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An XML algebra supporting the query language XQuery is presented.
The algebra is in fact a number of expression constructing operators algebrai-
cally defined. The introduction of expression constructing operators instead
of high-order operations using functions as parameters has permitted us to
remain in the limits of first-order structures whose instance a many-sorted
algebra is. The set of operators of the presented algebra substantially differs
from the set of operators of relation algebra. The difference is caused by the
more complex structure of the XML document compared to the relation.
In fact, only selection by predicate test is more or less the same in both
algebra. At the same time, the XML algebra in addition permits selection
by node test. The projection operator of relation algebra is replaced by the
path expression and a number of navigating functions permitting selection
of different parts of the document tree. The join operator is replaced by a
number of unnesting join expressions permitting creation of a stream of flat
tuples on the base of several possibly nested parts of the document tree. In
addition, a number of node constructing expressions permitting update of
the current algebra by introduction of new are defined.
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Предложена XML-алгебра, поддерживающая язык запросов Xquery
и представляющая собой ряд операторов конструирования выражений.
Введение таких операторов вместо операций высокого уровня, исполь-
зующих функции в качестве аргументов, позволило остаться в рамках
структур первого порядка, примером которых являются многоосновные
алгебры. Предложенный набор операторов существенно отличается по
составу от набора операторов реляционной алгебры. Различие объясня-
ется более сложной структурой XML-документа по сравнению с отноше-
нием. Фактически только выбор по предикату похож на соответствую-
щую операцию реляционной алгебры, но в то же время имеется возмож-
ность выбора узлов дерева по их типу. Операция проекции заменена
на путевое выражение и ряд навигационных функций, позволяющих
выбирать различные части дерева документа. Операция соединения
заменена на выражение раскрывающего соединения, позволяющего
сформировать поток плоских кортежей на базе нескольких, возможно
вложенных друг в друга частей дерева документа. В дополнение ко
всему этому определен ряд конструирующих выражений, служащих
для создания новых узлов дерева.

c© Институт систем информатики им. А. П. Ершова СО РАН, 2005



1. INTRODUCTION

A formal model of the database state corresponding to the XQuery 1.0
and XPath 2.0 data model [25] and consisting of document trees defined by
XML Schema [22] has been presented in [12, 13]. This model regards the
database state as a many-sorted algebra composed of the states of individual
nodes representing information items of a document. However, no algebra
resembling relation algebra for this date model is proposed in the paper,
and elaboration of such an algebra supporting the XQuery language has
been proclaimed as a subject of further research.

It should be noted that a number of papers proposing different XML
algebras have been published [2, 6, 8, 7, 9, 14, 18, 21, 27]. Their typical
flaws are:

• use of an artificial data model suitable to the authors,
• meaning by algebra something different from what is meant by alge-
bra in mathematics,

• use of functions and predicates as operation arguments, while the
algebra is a first-order structure;

• ignoring the fact that the result of a query may belong to an algebra
different from the algebra of the query arguments;

• informal description of the algebra ignoring significant details of op-
erations.

One of the aims of this paper is to propose an XML algebra that is free
of the above flaws. Another aim is to elaborate such an XML algebra that
could support the XQuery language [23], which is a de-facto standard of an
XML query language.

Not all features of XQuery are taken into account in the algebra proposed
in the paper. We consider that an XQuery interpreter should exist whose
task is to interpret an XQuery query in terms of the algebra while performing
the work corresponding to the following XQuery features:

• atomization,
• computation of Effective Boolean Value,
• evaluation of branching (conditional and type switch) expressions,
• evaluation of type-checking expressions (instance of, cast, treat),
• evaluation of content expressions of node constructors.

Specification of such an interpreter is not a subject of this paper.
∗The work is supported in part by Russian Foundation for Basic Research under Grant

04-01-00272.
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The remainder of the paper is organized as follows. A brief review of
the XML data model presented in [12] is given in Section 2. Basic notions
of signatures and expressions are introduced in Section 3. An example
database schema used for illustration of XML algebra operations is given
in Section 4. Navigating functions used for traversing a document tree are
defined in Section 5. Several forms of querying expressions are formally
described in Section 6. Different kinds of node constructors changing the
database state are defined in Section 7. Related work is reviewed in Section
8 and some conclusions are drawn in Section 9.

