Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

Leonid Novak, Alexandre Zamulin

ALGEBRAIC SEMANTICS OF XML SCHEMA

Preprint
117

Novosibirsk 2004

The semantics of the core features of XML Schema in terms of XQuery 1.0
and XPath 2.0 data model algebraically defined is given. The database state
is represented as a many sorted algebra whose sorts are sets of data type
values and different kinds of nodes and whose operations are data type
operations and node accessors. The values of some node accessors, such as
“parent”, “children” and “attributes”, define a document tree with a definite
order of nodes. The values of other node accessors help to make difference
between kinds of nodes, learn the names, types and values associated with
the corresponding document entities, etc., i.e., provide primitive facilities
for a query language. As a result, a document can be easily mapped to its
implementation in terms of nodes and accessors defined on them.

© A. P. Ershov Institute of Informatics Systems, 2004

Poccuiickas akajgemusi HayK
Cubupckoe oTesieHue
NuacTutyT cucrem mHpOpMaATUKA
uMm. A. II. EpmioBa

Jleonna HoBak, Anekcauap 3amysnuu

AJITEBPANNYECKA4 CEMAHTUKA
A3BIKA XML SCHEMA

IIpenpunT
117

Hosocubupck 2004

JlaHo oTOOparkeHrne OCHOBHBIX KOMITOHEHTOB si3bIKa, OIMUCAHUST JTAHHBIX
XML Schema B kommonerTsl Mozean Janabix XQuery 1.0 mw XPath 2.0,
OTIMCAHHOI ITOCPEJICTBOM MHOTOOCHOBHBIX ajredp. Cocrosinue 6a3bl JaHHBIX
[IPeJICTABJIEHO KaK ajrebpa, OCHOBAMU KOTOPOU sIBJISIIOTCST MHOYKECTBA 3HA-
YeHUl TUIOB JAHHBIX U MHOXKECTBA Y3JI0B Pa3JUYHBIX THUIIOB JEPEBBEB, a
bYHKIUSIMEI — OTIEPAIlNU TUIIOB JIAHHBIX U aHAJIM3aTOPHI Y3JI0B. PesymbraTh
HEKOTOPBIX aHAJIM3aTOPOB, KaK, HAIpUMep, “pomuresn’, “meru’ u “aTpudy-
TBI’, OMPEIEISIOT JEePEBO JTOKYMEHTa ¢ (DUKCUPOBAHHBIM MOPSIKOM Y3JIOB.
PesynbpraTsr Apyrux aHaaIm3aTOpPOB MO3BOJIAIOT Ju(dEpEeHITNPOBATh BUIbI
V3JI0OB U y3HABAThb MMEHA, TUIbI U 3HAYEHUs COMEPKUMOIO COOTBETCTBYIO-
IUX KOMIIOHEHTOB UCXOJHOTO JIOKYMEHTA, T.€. 00eCIeUnBATh IIPUMUTABHBIE
CpeJICTBa JJIsl si3bIKa, 3alPOCOB. Bitaromapst mpeIIoyKeHHON CEMaHTHKE si3bI-
ka XML Schema wcxomubIil JTOKYMEHT MOXKET OBITH JIETKO OTOOParKeH BO
BHyTpEHHee IIpeJiCTaBIeHrne B 6a3e TAHHBIX B BUJIE Y3JIOB C OIPE/IEJIEHHBIMI
HA HUX aHAJA3ATOPAMH.

(© MWucruryr cucrem uadopmaruku um. A. 1. Epmosa CO PAH, 2004

1. INTRODUCTION

In this paper, we present a formalization of some core ideas of XML
Schema [1, 15] (which is nowadays a widely used standard of XML databases)
by means of algebraic techniques. The benefits of a formal description are
well known: it is both concise and precise [2]|. This is not the first attempt
to formalize an XML language. A detailed review of related work is given in
Section 9. It is sufficient to mention at the moment that in all previous work
an XML document rather than an XML database is practically formalized.
For this reason, one cannot easily map a document to its implementation
in terms of nodes and accessors defined on them. Moreover, any operation
of an XML algebra should be defined as a function on the underlining sets.
Therefore an algebraic model of the XML database is needed for definition
of such operations.

A data model [17] is designed to support the query language XQuery
[9] and any other specification that references it. Since XML Schema is
designed for defining databases that may be searched by XQuery (in fact,
the type system of XQuery is based on XML Schema), it is natural to use
this model as semantics of XML Schema. For this purpose, we need to define
formally the model and map syntactic constructs of XML Schema to the
components of the model. As a result, we can get an abstract implementation
of XML Schema, which may be helpful both in the concise description of
XML Schema and the understanding of its implementation.

To save space, we define only the semantics of a representative part of
XML Schema, simplifying many of its constructions (for instance, Costello’s
tutorial [5] indicates 17 ways of element declaration and 20 ways of attribute
declaration, which gives no way to describe the options in full in a research
paper). We consider only the most important document components: ele-
ments and attributes, other components such as comments, namespaces, and
processing instructions can be easily added to the presented model without
its redefinition.

It is assumed that the reader is familiar with XML [6] and some document
type definition language like DTD. The familiarity with XML Schema is
desirable, but not mandatory.

The rest of the paper is organized as follows. The abstract syntax of
element declarations and type definitions in XML Schema is presented in

I This research is supported in part by Russian Foundation for Basic Research under
Grant 04-01-00272.

Section 2, and the abstract syntax of the document schema is given in
Section 3. Basic types of XML Schema are listed in Section 4. Base classes
of the data model are described in Section 5. The database itself is defined in
Section 6. The document order is defined in Section 7. It is shown in Section
8 that an XML document can be converted into a database tree and vice
versa. A review of related work is presented in section 9, and concluding
remarks are given in Section 10.

