of logsub(B,conf) of logsub(B,conf) is a set of syn-
tactic candidates of B in conf.

• A range of logsub(B, conf) is a set of all subsets from the sentences
true and false.

• if sub is a semantic candidate of B in conf, then
true ∈ logsub(B, conf)(sub).

• If conf →L
sub(Z) {(), . . . }, then false ∈ logsub(B, conf) (sub) .

A sequence sub1, . . . , subk of pairwise different substitutions subi is
called a series of candidates of B in conf if

• subi ∈ dom of logsub(B,conf) for each 1 ≤ i ≤ k
• if logsub(B,conf)(sub) = {true}, then sub = subi for some 1 ≤ i ≤ k
• if logsub(B,conf)(sub) = {false}, then there is no 1 ≤ i ≤ k such that

sub = subi.

13

Let serialize candidates of B in conf denote a set of all series of candidates
of B in conf.

6.2. Execution instructions

associate instruction (*) with pattern (* X)
with parameters (X)

• conf →L
sub(∗ X) {val := state(sub(X))}

associate instruction (&) with pattern (& X)
with parameters (X)

• conf →L
sub(& X) {val := sub(X)}

associate instruction (&&) with pattern (&& X)
with parameters (X)

• if X has the form (Y) where Y ∈ SS, then
conf →L

sub(&& X) {val := sub(Y)}
• conf →L

sub(&& X) {val := sub(X)} otherwise

6.3. Structural instructions

associate instruction (X) with pattern ((X))
with parameters (X)

associate instruction (;) with pattern (X ; Y)
with parameters (X , Y)

• if conf →L
sub(X) conf′ →L

sub(Y) conf′′, then conf →L
sub(X ; Y) conf′′

associate instruction (,) with pattern (X , Y)
with parameters (X , Y)

• if conf →L
sub(X) conf′ →L

sub(Y) conf′′, then conf →L
sub(X , Y) {val′′ :=

val′ , val′′}.

6.4. Conditional instructions

associate instruction (if holds then else) with pattern (if X holds then Y else
Z) with parameters (X , Y , Z)
provided not X is binder

• if conf →L
sub(X) conf′, val′ �= () and conf →L

sub(Y) conf′′, then conf
→L

sub(if X then Y else Z) conf′′

14

• if conf →L
sub(X) conf′, val′ = () and conf →L

sub(Z) conf′′, then conf
→L

sub(if X then Y else Z) conf′′

associate instruction (if binder holds then else) with
pattern (if U holds then Y else Z) with parameters (U , Y , Z) provided U
is binder

• if conf →L
sub′(sub(Y)) conf′ and

true ∈ logsub(sub(U), conf) (sub′),
then conf →L

sub(if U holds then Y else Z) conf′

• if conf →L
sub(Z) conf′ and false ∈ logsub(sub(U), conf) (sub′) for each

sub′ ∈ dom of logsub(sub(U), conf), then
conf →L

sub(if U holds then Y else Z) conf′

associate instruction (if X then Y else ())
with pattern (if X then Y) with parameters (X , Y)
provided not Y contains else

6.5. Choice instructions

associate instruction (X) with pattern (one of two (X , Y)) with parameters
(X , Y)

associate instruction (Y) with pattern (one of two (X , Y)) with parameters
(X , Y)

associate instruction (execute for each) with pattern
(execute X for each U) with parameters (X , U)

• if conf →L
sub1(sub(X)); ...; subk(sub(X)) conf′ and sub1, . . . ,

subk ∈ serialize candidates of sub(U) in conf, then
conf →L

sub(execute X for each U) conf′

• conf →L
sub(execute X for each U) conf otherwise

associate instruction (execute for some) with pattern
(execute X for some U) with parameters (X , U)

• if conf →L
sub′(sub(X)) conf′ and

true ∈ logsub(sub(U), conf) (sub’), then
conf →L

sub(execute X for some U) conf′

• if false ∈ logsub(sub(U), conf)(sub′) for each
sub′ ∈ dom of logsub(sub(U), conf), then
conf →L

sub(execute X for some U) conf

15

6.6. Update rules

associate instruction (:=) with pattern (X := Y)
with parameters (X , Y)

• if conf →L
sub(X) conf′ →L

sub(Y) conf′′, then
conf →L

sub(X:=Y) {state′′ := upd(state′′, val′, val′′)}
associate instruction (new word) with pattern
(new word)