2. MAIN COMPONENTS OF THE XML DATABASE MODEL

The data model presented in [12] is described by means of many-sorted
algebras [4].
Definition. A many-sorted signature Σ is a pair (T, F ), where T is a

set of sorts and F a set of operators indexed by their profiles. An operator
is either a symbol or a name, and a profile is either an element of T or
t1, ..., tn → tn+1, where ti is an element of T .
Definition. A many-sorted algebra A of signature Σ = (T, F ) is con-

structed by associating
• a set with each element t ∈ T , denoted by At in the sequel;
• an element cA ∈ At with each operator c indexed by the profile t;
• a function fA : At1 × ... × Atn → Atn+1

with each operator f indexed
by the profile t1, ..., tn → tn+1.

The family of sets associated with the signature sorts in algebra A is called
the algebra carrier and denoted by |A|. An algebra of signature Σ is called
a Σ-algebra.

Since the XML database model presented in [25] intensively uses the no-
tion of type, we consider that the set T consists of type names and the set F
of operators defined for each type. The function associated with an operator
is often called an operation. The type system of the model includes a number
of atomic types (xs:Boolean, xs:Integer, etc.), defining atomic values, and
the type xdt:untypedAtomic denoting atomic data, such as text that has not
been assigned a more specific type. It is assumed that each atomic type is
equipped with conventional operations. The type untypedAtomic does not
possess operations other than the partial functions converting (casting) val-
ues of this type into the values of the other atomic types. The type system
also includes the set type constructor Set(t), the sequence type construc-
tor Seq(t), the union type constructor Union(t1, ..., tn), where t, t1, ..., tn
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are types, and the enumeration type constructor Enumeration(I1, ..., In),
where I1, ..., In are identifiers.

The following operations are applicable to all sets: “∪” (union), “∩”
(intersection), “⊂” (inclusion), “∈” (membership), and count (the number
of elements). If s is a sequence, then asSet(s) is a set containing the same
elements as s without duplicates.

A sequence, like a set, is often defined in this paper by comprehension,
which generally has the following form:

(f(x1, ..., xn) | P (x1, ..., xn)),

where x1, ..., xn are universally quantified variables, f a function name, and
P a predicate. Typical sequence type constructors are the empty sequence
constructor () and the singleton sequence constructor (e) where e is an
atomic value or node. If s1 and s2 are two sequences of the same type, then
s1 + s2 is a concatenation of the sequences, such that the first element of s2

follows the last element of s1 (the notation (v1, ..., vn) can be considered as
a shorthand for (v1) + ... + (vn)). Also, s1 ∪ s2 is a union of the sequences,
such that the resulting sequence contains the elements of both sequences
(retaining duplicate elements) in an indefinite order. The partial operation
itemize : Seq(t) → t converts a singleton sequence into its element. The
predicate ∈ checks whether an element belongs to a sequence. The length
of a sequence s is denoted by |s| in this paper. A set can be converted into a
sequence by the operation asSeq (the order of the elements is not defined).

Several operations are applicable to sets and sequences of numerical
values. These are avg, sum, max, and min.

The union type constructor plays an important role in the data model
since a sequence may consist of items of different types. There are several
predefined union types in the data model. The type xdt:anyAtomicType is
the union of all the atomic types and the type xdt:untypedAtomic. The
type xs:anySimple is the union of xdt:anyAtomicType and specific user-
defined list and union types. The type xs:anySimple is the union of Node
and xdt:anyAtomicType, and finally the type xs:anyType is the union of all
types1. The following law exists for “flattening” the union of union types:

Union(t1, ..., ti, ..., tn) = Union(t1, ..., ti1, ..., tim, ..., tn)

1In fact, the type xs:anyType does not include node types in the XQuery data model;
it includes them in our data model for generality.
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if ti = Union(ti1, ..., tim). The following law permits us to get rid of dupli-
cate component types in a union type:

Union(t1, ..., ti, ..., tj, ..., tn) = Union(t1, ..., ti, ..., tn)

if ti = tj .
An XML database schema consists of a number of document definitions.