2. ELEMENT DECLARATIONS AND TYPE DEFINITIONS

In this section we present an abstract syntax of element declarations and
type definitions in XML Schema. The syntax is given in terms of syntactic
types representing syntactic domains and the following type constructors:

Seq(T) — type of ordered sets of values of type T (empty set included).
FM(T1,T2) — type of ordered sets (empty set included) of pairs of values
of types T'1 and T2 defining final mappings from 7’1 to T2.

Union(Th, ..., T,,) — type of the disjoint union of values of types T4, ..., T),.
Enumeration — enumeration type constructor.

Pair(T1,T2) — type of pairs of values of types T'1 and T2.
Interleave(T1,T2) — type of two-item sets of values of types T'1 and T2 (if
a and b are values of respective types T'1 and T2, then both (a&b and b&a
are instances of this type).

Tuple(T1,...,Tn) — type of tuples of values of types T'1, ..., Tn.

The presentation is supplied with examples written in the XML Schema
language. We hope that the reader will easily map examples to the corres-
ponding abstract syntax constructions.

There is a predefined syntactic type, Name, whose elements are used for
denoting different document entities. Depending on the context where this
type is used, we denote it either by ElemName or AttrName or TypeName
or SimpleTypeName or ComplexTypeName.

ElementDeclaration =

Tuple(ElemName, Type, RepetitionFactor, Nilllndicator);
RepetitionFactor = Pair(Minimum, Mazimum);
Minimum = NaturalNumber;
Mazimum = Union(NaturalNumber, {“unbounded”});
NillIndicator = boolean;

The RepetionFactor indicates here how many element information items
with this FlemName a document may have. The NillIndicator indicates
whether the element may have the nil value.

Example 1:
<xsd:element name="annotation" type="xsd:string" nillable="true"/>
<xsd:element name="Book" type="Book-type" minOccurs="1"
max0Occurs="unbounded"/>
<xsd:element name="A">
<xsd:complexType>

</xsd:complexType>
</xsd:element>

Three element declarations are presented in the example. RepetionFactor is
indicated by the pair (minOccurs, mazOccurs). In the first and third element
declarations the default value (1, 1) is used, in the second declaration the
value is set explicitly. An anonymous complex type is used in the third
declaration. NillIndicator is set to false by default in the second and third
declarations. Thus only the first element may have the nil value.

GroupDefinition = Tuple(Seq(LocalGroupDefinition),
CombinationFactor, RepetitionFactor);
LocalGroupDefinition = Union(FElementDeclaration, GroupDefinition);

W

CombinationFactor = Enumeration(“sequence”, “ choice”);

A group definition consists of a sequence of local group definitions,
which are either element declarations or group definitions. Thus, element
declarations and group definitions may be intermixed in a group definition.
The CombinationFactor indicates whether the group defines a sequence or
choice. The element names in a sequence of local group definitions must be
different. The definition has the empty content if the sequence of local group
definitions is empty. The CombinationFactor and RepetitionFactor do not
make sense in this case.

Example 2:
<xsd:sequence>
<xsd:element name="B"/>
<xsd:element name="C"/>
</xsd:sequence>

Example 3:
<xsd:choice minOccurs="0" maxOccurs="unbounded"
<xsd:element name="zero" type="xsd:unsignedByte"/>
<xsd:element name="one" type="xsd:unsignedByte"/>
</xsd:choice>

Example 4:
<xsd:sequence minOccurs="0" maxOccurs="unbounded"
<xsd:sequence minOccurs="0" maxOccurs="unbounded"
<xsd:element name="work" type="xsd:string"/>
<xsd:element name="eat" type="xsd:string"/>
</xsd: sequence>
<xsd:choice>
<xsd:element name="work" type="xsd:string"/>
<xsd:element name="play" type="xsd:string"/>
</xsd:choice>
<xsd:element name="sleep" type="xsd:string"/>
</xsd:sequence>

In Example 2 the group is defined as a sequence of elements and in Example 3
as a choice of elements. Example 4 presents nested group definitions.

Type = Union(TypeName, AnonymousTypeDefinition);

A type may be defined inline in an element declaration (third declaration in
Example 1) or supplied with a name in a type definition (Example 8), which
binds the type name to a type definition. Some type names are predefined,
they denote primitive simple types (for instance, the type “xsd:string” in
the above examples).

TypeName = Union(Simple TypeName, ComplexTypeName)

A simple type in an element declaration means the definition of zero or more
tree leaves. A complex type in an element declaration means, as a rule, the
definition of zero or more intermediate nodes of a tree. We consider in the
sequel that all simple types are predefined and have a name.

AllOptionDefinition =
FM (ElemName, Tuple(Type, OptionFactor, Nilllndicator));
OptionFactor = {0, 1};

This is the declaration of a special group containing the declared elements in
any order. This group may not consist of nested groups. An element of the
group is optional in a document if the value of the OptionFactor is 0, and
it must be present if the value is 1. The declaration has the empty content
if the final mapping is empty.

Example 5:
<xsd:all>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>
</xsd:all>
In the above example the option factor has the default value 1 (each element
must be present in a document).

AttributeDeclarations = FM (AttrName, Simple Type);

AttributeDeclarations introduce a number of attributes with different names.
The type of an attribute is always a simple type. For simplicity, we do not
indicate properties (REQUIRED, PROHIBITED, OPTIONAL) and default
values.