• if w ∈ WS \ (IWords ∪ GWords), then conf →L
sub(new word) {val :=

w, GWords := GWords ∪ {w}}
associate instruction (add rule) with pattern(X)
with parameters (X) provided X is rule

• conf →L
sub(X)

{val := sub(X), Rules := Rules ∪ {sub(X)}}

6.7. Abbreviation rules

associate instruction (let be in) with pattern (let X
be Y in Z) with parameters (X , Y , Z) provided X is
unary instruction

• if conf →L
sub(Y) conf′′ →L

sub′(sub(Z)) conf′′ and
sub′ = (sub(X)->val′), then
conf →L

sub(let X be Y in Z) conf′′

associate instruction (execute X for some U) with
pattern (let U holds in X) with parameters (U , X)

6.8. Equality instructions

associate instruction (=) with pattern (X = Y)
with parameters (X , Y)

• if conf →L
sub(X) conf′ →L

sub(Y) conf′′ and val′ = val′′, then
conf →L

sub(X = Y) {val := true}
• conf →L

sub(X = Y) {val := ()} otherwise
associate instruction (not X = Y) with pattern (X != Y) with parameters
(X , Y)

16

6.9. Propositional instructions

associate instruction (not) with pattern (not X)
with parameters (X)

• if conf →L
sub(X) {(), . . . }, then conf →L

sub(not X) {val := true}
• conf →L

sub(not X) {val := ()} otherwise
associate instruction (if X holds then (if Y holds then & true)) with pattern
(X and Y) with parameters (X , Y)

associate instruction (if X holds then & true else
(if Y holds then & true)) with pattern (X or Y)
with parameters (X , Y)

associate instruction (if X and Y holds then & true
else (if (not X) and (not Y) holds then & true))
with pattern (X xor Y) with parameters (X , Y)

associate instruction ((not X) or Y) with pattern
(X implies Y) with parameters (X , Y)

associate instruction ((X implies Y) and (Y implies X)) with pattern (X iff
Y) with parameters (X , Y)

6.10. Quantified instructions

associate instruction (for each holds) with pattern
(for each U holds) with parameters (U)

• if true ∈ logsub(sub(U), conf)(sub′) for each sub′ ∈ dom of log-
sub(sub(U), conf), then conf →L

sub(for each U holds) {val := true}
• if false ∈ logsub(sub(U), conf)(sub′) for some

sub′ ∈ dom of logsub(sub(U), conf), then
conf →L

sub(for each U holds) {val := ()}
associate instruction (for some holds) with pattern
(for some U holds) with parameters (U)

• if true ∈ logsub(sub(U), conf)(sub′) for some sub′ ∈ dom of log-
sub(sub(U), conf), then conf →L

sub(for some U holds) {val := true}

17

• if false ∈ logsub(sub(U), conf)(sub′) for each
sub′ ∈ dom of logsub(sub(U), conf), then
conf →L

sub(for some U holds) {val := ()}
associate instruction (for unique holds) with pattern
(for unique U holds) with parameters (U)

• if serialize candidates of sub(U) in conf contains a singleton series,
then
conf →L

sub(for unique U holds) {val := true}
• if serialize candidates of sub(U) in conf is an empty set or contains

a series of some elements, then
conf →L

sub(for unique U holds) {val := ()}

6.11. Recognition instructions

associate instruction (is binder) with pattern
(X is binder) with parameters (X)

• if sub(X) is a binder, then
conf →L

sub(X is binder) {val := true}

• conf →L
sub(X is binder) {val := ()} otherwise

associate instruction (contains) with pattern
(X contains Y) with parameters (X , Y)

• if sub(X) has the form U Y V where U, V ∈ SS, then
conf →L

sub(X contains Y) {val := true}

• conf →L
sub(X contains Y) {val := ()} otherwise

associate instruction (is rule) with pattern
(X is rule) with parameters (X)

• if sub(X) is a matching rule, then
conf →L

sub(X is rule) {val := true}
• conf →L

sub(X is rule) {val := ()} otherwise
associate instruction (is unary instruction) with
pattern (X is unary sentence) with parameters (X)

• if sub(X) is a unary sentence, then
conf →L

sub(X is unary sentence) {val := true}
• conf →L

sub(X is unary sentence) {val := ()} otherwise
associate instruction (length) with pattern
(length of X) with parameters (X)

18

• if k is a number of sentences of the form I th element of
sub(X), where I is an integer belonging to dom of state, then

conf →L
sub(length of X) {val := k}

6.12. Integer instructions

associate instruction (is integer) with pattern
(X is integer) with parameters (X)