Each individual document consists of information items with a definite doc-
ument order. An information item of a document is mapped to a node in the
database. A node, like an object of an object-oriented database [11], pos-
sesses an identifier and state represented by the values of node accessors re-
sembling observing methods of an object-oriented database (we mean a node
identifier by a node in the sequel). Each node is an instance of type Node,
which is the union type for the types Document, Element, Attribute, Text,
Namespace, ProcInstruction, and Comment whose respective instances
are document, element, attribute, text, namespace, processing instruction,
and comment nodes2. Finally, each node and each atomic value are in-
stances of the type Item, which is the union of types xdt:anyAtomicType
and Node. Only atomic values and nodes may be components of sets and
sequences (i.e., in the type Set(t) or Seq(t), the type t is either an atomic
type or a node type or a union of atomic/node types). Atomic values and
nodes are called items in the sequel.

All nodes in a database are arranged in linear order in such a way that
if a node of one document tree precedes a node of another document tree,
then all the nodes of the first tree precede all the nodes of the second tree.
The operation nd1 << nd2 results in true if the node nd1 precedes the node
nd2 (see [1] for an algorithm implementing this operation).

It is assumed that each data type is equipped with an equality predicate
permitting to check for equality two values of the type; the equality of nodes
is based on the identity of node identifiers.

In addition to the types used in [12], we use record (tuple) types in
this paper. A record type rec p1 : t1, ..., pn : tn end is equipped with a
record construction operation rec producing a record on the base of record
field values and projecting operations pi producing field values of a given
record. If p1, ..., pn are identifiers and v1, ..., vn are values of respective
types t1, ..., tn, then rec(v1, ..., vn) is a record constructing expression of
type rec p1 : t1, ..., pn : tn end.

2To save space, we do not consider the last three kinds of nodes in this paper. However,
there is no technical problem in taking them into consideration if needed.
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3. SIGNATURES AND EXPRESSIONS

A database schema defines a database signature Σ = (T, F ). F includes,
in addition to the operators defined in data types, node accessors defined
in [25], all the function names and operators defined in [26], the names
of navigating functions defined in this paper and some special constants
defined in the sequel. Node accessors used in the paper are node-kind,
node-name, parent, string-value, type, children, attributes, and nilled. Two
extra functions with signatures

document_order : Seq(Node) → Seq(Node) and
reverse_order : Seq(Node) → Seq(Node)

are also part of our F . The first function orders the argument sequence in
document order, and the second one orders it in reverse document order.

Any particular database state is an algebra of this signature as it is
explained above. The signature Σ (as any other signature) may be enriched
by new sorts and/or operators. In this case a Σ-algebra A is extended with
new sets and/or functions associated with the new signature components.

Using operators from F , we can construct expressions. Each expression
has a certain type. In a type hierarchy, a subtype expression is also a
supertype expression.

Given a Σ-algebra A, an expression can be interpreted or evaluated, yield-
ing a certain algebra element. However, in contrast to conventional expres-
sions of many-sorted signatures whose interpretation never changes neither
the signature nor the algebra, XML expressions may be classified into three
groups:

• conventional algebraic expressions written and evaluated in the same
signature and algebra;

• expressions written in one signature and interpreted in an algebra of
an enriched signature;

• expressions whose interpretation changes the algebra and produces
an element of the new algebra.

There is nothing special with respect to the expressions of the first group.
The situation with the expressions of the second group is more complex. An
example of such an expression in relation algebra is projection of a relation
onto a set of attributes or join of two relations. In either case the type of
the resulting relation may be different from the relation types defined in
the database schema. A query compiler, when parsing such an expression,
constructs a new type and enriches the original signature with it. The
current algebra is extended by the new type (sort and operations) as well,
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and the query is interpreted in the new algebra. If a signature Σ is enriched
to signature Σ′ and a Σ-algebra A is extended to Σ′-algebra A′, we use the
index A to denote those components of A′ that are the same as in A.

An expression of the third group is the most difficult to process because
the processing generally produces a side-effect (i.e., the expression, being
interpreted in a certain algebra, may change the algebra and produce an
element of this algebra). An example of this kind of expression is a node
constructing expression whose interpretation produces a new node in a new
algebra. We consider that such an expression is based on a function yielding
a pair, an algebra and an algebra element. Note that a node construction
expression is an expression and, according to the syntax of XQuery, can
be used anywhere an expression is needed. This means that generally the
interpretation of any expression may produce a side-effect. We will indicate
this in the interpretations of the majority of the expressions, omitting it
only in some simple cases.