Example 6:
<xsd:attribute name="InStock" type="xsd:boolean"/>
<xsd:attribute name="Reviewer" type="xsd:string"/>

AnonymousTypeDefinition =
Union(SimpleContentDefinition, ComplexContentDefinition),
SimpleContentDefinition = Pair(Simple TypeName, AttributeDeclarations),
ComplexContentDefinition = Pair(MizedIndicator, ComplexTypeContent),
ComplexTypeContent =
Union(LocalElementDeclarations, AttributeDeclarations,
Pair(LocalElementDeclarations, AttributeDeclarations));

MizedIndicator = Boolean;
LocalElementDeclarations = Union(AllOptionDefinition, GroupDefinition);

A complex type may have either a simple content or a complex content.
In the first case, a simple type is extended by attribute definitions. In the
second case, the definition of a complex type typically consists of (local)
element declarations or attribute declarations or both. If the MizedIndicator
in the ComplezContentDefinition is set to true, then a document may
contain text nodes in between element nodes of the corresponding group.

Example 7:
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute name="currency" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
A complex type with a simple content is defined. An element of this type
may have a decimal value and an attribute.

Example 8:
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="Book" minOccurs=0 maxOccurs="1000">
<xsd:complexType>
<xsd:all>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="InStock" type="xsd:boolean"/>
<xsd:attribute name="Reviewer" type="xsd:string"/>
</xsd:complexType>

10

A complex type with complex content is defined. The mixed indicator of
the outer type indicates that “Book” elements can be interleaved by texts
(note that the elements declared in the inner complex type may not).

3. DOCUMENT SCHEMA

In this model we permit only one element information item as a child of
the document information item. This model is more restrictive than the one
specified in [17] (where several element information items may be children of
the document information item), but it strictly follows the model specified
in [4] or [15] (see also Section 2.2.2 in [7]).

DocumentSchema =

Interleave(Complex TypeDefinitionSet, GlobElementDeclaration);
ComplexTypeDefinitionSet =

FM (ComplexTypeName, AnonymousTypeDefinition);
GlobElementDeclaration = Tuple(ElemName, Type, Nilllndicator);

Thus, a document schema defines a set of documents each having a root
element with the same name. The schema may contain a number of complex
type definitions preceding or following the GlobElementDeclaration and
introducing type names used within the GlobElementDeclaration and
ComplexTypeDefinitionSet'. For any type T used in the document schema
with the complex type definition set ctd, the following requirement on type
usage must be satisfied:

T € SimpleTypeName or T € Anonymous TypeDefinition or T € dom/(ctd)?

Example 9:
<?xml version="1.0"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.books.org"
xmlns="http://www.books.org"
elementFormDefault="qualified">

Tn fact, the document schema may also contain a number of other element
declarations and attribute declarations. However, attributes are always part of complex
types and may be declared inline. Multiple global element declarations may also be
considered as a kind of syntactic sugar permitting one either to combine several document
schemas in one schema or save space by referencing an element declaration from within
several complex types.

2Here and in the sequel, dom(f) denotes the domain of a finite mapping f.

11

<xsd:complexType name="BookPublication">
<xsd:sequence>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="BookStore">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Book" type="BookPublication"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
One named and one anonymous data type are defined in the example.

4. BASIC TYPES

We consider that the data model contains all primitive types listed in [1].
These are string, boolean, decimal, float, double, duration, dateTime, time,
data, gYearMonth, gYear, gYearDay, g¢gDay, gMonth, hexBinary,
based64Binary, anyURI, and QName. An atomic type is a primitive type
or a type derived by restriction from another atomic type [1]. A simple type
is an atomic type or list type or union type or a type derived by restriction
from another simple type.

Simple types create a type hierarchy resembling that of object-oriented
languages:

e xs:anyType is at the top of the hierarchy (i.e., it is the base type of
all types);

e xs:anySimpleType is a subtype of xs:anyType and the base type of
all simple types;

e xdt:anyAtomicType is a subtype of xs:anySimpleType and is the
base type for all the primitive atomic types, and xdt :untypedAtomic
is its subtype (unfortunately, the model specification [17] does not
indicate which xdt:anyAtomicType values belong to this subtype).

12

In this paper, we additionally use the type constructor Seq(T') defining
the set of all sequences (ordered sets) of elements of type 7. Any sequence
type possesses the following operations among the others: |s| returns the
length of the sequence s, s; + so attaches the sequence sy to the sequence
s1, and s[i] returns the i-th element of the sequence s.

5. BASE CLASSES

The data model defined in [17] has a flavor of an object-oriented model
in the sense that its main building entities are unique nodes possessing
the state that can be viewed by a number of accessor functions. There
are several disjoint classes of nodes (elements, attributes, etc.) representing
different document information items. All of these classes may be considered
as subclasses of the base class Node. Therefore, the following class hierarchy
may be designed:

Node: base class with the following accessors:
base-uri: Seq(anyURI) (empty or one-element sequence),
node-kind: string,
node-name: Seq(QName) (empty or one-element sequence),
parent: Seq(Node) (empty or one-element sequence),
string-value: string,
typed-value: Seq(anyAtomicType) (sequence of zero or more atomic values)?,
type: Seq(@QName) (empty or one-element sequence),
children: Seq(Node) (sequence of zero or more nodes),
attributes: Seq(Node) (sequence of zero or more nodes),
nilled: Seq(boolean) (empty or one-element sequence).

Document: a subclass of the class Node with three extra accessors not
considered in this paper.

FElement: a subclass of the class Node without extra accessors.
Attribute: a subclass of the class Node without extra accessors.
Text: a subclass of the class Node without extra accessors.

Instances of these classes serve for representing document information items,
element information items, attributes and texts, respectively.

3Because of complex rules of computing this value for different kinds of nodes, we do
not consider this accessor in the sequel.

13

6. DATABASE
6.1. State algebra

Because of frequent insertion of new documents, updating existing docu-
ments and deleting obsolete documents, a database evolves through different
database states. Each state can be formally represented as a many-sorted
algebra called a state algebra in the sequel. Each class C' is supplied in a
state algebra A with a set of node identifiers A¢ in such a way that the sets
of identifiers Apocuments AElements Aattributes AText, €tC. are disjoint and the set
Ayoge is the union of the above sets. In the sequel, the node identifier is meant
each time a node is mentioned (in the same way as an object identifier, or
reference, represents an object in object-oriented languages and databases,
see [11] for a formal definition of an object-oriented model).