• if conf →L
sub(X) conf′ and val′ is an integer, then

conf →L
sub(X is integer) {val := true}

• conf →L
sub(X is integer) {val := ()} otherwise

associate instruction (+) with pattern (X + Y) with
parameters (X , Y) provided (X is integer) and ((X ; Y) is integer)

• if conf →L
sub(X) conf′, conf →L

sub(Y) conf′′ and sum is a sum of val′

and val′′, then conf →L
sub(X + Y) {val := sum}

associate instruction (<) with pattern (X < Y) with
parameters (X , Y) provided (X is integer) and ((X ; Y) is integer)

• if conf →L
sub(X) conf′, conf →L

sub(Y) conf′′ and val′ is less than val′′,
then conf →L

sub(X < Y) {val := true}
• conf →L

sub(X < Y) {val := ()} otherwise
associate instruction (not ((X < Y) or (X = Y))) with
pattern (X > Y) with parameters (X , Y) provided
(X is integer) and ((X ; Y) is integer)

associate instruction (not X > Y) with pattern
(X <= Y) with parameters (X , Y) provided
(X is integer) and ((X ; Y) is integer)

associate instruction (not X < Y) with pattern
(X >= Y) with parameters (X , Y)
provided (X is integer) and ((X ; Y) is integer)

7. THE EXAMPLE: DESIGN OF C# SEMANTICS

Let us illustrate our approach to description of formal semantics of real-
life programming languages by the example of design of a C# NSM. The

19

C# NSM is one of the main constituents of the three level approach to C#
program verification [8].

The process of designing the C# NSM is divided into three stages. At
the first stage, the set INS is built from atomic executable C# constructs
(for instance, the names of the base operators with type qualifiers to avoid
overloading). At the second stage, the algorithm of generation of initial
configurations of the C# NSM, including information about C# program
to be executed and execution environment, is developed. At the third stage,
the C# NSM instruction that executes C# programs given by initial con-
figurations is defined in the USL language.

7.1. Generation of initial C# NSM configurations

Translation of C# programs into initial C# NSM configurations is per-
formed by recursive descendant along the program abstract syntax tree in
one-to-one correspondence with the C# grammar [7]. For example, the C#
program fragment public int sum(int x, int y) {return x+y;} is translated
to the initial configuration conf. The state state of conf is defined in the
following way:
state(E1 is method declaration) = true,
state(name of E1) = sum,
state(parameter list of E1) = E2,
state(1 th element of E2) = E3,
state(E3 is parameter) = true,
state(type of E3) = int,
state(name of E3) = x,
state(2 th element of E2) = E4,
state(type of E4) = int,
state(name of E4) = y,
state(return type of E1) = int,
state(modifier set of E1) = E5,
state(public belongs to E5) = true,
state(body of E1) = E6,
state(E6 is statement list) = true,
state(1 th element of E6) = E7,
state(E7 is return statement) = true,
state(expression of E7) = E8,
state(E8 is expression) = true,
state(operation of E8) = +,

20

state(operand list of E8) = E9,
state(1 th element of E9) = x,
state(2 th element of E9) = y.

The words Ei, coding nonterminals in the abstract syntax tree for the
fragment, form the set GWords. The set IWords = WordSet(dom of state
∪ range of state) \ GWords. The set Rules = ∅. The sentence val = ().

The translation preserves a logical structure of the source program that
allows us to establish feedbacks with the source program code during exe-
cution of instructions of the C# NSM.

In addition to C# source program, the elements of an execution environ-
ment can also be added to initial configurations. Here we only extend dom of
state by the sentence application argument list such that state(application
argument list) is an argument list of the method Main.

7.2. C# NSM instruction

C# NSM instruction is defined, with almost one-to-one preservation of
the terminology and the algorithm structure of C# language specification
[7], by the program
execute instruction
application startup ;
execution of C# constructs

The execution environment calls a designated method which is referred
to as the application’s entry point with the help of the instruction
application startup
defined by the matching rule
associate instruction (

if binder of variables (M) provided
(M is method-declaration) and
((* name of M) = Main) and
(((* parameter list of M) = ()) or
let L be (* parameter list of M) in

(length of L) = 1 and
((type of * 1 th element of L) =
(array of (string))))

holds
then

let C be new word in
(C := executing entry point

21

method) ;
((C is context) := true) ;
((executing M in context C) :=
active))

with pattern (application startup)
The rule creates the first active C# construct executing M in context C
and specifies the context C in which the construct must be executed. The
first active construct is an entry point method with the name Main and the
given signature. It is possible for more than one of the classes or structs
to contain a method called Main whose definition qualifies it to be used as
an application entry point. The choice of an entry point is implementation
dependent. The choice is done nondeterministically in this rule to cover all
possible implementations.