We always write an expression e in italics. Its interpretation in algebra
A is written as [[e]]A. The result of the interpretation is generally written as
〈A′, e〉, where A′ is a new algebra and e is the evaluation of e in A′. However,
where there may be no confusion, we write just e for the interpretation of
e. If e is an expression of type Seq(t), we sometimes write: “e denotes a
sequence of items of type t”.

XQuery does not make difference between an item and singleton se-
quence. In the algebra, they are elements of different sorts by definition.
For this reason, we should slightly modify the conventional definition and
interpretation of the expression constructed by function symbol application.
So, if f : u1, ..., un → u is a function signature and ui, i = 1, ..., n, is either
an atomic/node type ti or seq(ti) and ei is an expression either of type ti
or seq(ti), then f(e1, ..., en) is an expression of type u.
Interpretation. Given an algebra A,

[[f(e1, ..., en)]]A = [[f(e′1, ..., e′n)]]A, where

e′i =

⎧⎨
⎩

ei if ui is ti and ei is an expression of type ti
(ei) if ui is seq(ti) and ei is an expression of type ti
itemize(ei) if ui is ti and ei is an expression of type seq(ti)

Given a signature Σ and a set of variables X , we write “Σ-expression e” if e
is composed exclusively of operators of Σ, and we write “(Σ, X)-expression
e” if e contains, in addition, variables from X . If A is a Σ-algebra and
ξ : X → |A| a variable assignment, then the notation eξA, or simply eξ,
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means in the sequel the interpretation of e in algebra A with the variables
bound to the indicated algebra elements.

The expression syntax is conventional with conventional operator priori-
ties. Generally, an expression is parsed from left to right. The cases where
we use special syntax or special parsing order will be mentioned explicitly.

The definitions of some functions and expressions use node accessors
defined in [25] or the standard functions defined in [26]. We prefix the
former by dm and the latter by fn.

4. RUNNING EXAMPLE

The examples given in the paper are mainly based on the queries pre-
sented in [17, 23] for a database containing documents of the following
structure.
< bib >

. . .
< book year = ... >

< title > ... < /title >
< author > ... < /author >
< author > ... < /author >

. . .
<publisher>...</publisher>
< price > ... < /price >

< /book >
. . .

< proc >
< title > ... < /title >

. . .
<editor>...</editor>
<editor>...</editor>

. . .
<article>

< author > ... < /author >
< author > ... < /author >

. . .
</article>

. . .
< /proc >

. . .
< /bib >
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5. NAVIGATION FUNCTIONS

In addition to node accessors, XQuery uses a number of functions pro-
ducing different parts of a document tree relative to a specified node. Each
of these functions is defined below for a node nd of a certain algebra A.

1. child : Node → Seq(Node). This function yields a sequence containing
all children nodes of the argument node if any. Definition:

a) child(nd) = dm : children(nd)
if dm:node-kind(nd) ∈ {document, element},

b) child(nd) = (), otherwise.

2. descendant : Node → Seq(Node). This function yields a sequence con-
taining all descendants of a node in the “parent-children” hierarchy if any.
Definition:

a) if dm:node-kind(nd) ∈ {document, element},
then descendant(nd) = document_order(s), where
s = dm : children(nd)∪ (dm : children(nd1) | nd1 ∈ s),

b) descendant(nd) = (), otherwise.

3. descendant_or_self : Node → Seq(Node). This function yields a
sequence consisting of the argument node and all its descendants in the
“parent-children” hierarchy. Definition:

a) descendant_or_self(nd) = (nd) ∪ descendant(nd)
if dm:node-kind(nd) ∈ {document, element};

b) descendant_or_self(nd) = (), otherwise.

4. parent : Node → Seq(Node). The function yields a sequence containing
the parent of the argument node if any. Definition:

parent(nd) = dm : parent(nd).

5. ancestor : Node → Seq(Node). The function yields a sequence contain-
ing the ancestors of the argument node.Definition:

ancestor(nd) = reverse_order(s), where
s = dm : parent(nd)∪ (dm : parent(nd1) | nd1 ∈ s).

6. ancestor_or_self : Node → Seq(Node). The function yields a sequence
containing the argument node and all its ancestors. Definition:

ancestor_or_self(nd) = (nd) ∪ ancestor(nd).
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7. following_sibling : Node → Seq(Node). This function yields a se-
quence containing the sibling nodes following the argument node. Defini-
tion:

a) following_sibling(nd) = ()
if dm:node-kind(nd) ∈ {document, attribute},

b) following_sibling(nd) = document_order(s), where
s=(nd1|nd1 ∈ dm:children(dm:parent(nd)) and nd << nd1),
otherwise.