Each simple data type T is supplied in A with a set of values Ar and a
set of meaningful operations. One of these operations denoted by the type
name and called constructor converts a string value into an atomic value of
this type, i.e., the operation has the following signature:

T : String — T.

The following node accessor values are set in any state algebra A:

e for each nd € Apocument: node-kind(nd) = ‘‘document’’,
node-name (nd), parent (nd), type(nd), attributes(nd), and
nilled(nd) are set to empty sequences;

e for each nd € Agjepent: node-kind(nd) = ‘‘element’’;

e for each nd € Apiiribute: node-kind(nd) = ‘‘attribute”’,
children(nd), attributes(nd), and nilled(nd) are set to empty
sequences;

e for each nd € Areyt: node-kind(nd) = “‘text’’,
node-name (nd), children(nd), attributes(nd), and nilled(nd)
are set to empty sequences.

A state algebra A sets values of the other accessors. The following variables
are used in the definition of the state algebra:

el,ely,els, ... — element names,

eld — element declaration,

elds — sequence of element declarations,

leds — local element declarations,

ctd — set of complex type definitions,

atds — attribute declarations,

gd, gdy, gds, etc. — group definition,

14

gds — sequence of group definitions,
T,T1,T,, ... — data types,

rf — repetition factor,

cf — combination factor,

mini, ming, ... — minimum number of occurrences of an element or
group,

maxy, maxs,... — maximum number of occurrences of an element or
group,

mid — mixed content indicator,
nid — nil indicator.

The state algebra extensively uses trees of nodes and sequences of trees
of nodes. A parent node in such a tree is either a document node or an
element node. The children of a particular parent node are those nodes that
are indicated by the accessors children and/or attributes. We can formally
define such a tree as follows.

e a node nd is a tree with the root nd;

e if s is a tree with root nd and sy, ..., sy are trees with roots ndy, ..., nd,
such that children(nd) = (ndi, ..., nd,), parent(nd;) =nd, ...,
parent(nd,) = nd, then (s, (si,...,84)) is a tree with the root nd;

e if s is a tree with root nd and ndj, ...,nd, are nodes such that

attributes(nd) = (ndy, ..., ndy),
parent(nd;) = nd, ..., parent(nd,) = nd,

then (s, (ndy,...,ndy)) is a tree with the root nd;
The set of these trees constitutes the set of values of the data type Tree.
The function
root : Tree — Node
applied to a tree yields its root node and the function
roots : Seq(Tree) — Seq(Node)
applied to a sequence of trees yields the sequence of their root nodes.

6.2. Document tree

A document schema S = (eld, ctd) or S = (ctd, eld), where eld = (el,T)
is an element declaration and ctd a set of complex type definitions, is mapped
in a state algebra A to zero or more trees of nodes. Denote such a tree by
s. It must satisfy the following requirements:

15

1.nd = root(s) € Apocument,

string-value(nd) = string-value(children(nd)), and

base-uri(nd) € Aanyur: if the base-uri property exists for this document,
otherwise base-uri(nd) = (). Thus, the string value of the document node
is the string value of its single child.

2. A node end € s is associated with the element declaration eld = (el,T)
so that:

3. end € Agjenent, parent(end) =nd, children(nd) = (end) (i.e., a docu-
ment node has only one child, an element node, it is the node with name
“BookStore’’ in a tree associated with the Example 9 schema); and

4. node-name(end) = el, base-uri(end) = base-uri(parent(end)),
type(end) = T if T is a type name, type(end) = “xs:anyType” if T is an
anonymous type definition, and string-value (end) and typed-value (end)
are computed according to the algorithms described in [17], Section 6.2.2.

5. If nid = false (i.e., the element may not have the nil value), then
nilled(end) = false, and

5.1. If T is a simple type, then:

5.1.1. There is in s a node tnd € Areyy such that parent(tnd) = end,
base-uri(tnd) = base-uri(end), type(tnd) = “xdt:untypedAtomic”,
string-value(tnd) € Asiring, and children(end) = (tnd).

For instance, a text node is associated with each of the element nodes
with names Title, Author, Date, ISBN, and Publisher in a tree associa-
ted with the Example 9 schema.

5.2. If T is a complex type with simple content (77, atds), where atds =
(aty,Ty), ..., (aty,T,) (attributes are declared), then items 5.1.1 and 5.3.1
hold. For instance, a text node and attribute node will be associated with
an element declared with the type presented in Example 7.

5.3. If T is a complex type with complex content (mid,leds,atds) or
(mid, atds), where atds = (aty,Th), ..., (aty,Ty) (attributes are declared),
then

5.3.1. s contains a sequence of leaf nodes as = (andy, ..., and,) such that
attributes(end) = as (the sequence consists of two nodes for the attribute
declarations of Example 8) and, having an automorphism o on {1, ...,u} (we
need it because the sequence of nodes may be different from the sequence
of the corresponding attribute declarations), it holds for each and; € as:

® and; € Apgirivute; Parent(and;) = end,
base-uri(and;) — base-uri(end), node-name(and;) = at,(j),

16

type(and;) = T,(;), string-value(and;) € Astring,
typed-value(and;) = T, ;) (string-value(and,)).
5.4. If T is a complex type with complex content (mid,leds,atds) or
(mid, leds) (subelements are declared), then:
5.4.1. If leds is empty (i.e., the type has the empty content), then
5.4.1.1. If mid = true (mixed type definition), then
e children(end) = () or
e children(end) = (tnd) where tnd is a text node (tnd € Arext) with
the following accessor values:
parent(tnd) = end, base-uri(tnd) = base-uri(end),
type(tnd) = “xdt:untypedAtomic”, string-value(tnd) € Agtring.
Thus, only a text node may be attached to an element node if it has no
element child. For instance, an element node corresponding to the element
declared with the type presented in Example 8 may have only one text node
as child if there are no subordinated ‘‘Book’’ elements.
5.4.1.2. If mid = false (no text node is allowed), then

children(end) = ().