The instruction execution of C# constructs executes active C# con-
structs in a nondeterminate manner according to the rule
associate instruction(

let A be executing E in context C
in
if binder of variables (E , C)

in patterns (A)
provided ((* A) = active) holds

then ((execute E in context C) ;
execution of C# constructs)

) with pattern (execution of C# constructs)

The instruction execute E in context C executes the C# construct E in
the context C according to the rule
associate instruction(

if . . . then . . . ; . . . ; if . . . then . . .
) with pattern (execute E in context C)
with parameters (E , C)

In the branches if . . . then . . . , all possible C# constructs with all possible
contexts are listed.

7.3. Examples of branches

The branches
if ((* C) = executing entry point method) and
((* body of E) = ())

22

then (application return value) := void

if ((* C) = executing entry point method) and
((* body of E) != ()) and
((* application argument list) = ())
then

executing E in context C := () ;
let C1 be new variable in

C1 is context := true ;
parent of C1 := C ;
C1 := executing body of E ;
(executing (* body of E) in
context C1) := active

if ((* C) = executing entry point method) and
((* body of E) != ()) and
((* application argument list) != ())
then

let B be (* body of E) in
let A be (* application argument

list) in
extension of local variables set of
block B to parameters (* parameter
list of E) with values A ;

executing E in context C := () ;
let C1 be new variable in

C1 is context := true ;
parent of C1 := C ;
C1 := executing body of E ;
(executing B in context C1) :=
active

define execution of the entry point method. The instruction
extension of local variables set of block B to
parameters (* parameter list of E) with values A
needs, in its turn, a matching rule defining it and so on.

Thus, our approach to the description of formal programming language
semantics is characterized by almost one-to-one translation of informal pro-
gramming language specifications into NSMs and presentation of the se-

23

mantics in a form close to natural language texts. This speeds up the
development of programming language semantics and makes it easy to un-
derstand.

8. CONCLUSION

The paper presents the following results of our research:
• a new class of abstract machines, natural state machines
• a language of natural state machines called USL and Standard In-

struction Library of the language
• formal semantics of both USL and the library
• the example of C# semantics design, illustrating the USL-based ap-

proach to description of programming language semantics.
We are intended to apply the USL language to the description of seman-

tics of .NET programming languages.

REFERENCES

1. Peter D. Mosses. The Varieties of Programming Language Semantics and Their
Uses. Proceedings of Perspectives of System Informatics (PSI’01), Springer LNCS,
P. 165–190, 2001.

2. AsmL Web Page. http://research.microsoft.com/fse/asml.
3. Philipp W. Kutter and Alfonso Pierantonio. Montages: Specifications of Realistic

Programming Languages. Journal of Universal Computer Science, Vol. 3, N 5, P.
416–442, 1997.

4. P. G. Larsen, B. S. Hansen, H. Brunn N. Plat, H. Toetenel, D. J. Andrews, J. Dawes,
G. Parkin, et al. Information technology – Programming languages, their environ-
ments and system software interfaces – Vienna Development Method – Specification
Language – Part 1: Base language. December 1996.

5. S. B. Lassen, P. D. Mosses, and D. A. Watt. An introduction to AN-2: The proposed
new version of action notation. In Proceedings of the Third International Workshop
on Action Semantics, N NS-00-6 in BRICS Notes Series, pages 19-36, 2000.

6. Anureev I.S. The USL language. Syntax, Semantics and Pragmatics. Joint Novisi-
birsk Computer Center and A.P. Ershov Institute of Informatics Systems Bulletin,
Series Computer Science, N 20, 2004. (to appear).

7. ECMA-334. C# Language Specification. December 2001, http://www.ecma.ch.
8. V. A. Nepomniaschy, I. S. Anureev., I. V. Dubranovsky, A. V. Promsky. A three

level approach to C# program verification. Joint Novisibirsk Computer Center and
A.P. Ershov Institute of Informatics Systems Bulletin, Series Computer Science, N
20, 2004. (to appear).

24