8. following : Node → Seq(Node). This function yields a sequence con-
taining all nodes that are descendants of the root node of the tree con-
taining the argument node, are not descendants of the argument node,
and occur after it in document order. Definition: let rnd = fn : root(nd),
descendant(rnd) = s1, and descendant(nd) = s2, then

following(nd) = document_order(s), where
s = (nd1 | nd1 ∈ s1 and nd1 /∈ s2 and nd << nd1).

9. preceding_sibling : Node → Seq(Node). This function yields a se-
quence containing the sibling nodes preceding the argument node. Defini-
tion:

a) preceding_sibling(nd) = ()
if dm:node-kind(nd) ∈ {document, attribute},

b) preceding_sibling(nd) = reverse_order(s), where
s=(nd1|nd1 ∈ dm:children(dm:parent(nd)) and nd1 << nd), oth-

erwise.

10. preceding : Node → Seq(Node). This function yields a sequence
containing all nodes that are descendants of the root node of the tree con-
taining the argument node, are not ancestors of the argument node, and
occur before it in the document node. Definition. Let rnd = fn : root(nd),
descendant(rnd) = s2, and descendant(nd) = s3, then

preceding(nd) = reverse_order(s), where
s = (nd1 | nd1 ∈ s2 and nd1 /∈ s3 and nd1 << nd).

11. attribute : Node → Seq(Node). This function yields a sequence con-
taining the attribute nodes of the argument element node. Definition:

a) attribute(nd) = dm : attributes(nd)
if dm:node-kind(nd) = element,

b) attribute(nd) = (), otherwise.

12. self : Node → Seq(Node). This function yields a sequence containing
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the argument node itself. Definition:
self(nd) = (nd).

Notation. The call of each of the above functions is written in this paper
using the dot notation, i.e., as a call of a method in an object-oriented
language; for instance, nd.child, nd.parent, etc.

6. QUERYING EXPRESSIONS

In addition to elementary expressions constructed with the use of navi-
gating functions defined above, an XML data model must include facilities
for constructing more complex expressions representing data retrieval or up-
date. The set of all possible expressions in an XML data model constitutes
an XML algebra3.

Generally, an XQuery query has the following form:

for x1 in s1, x2 in s2(x1), ... , xm in sm(x1, ..., xm−1)
let y1 := e1(x1, ..., xm), y2 := e2(x1, ..., xm, y1), ... ,

yn := en(x1, ..., xm, y1, ..., yn)
where p(x1, ..., xm, y1, ..., yn)
order by e(x1, ..., xm, y1, ..., yn)
return f(x1, ..., xm, y1, ..., yn)

where si has to be a sequence, and p, e and f are expressions involving the
variables x1, ..., xm, y1, ..., yn. Normally, si’s are nested sequences. Thus, to
represent such a query in XML algebra, we need an expression that evaluates
to a sequence of tuples of items belonging to possibly nested sequences
(clauses for and let), an expression that evaluates to a subsequence of a
sequence according to selection criteria (clausewhere), ordering expression,
and an expression that constructs the resulting sequence (clause return).
These expressions are defined in the sequel.

The signature of our algebras is supposed to include the enumeration
type orderingMode = Enumeration(ordered, unodered) and the constant
order_mode : orderingMode set to one of indicated values in any algebra
of the signature. The value of the constant governs the ordering of the
sequence resulting from the evaluation of some expressions.

3We define special forms of expressions rather than functions to avoid the problem of
higher-order functions (a conventional algebra is a first-order structure).
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6.1. Unnesting join expression

This expression in fact replaces the join operation of the relation alge-
bra because relationships between different sequences of nodes in the XML
database are represented by node identifiers rather than by relation keys.
Unnesting join of a sequence s, such that each its item si refers to a se-
quence s′i, consists of pairing of si with each element of s′i. Some sequences
participating in the operation may be independent of each other, in this
case we have a join of a forest of trees.

We first define three auxiliary expressions serving to support different
kinds of FOR and LET clauses.