5.4.2. If leds is not empty, then there is in s a sequence of trees ss such
that, for each rnd € roots(ss), it holds:

parent(rnd) = end and rnd € Agjenent-

For instance, a sequence of trees may be associated with a BookStore
element node (roots of these trees are children of the BookStore node)
and a sequence of trees may be associated with a Book element node (roots
of these trees are children of the Book node) in a tree associated with the
Example 9 schema.
5.4.2.1. If mid = false (no intermediate text nodes are allowed), then
children(end) = roots(ss).
5.4.2.2 If mid = true (mixed type definition), then
e there is in s a sequence of text nodes ts, such that, for each tnd € ts,
it holds:
tnd € ATexta
parent(tnd) = end,
base-uri(tnd) = base-uri(end),
type(tnd) = “xdt : untyped Atomic”,
string-value(tnd) € Astring, and
typed-value(tnd) = zdt : untypedAtomic(string-value(tnd)),
e children(end) = sss, where the sequence of nodes sss involves all

17

the nodes of the sequences roots(ss) and ts in such a way that for
any i € {1,...,|sss| — 1} there do not exist nodes sss; and sssitq
such that sss; € Arext and sssitq1 € Arext (there are no adjacent text
nodes). Thus, “Book’’ nodes of Example 8 may be interleaved with
text nodes (note that the children nodes of a “Book’’ node may not).
54.23. If leds is an AllOptionDefinition(ely, Ty, miny), ...,
(ely, Ty, min,), then ss is a sequence of ¢ trees (1 < g < wu) so that
zero or one tree is associated with the element declaration (el;, T;, min;),
Jj = 1,..,u, if min; = 0 and exactly one tree if min; = 1, and each
end; € roots(ss) satisfies the requirements starting from item 4, assuming
that end = end;, el = el,(;) and T' = T;(;), where o : {1,...,q} — {1,...,u}
and ¢ = 1, ..., q. For instance, an ss associated with the group definition of
Example 5 is a sequence of five trees whose root nodes are element nodes
with the declared names sequenced in any order.
5.4.2.4. If leds is a GroupDefinition (gds, cf, (m,n)), then ss consists of
k (m < k < n) subsequences of trees ssy, ..., ssx (multiple occurrences of
complex type values)* and it holds for a subsequence ssj, j =1, ..., k:

o if gds = (gdsu, ..., gds,) and cf = “sequence”, then ssj consists of u
subsequences (one for each group definition)® of trees ss%, qg=1,...,u,
and

—if gds, is an element declaration (ely, Ty, (ming, max,)), then
ssd is a sequence of v (min, < v < maz,) trees such that (if ss}
is not empty) each end € roots(ssl) satisfies the requirements
starting from item 4, assuming that el = el; and T = T
(for instance, ssg1 is a sequence consisting of one tree for the
declaration of the element with the name sleep in the group
definition presented in Example 4);

— if gdsq is a group definition (for instance, the first and second

inner group definitions in Example 4), then ssj satisfies the

requirements starting from item 5.4.2.4, assuming that leds =

gds, and ss = ssd.
o if gds = (gdsi,...,g9ds,) and cf = “union”, then ssj is associated
with a gdsgq, ¢ € {1, ..., u} (for instance, ss; is associated either with

4For instance, an ss associated with the group definition presented in Example 4 may
be empty or consist of any number of such subsequences. The same refers to the first
inner group definition of this example. The second inner group definition may result only
in an ss consisting of one subsequence of trees.

5For instance, each ssj that is part of an ss associated with the group definition
presented in Example 4 consists of three such subsequences.

18

the declaration of the element work or with the declaration of the
element play in the second inner group definition in Example 4),
and
—if gds, is an element declaration (ely, Ty, (ming, max,)), then
ssj is a sequence of v (ming, < v < mazxy) trees (exactly
one tree for any element declaration in the second inner group
definition in Example 4) such that (if ss; is not empty) each
end € roots(ssj) satisfies the requirements starting from item
4, assuming that el = el, and T' = Ty;
— if gdsg is a group definition, then ssj satisfies the requirements
starting from item 5.4.2.4, assuming that leds = gds, and ss =

SSj.

6. If nid = true (i.e., the element may have the nil value), then:

6.1. If T is a simple type, then
either children(end) = () and nilled(end) = true
or nilled(end) = false and item 5.1.1 holds.

6.2. If T is a complex type with simple content (T%,atds), where
atds = (at1,T1), ..., (aty,Ty,), then
either children(end) = () and nilled(end) = true and item 5.3.1 holds
or nilled(end) = false and items 5.1.1 and 5.3.1 hold.

6.3. If T is a complex type with complex content, then
either children(end) = () and nilled(end) = true and item 5.3 holds
or nilled(end) = false and items 5.3 and 5.4 hold.

7. There are no other nodes in s.

7. DOCUMENT ORDER

The ordering of nodes in the tree s defines the document order, which is
used in some operations of XQuery [9] and other XML query languages. As
in XQuery, the notation nd; << nd, means in this paper that the node nd,
occurs in s before the node nd, and the notation tree(nd;) << tree(nd,)
means that any node in the tree with the root node nd; occurs in s before
any node in the tree with the root node nd,. The relation << is a total
order. Recall that the root node in s is the document node nd. The tree s
is ordered as follows:

e let children(nd) = (end), then nd << end,;
o for any element node end € s, let attributes(end) = (andy, ..., andy)
and children(end) = (endy, ..., endy), then

19

end << and;, and; << andjyi1, ¢ = I, ..., k-1, andx << end;, and
tree(end;) << tree(endjii), j = I, ..., m-1.

8. XML-DOCUMENT VS. DOCUMENT TREE

In this section, we address the issue of expressive power and correctness
of the data model presented in the paper. In order to do this, we formulate
the proposition of the existence of a mapping between XML-documents
and document trees that preserves the document validity and content. We
respectively write S-document and S-tree for an XML-document and docu-
ment tree valid with respect to the document schema S.

First, we introduce an equivalence relation on the set of XML-documents
that is based on the document content — content equality denoted by =..
The relation is an important basis for formalization of one of the basic
notions of the paper, the XML-document. We use an XML document’s
information set [4] rather than the XML document itself because of the set-
theoretic nature of the information set (“infoset” in the sequel), convenient
for proofs. The following infoset terms are used in this section:

e Information item. The notion is similar to the notion of node in the
Xquery data model: document information item (i.i.) corresponds to
the document node, element i.i. to the element node, and attribute
i.i. to the attribute node. There is a difference between the text node
and character i.i. Unlike the text node, the character information
item represents a stand-alone character in the document while the
text node represents an ordered sequence of one or more characters.

e [tem properties. We use a number of item properties described in the
XML infoset data model (written in bold and enclosed into brackets):

— Character code: ISO 10646 code of the character.

— Normalized value: the value of the attribute after its preliminary
processing as described in Section 3.3.3 of [6].

— Local name: local part of the attribute or element name (without
the namespace prefix)

— Children: sequence of the child information items.

— Element content whitespace: a boolean indicating whether the
character is the white space appearing within the element content.

— Attributes: set of the element’s attributes.

Since an infoset contains character information items rather than charac-
ter strings, it is convenient to use in the sequel a notion similar to a character
string introduced in [17].

20

Def. 1 (Ordered set of maximum adjacent character items). An ordered set
of character information items is called an Ordered set of mazimum adjacent
character items iff it satisfies the following constraints:

e all of the information items in the set have the same parent;

o the set consists of adjacent character information items with [element
content whitespace]| property set to “false” such that there is no
other information item between them (in the document order);

e no other such set exists that contains any of the same character
information items and is larger.

Def. 2 (Content equality of character information items). Two character
information items, a and b, are said to be contently equal iff

Q[character code] — b[character code]-

Def 3. (Content equality of ordered sets of character information items).
Two ordered sets of character information items s; and ss are said to be
contently equal iff |s1] = |s2| and s1[i] = s2[i], where 1 <4 < |sq].

Def. 4 (Content equality of attribute information items). Two attribute
information items, a and b, are said to be contently equal iff

G[normalized value] — b[normalized value] and Qllocal name] — b[local name]

(we disregard namespaces in the paper and therefore omit the requirement
of prefix and namespace equality).

The next notion serves for replacing individual character children by
ordered sets of maximum adjacent character information items as children.
The term “stripped” borrowed from XQuery [9] implies here that something
should be ignored.

Def. 5 (children_stripped). If a is an element or document information
item, then djchildren stripped] 1S the item’s property, which is a sequence of
information items produced by replacing in a[chijldren) individual character
information items by ordered sets of maximum adjacent character information
items.

Def. 6 (Content equality of element information items). Two element in-
formation items, a and b, are said to be contently equal iff
® [local name] = U[local name] (ONce again, we disregard namespaces),
o for each at1 € Gattributes] there exists an aty € bjattributes) Such that
aty =, atq, and vice versa.
o |a[chi1dren_stripped]| — |b[chi1dren_stripped]| andv for each
0 S 1 < |a[chi1dren_stripped] |7

21

both a(children stripped][1] a0d bjchildren stripped)[i]
are either element i.i. or ordered sets of character information items

and a[children_stripped] [Z] =c b[children_stripped] [Z]

Example. The following three XML elements are contently equal:
<ab=*1" c="2"> < b/ > < Ja >
<ac=2"b=1">
<ab="1"c=“><b/ >< Ja>

Def. 7 (Content equality of document information items). Two document
information items, a and b, with

a[children_stripped] = (61) and b[children_stripped] = (62)
are said to be contently equal iff e; = es.

Finally, we define the content equivalence relation on the set of XML-
documents.

Def. 8 (Content equality of XML-documents). Two XML-documents are
said to be contently equal iff document information items from the XML
information sets representing the documents are contently equal.

Theorem. For any document schema S, there is a function f that maps a
set of S-documents to a set of S-trees and a function g that serializes an
S-tree to an S-document such that g(f(X)) =. X.

Proof.
1. Mapping definitions. We begin with the definition of the function f. In
order to do this, we use an auxiliary function f’ mapping the information
items of an XML document’s infoset to the nodes of a corresponding docu-
ment tree. Thus, let X be an S-document, X’ its infoset, and s a document
tree such that:

e if 7 is an ordered set of maximum adjacent character items in X',

then f’(z) is a text node in s such that

string-value(f/(w))[i] - {E[Z] [character code]

(note that a String value in XML is a sequence of character codes

[1]);
e if z is an attribute information item in X', then f/(z) is an attribute
node in s such that

Stﬁng-value(f/(w)) — T[normalized value] and
TLOd@-name(fl(x)) = T[local name];

22

e if x is an element information item in X’ with

T(children _stripped] — C0;---; Cn a0d T[attributes] — @0; -+, Qk;
then f/(z) is an element node in s such that

node—name(f’(x)) = ZT[local name]>
children(f'(z)) = (f'(¢co), .-, f'(cn)),
attributes(f'(x)) = f'(ao), ..., f'(ar),
parent(f'(c;)) = f'(x), and parent(f'(a:)) = f'(z);

e if x is a document information item in X’ and ¢ a child of z, then
f'(z) is a document node in s such that children(f'(x)) = (f’(c))
and parent(f’'(c)) = f'(x).