1. If X is a (possibly empty) set of variables, y an identifier, and s
a (Σ, X)-expression of type Seq(t), then �y : s� is an expression of type
t′ = Seq(rec y : t end) of signature Σ′ obtained by enriching Σ by type t′.
Interpretation. Let A be a Σ-algebra, ξ : X → |A| a variable assignment,
A′ a Σ′-algebra extending A by type At′ , and [[sξ]]A

′
= 〈As, s〉, then:

[[�y : s�]]A
′
= 〈As, s′〉,

where s′ = (rec (v) | v ∈ s)〉.
This expression supports the FOR clause with a single range variable.
The following rule controls the ordering of the resulting sequence s′: let
s′[j1] = rec(s[i1]), s′[j2] = rec(s[i2]), then

order_mode = ordered⇒ (i1 < i2 ⇔ j1 < j2),

i.e., if ordering mode is ordered, then the resulting sequence is ordered
according to the order of the values in the argument sequence.

2. If X is a (possibly empty) set of variables, y and i identifiers, and s
a (Σ, X)-expression of type Seq(t), then �y, i : s� is an expression of type
t′ = Seq(rec i : integer, y : t end) of signature Σ′ obtained by enriching Σ
by the type t′. Interpretation. Let A be a Σ-algebra, ξ : X → |A| a variable
assignment, A′ a Σ′-algebra extending A by type At′ , and [[sξ]]A

′
= 〈As, s〉,

then:
[[�y, i : e�]]A

′
= 〈As, (rec (i, s[i]) | i = 1, ..., |s|)〉.

This expression supports the FOR clause with a range variable and a posi-
tional variable. The ordering of the values in the resulting sequence obeys
the same rule as the previous one.
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3. If X is a (possibly empty) set of variables, y an identifier, and e a
(Σ, X)-expression either of type t, then �y = e� is an expression of type
t′ = Seq(rec y : t end) of signature Σ′ obtained by enriching Σ by the type
t′.
Interpretation. Let A be a Σ-algebra, ξ : X → |A| a variable assignment,
A′ a Σ′-algebra extending A by type At′ , and [[eξ]]A

′
= 〈Ae, e〉, then:

[[�y = e�]]A
′
= 〈Ae, (rec (e))〉.

This expression supports the LET clause with a single variable name.

4. Finally we define an expression supporting any combination of FOR
and LET clauses. If s1 is a Σ-expression of type Seq(rec x11 : t11, ...,
x1m : t1m end)} and s2 a (Σ, {x11, ..., x1m})-expression of type Seq(rec
x21 : t21, ..., x2n : t2n end)}, then s1 ∗ s2 is an expression of type t′ =
Seq(rec x11 : t11, ..., x1m : t1m, x21 : t21, ..., x2n : t2n end) of signature Σ′

obtained by enriching Σ by the type t′.
Interpretation. Let A be a Σ-algebra, A′ a Σ′-algebra extending A by type
At′ , [[s1]]A

′
= 〈A1, s1〉, and k = |s1|. Further, ∀ i = 1, ..., k let

s1[i] = rec(vi1, ..., vim),
ξi = {x1 → vi1, ..., xm → vim},
[[s2ξ1]]A

1

= 〈AA1, s21〉, ... [[s2ξk]]A
k−1

= 〈AAk, s2k〉,
ssi = (rec (vi1, ..., vim, w1, ..., wn) | rec(w1, ..., wn) ∈ s2i),
then:

[[s1 ∗ s2]]A
′
= 〈AAn, s′〉, where s′ = ss1 ∪ ... ∪ ssk.

The following rule controls the ordering of the resulting sequence s′ if
order_mode = ordered. Let
i1, i2 ∈ {1, ..., |s1|}, j1, j2 ∈ {1, ..., |s2|}, k1, k2 ∈ {1, ..., |s′|},
s1[i1] = rec(vi11, ..., vi1m),
s1[i2] = rec(vi21, ..., vi2m),
s2i[j1] = rec(wj11, ..., wj1n),
s2i[j2] = rec(wj21, ..., wj2n),
s′[k1] = rec(vi11, ..., vi1m, wj11, ..., wj1n),
s′[k2] = rec(vi21, ..., vi2m, wj21, ..., wj2n),
then:

k1 < k2 ⇐⇒ i1 < i2 ∨ (i1 = i2 ∧ j1 < j2),

i.e., if ordering mode is ordered, then the order of the resulting sequence
is primarily determined by the order of the values in the left argument
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sequence and secondarily by the order of the values in the right argument
sequence.