Note that the function f’ preserves all the properties of information
items. In particular, it is relationship preserving, i.e., if two information
items a and b are in the parent-child relationship (i.e., bparent] = @), then
corresponding nodes are in the same relationship. This means that if X is an
S-document and X its infoset, then s is an S-tree, and we define f(X) = s.

Before introducing the function g that serializes an S-tree to an S-
document, we first define an auxiliary function tzt mapping the information
items of an XML document’s infoset, X’, to an XML document text:

e if z is an ordered set of maximum adjacent character items in X',
then txt(x)[z] - x[l] [character code];
e if 7 is an attribute information item in X', then
tat(x) =
“7+ Z[local name] + 4= &(]UOt” + Z[normalized value] + &qUOt”7
where " is the escape symbol for double quotes;
e if z is an element information item in X’ with

T(children _stripped] — C0;---; Cn A0d Tattributes] — 0; -+ Tk,
then

tet(r) = “<” + Tlocal name] + trt(ag) + ... + txt(ag) + “>7 +
trt(co) + ... +tat(cn) + “< /7 + Tpocal name] T >
e if z is a document information item in X’ and c the child of x, then
tet(xz) = “<?xml version = "l.0"? >” + txt(c) (remember
that a document information item has exactly one child, an element

node).
Then we define the function A mapping the nodes of a document tree s
to the information items of an XML document’s infoset:

e if z is a text node in s, then h(z) is an ordered set of maximum

23

adjacent character items such that

h(x)[z] [character code] — String-value(x)[i];
e if z is an attribute node in s, then h(x) is an attribute information
item such that

h(x)[normalized value] — Stﬁng-value(x) and
h(7)jocal name] = node-name(z);
e if = is an element node in s, then h(z) is an element i.i. such that
— (%) [10cal name] = node-name(x),
— h(Z)[children stripped] = €0, --s €n, Where n = |children(z)| and
e; = h(children(z)[i]),
— |M(Z)[attributes]| = |attributes(z)| and for each a € attributes(x)
thereis a b e h(x)[attributes] such that b =, h(a);

e if 2 is a document node in s such that children(x) = (¢), then h(x)

is a document i.i. such that i(z)(chilaren] = (R(c)).
Thus, if s is an S-tree with the document node nd = root(s), then we
define ¢(s) = tzt(h(nd)). In this way both functions, f and g, are defined.

2. Content equality. Let X be an S-document, X’ its infoset with the
document information item a, s = f(X) the corresponding S-tree, ¥ =
g(s) an S-document produced by serialization of s, Y’ an infoset with
the document information item b = h(root(s)). Since Y = tzt(b), then,
according to the definition of the function txt, Y’ is the infoset of Y. We
want to prove that X =, Y. According to Def. 8, this holds iff the document
information items, a and b, in X’ and Y’ are contently equal. Note that
b = h(f'(a)). According to Def. 7, the a and b are contently equal iff their
children, say ela and elb, are contently equal.

Note that, according to items 4 in the definitions of functions f’ and h,
elb = h(f'(ela)) and therefore we want to prove that ela =, h(f’(ela)). The
ela and elb are contently equal iff the three conditions listed in Def. 6 hold.
Indeed, the first condition holds since

elafiocal name] — element-name(f’(ela))
- h(f/(ela))[local name] :elb[local name]-

In the same way we can prove that the second condition of Def. 6 holds. The
third condition is proved by induction on the structure of the
[children _stripped]| property of an element information item e. Induction
base: €[children stripped] = (), i-€., the element has no children. In this case
we have:

24

€[children_stripped] = () = children(f'(e)) = () =
h(f/(6))[chi1dren_stripped] = ()

Induction step: €(children _stripped] = (€1, -, €k). In this case,

children(f'(e)) = (f'(e1), ..., f'(ex)) and
h(f/(6))[chi1dren_stripped] — (h(f/(el)), ceny h(f'(ek)))
Consider each e;, : = 1,.... k. If ¢; is an ordered set of maximum adjacent
character information items, then by definition e; =, h(f'(e;)). If e; is an
element i.i., then we assume that e; =. h(f’(e;)). From this, it follows that
the third condition holds and e =, h(f’(e)). Since this holds for an arbitrary
element e, this also holds for the element ela.

Thus, g(f(X)) =. X because the document information items from their
infosets are contently equal. There are interesting corollaries of the theorem.

Corollary 1. If X =. Y, then g(f(X)) =. g(f(Y)).
Proof: g(f(X)) =. X =. Y = g(f(Y)).

Using definitions similar to the Def. 3 — Def. 7, we can introduce the
notion of content equality of document trees. Then we can write the following
corollary as a natural consequence of the previous one.

Corollary 2. There is an injective mapping fs of the factor set of the set of
S-documents by the content equivalence relation to the factor set of S-trees
by the content equivalence relation.

9. RELATED WORK

There are very few papers devoted to formal foundation of XML Schema
or another document definition language. More popular subjects are, to
our knowledge, validation of a document against a schema [12, 13| and
development of an algebra for an XML query language |8, 10].

The paper [2] is a work that directly concerns the problem of formal
semantics of XML Schema. Like our paper, it formalizes some core idea of
XML Schema. Model Schema Language (MSL) is designed for this purpose.
It is described with an inference rule notation originally developed by logi-
cians. These inference rules show in what cases a document validates against
a document schema. Thus, the main difference between this paper and our
paper is in the fact that this paper does not suggest any internal model of
the document schema. As a result, such important aspects as node identity
constraints and mappings from XML Schema syntax into internal model

25

components are not touched in the paper. The authors have mentioned
that they had begun to work on these topics, but we have not managed to
find a paper presenting such a work.

Inference rules are also used in defining the semantics of another popular
XML schema language, RELAX NG [3]. The way of defining the semantics
in this work resembles that of [2] in the sense that the semantics of a schema
consists of the specification of what XML documents are valid with respect
to that schema. Like the work [2], this work has the same shortcomings and
the same differences with our work.

Formal semantics of values, types, and named typing in XML Schema
are defined in [14]. We have not touched these problems, considering that
they are successfully solved in that paper.

The representation of an XML document as a data tree is also described
in [10]. However, the work is not related with both XML Schema and
XQuery 1.0 Data Model. For this reason, the tree consists only of element
nodes, the node does not possess an identifier, the majority of node accessors
are not defined, etc. In contrast to this work, our document tree is much
closer to the tree informally specified in [17].

10. CONCLUSION

We have presented the semantics of the core features of XML Schema
in terms of XQuery 1.0 and XPath 2.0 data model algebraically defined.
The database state is represented as a many sorted algebra whose sorts are
sets of data type values and different kinds of nodes and whose operations
are data type operations and node accessors. The values of some node
accessors, such as parent, children and attributes, define a document
tree with a definite order of nodes. The values of other node accessors
help to make difference between kinds of nodes, learn the names, types
and values associated with the corresponding document entities, etc., i.e.,
provide primitive facilities for a query language. As a result, a document
can be easily mapped to its implementation in terms of nodes and accessors
defined on them. The main theorem of the paper proves this.

It is worth to note that, with this kind of semantics, XQuery 1.0 and
XPath 2.0 data model may be considered as an abstract implementation of
XML Schema. Hence, XML Schema and XQuery 1.0 and XPath 2.0 data
model become tightly related, which may serve as a significant help for the
XML Schema implementor.

Finally, the presented semantics may help in defining a simple semantics

26

of a data manipulation language like XQuery. We intend to proceed with
this work.

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

. XML Schema Part 2: Datatypes. W3C Recommendation / Ed. by P. V. Biron, A.

Malhotra. — May 2001. — http://www.w3.org/TR/xmlschema-2/.

. Brown A., Fuchs M., Robie J., WadlerPh. MSL: A model for W3C XML Schema //

Proc. 10th Int’l World Wide Web Conf.. — Hong Kong, May 2001. — P. 191-200.

. Clarke J., Makoto M. RELAX NG specification. — Oasis, December 2001. —

http://www.relaxng.org/spec-20011203.html/.

. XML Information Set / Ed. by J. Cowan, R. Tobin. — World Wide Web Consortium,

24 Oct 2001. — http://www.w3.org/TR/xml-infoset.

. Costello R. L. XML Schemas Reference Manual. — http://www.xfront.com/xml-

schema.html

. Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation 04

February 2004. — http://www.w3.org/TR/2004/REC-xml-20040204

. XML Schema Part 0: Primer. W3C Recommendation 2 May 2001 / Ed. by D. C.

Fallside. — http://www.w3.org/TR/xmlschema-0/.

. Fernandez M., Siméon J., Wadler Ph. An Algebra for XML Query // FST TCS. —

Delhi, December 2000. — P. 11-45.

. XQuery 1.0: An XML Query Language. W3C Recommendation 14 Nov 2003 / Ed.

by D. Florescu, J. Robie, J. Siméon, et. al. — http://www.w3.org/ TR /xquery.
Jagodish H. V., Lakshmanan L. V. S.; Srivastatva D., Thompson K. Tax: A
Tree Algebra for XML. — Proc. Intl. Workshop on databases and Programming
Languages. — Marino, Italy, Sept., 2001.

Lellahi K., Zamulin A.V. An object-oriented database as a dynamic system with
implicit state // Advances in Databases and Information Systems. — Proc. of the
5th East European Conf. (ADBIS 2001). — Vilnus, Lithuania, September 2001. — P.
239-252. — (Lect. Notes Comput.Sci.; Vol. 2151).

Murata M., Lee D., Mani M. Taxonomy of XML Schema Languages using Formal
Language Theory // Extreme Markup Languages, Montreal, Canada, 2001.

Novak L., Kuznetsov S. Canonical Forms of XML Schemas // Programming and
Computer Software. — 2003. — No. 5. — P. 65-80.

Siméon J., Wadler Ph. The Essence of XML // POPL’03. — January 15-17, 2003,
New Orlean, Loisiana, USA.

XML Schema Part 1: Structures. W3C Recommendation May 2001 /
Ed. by H. S. Thompson, D. Beech, M. Maloney, N.Mendelsohn. —
http://www.w3.org/TR/xmlschema-1/.

XML Query Data Model, Working Dralft, Feb 2001. —
http://www.w3.org/TR /2001 /WD-query-datamodel-20010215/

XQuery 1.0 and XPath 2.0 Data Model, Working Draft 12 November 2003. —
http://www.w3.org/ TR /xpath-datamodel /

27

Jleonna HoBak, Anekcauap 3amynuu

AJITEBPANNYECKA Y CEMAHTUKA
A3BIKA XML SCHEMA

IIpenpunT
117

Pyxkomucs nmocrynuna B pegakiuio 13.10.2004

Penenzent II. I'. Emenbanos
Penaxrop H. A. YepemHBIX

Ilonmucano B meuars 15.11.2004
dopmar Gymaru 60x84 1/16 O6wbem 1,5 yu.-uzm.i., 1,6 m.J.
Tupax 60 k3.

3A0 PUII “ITpaiic-xypbep” 630090, r. HoBocubupck, np. Axaz. JlaBpenrbesa, 6,
ren. (383-2) 30-72-02