Examples. If the variable books denotes a sequence of book nodes, then
�x: books�*�y:x.child::element(authors)�

is an expression evaluating to a sequence of pairs of book and author nodes
so that a book node is paired with its each child author node. The following
expression:

�x: (1, 2, 3)�*�y: (4, 5, 6)�
evaluates in fact to the Cartesian product of the indicated sequences while
the expression

�x: (1, 2, 3)�*�y = (x+1, x+2)�
evaluates to the following sequence of tuples:

(〈1, (2,3)〉, 〈2, (3,4)〉, 〈3, (4,5)〉).
If variable pets denotes a sequence ("cat", "dog", "pig"), then the expres-
sion:

�t,i:pets�
evaluates to the following sequence of pairs

(〈 1, "cat"〉, 〈 2, "dog"〉,〈 3, "pig"〉).

6.2. Quantified expressions

Universal quantification and existential quantification are widely used in
XQuery. The corresponding algebra expressions can be defined as follows.

If t1, t2..., tn are types from the signature Σ, X = {x1, x2, ..., xn} a set
of variables, s1 a Σ-expression of type Seq(t1), s2 a (Σ, {x1})-expression of
type Seq(t2), ... , sn a (Σ, {x1, ..., xn−1})-expression of type Seq(tn), and b
a (Σ, {x1, ..., xn})-expression either of type Boolean or Seq(Boolean), then

forall(x1 : s1, x2 : s2, ..., xn : sn)!b and
exists(x1 : s1, x2 : s2, ..., xn : sn)!b

are expressions of type Boolean.
Interpretation. Let b′ be b if b has type Boolean and itemize(b) in the
opposite case, and [[�x1 : s1 �∗�x2 : s2 �∗...∗�xn : sn�]]A = 〈An, s〉, then:

[[forall(x1 : e1, x2 : e2, ..., xn : en)!b]]A = 〈A, ∀ rec(v1, ..., vn) ∈ s : b′〉,
[[exists(x1 : e1, x2 : e2, ..., xn : en)!b]]A = 〈A, ∃ rec(v1, ..., vn) ∈ s : b′〉,

assuming that [[b′ξi]]A
n

= 〈Ab, b′〉, where ξi = {x1 → v1, ..., xn → vn} is a vari-
able assignment. Note that although a number of intermediate algebras may
be created in the process of evaluating the involved expressions, the original
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algebra A is part of the final result since none of the nodes constructed in
an intermediate algebra is needed as soon as the whole expression has been
evaluated.

6.3. Selection expressions

A selection expression serves for selecting part of a sequence basing on a
selection criteria. In comparison to relational model and object model, the
set of selection criteria in XML algebra is much broader and includes node
kind tests in addition to predicate tests.

Each selection expression has the following form: s :: p, where s is a
sequence and p a selection condition. A general feature of all these expres-
sions is that they are order retaining, i.e., if nd1 and nd2 are in the resulting
sequence and nd1 << nd2 in s, then nd1 << nd2 in the resulting sequence.
The interpretation of these expressions takes place in an algebra A, and it
does not change the algebra.

6.3.1. Kind tests

Let s denote a sequence of nodes. Then:
1) s :: element() denotes a sequence of nodes s′ defined as follows:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = element).

2) s :: attribute() denotes the following sequence of nodes s′:
s′ = (nd | nd ∈ s & dm:node-kind(nd) = attribute).

3) s :: text() denotes the following sequence of nodes s′:
s′ = (nd | nd ∈ s & dm:node-kind(nd) = text).

Example. If the variable books denotes a sequence of nodes that are de-
scendants of a bib node, then books :: text() denotes a sequence consisting
only of text nodes contained in books.

4) s :: document() denotes a singleton sequence of nodes s′ defined as fol-
lows:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = document).

5) if n is a QName, then s :: element(n) denotes the following sequence of
nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = element
& dm:node-name(nd) = n).

Example. If the variable book_data denotes a sequence of nodes that are
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children of a book node, then book_data :: element(author) denotes a se-
quence consisting only of author element nodes of a particular book.

6) if n is a QName and t a type name, then s :: element(n, t) denotes the
following sequence of nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = element
& dm:node-name(nd) = n & dm:type-name(nd) = t
& dm : nilled(nd) = false).

7) if t is a type name, then s :: element(∗, t) denotes the following sequence
of nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = element
& dm:type-name(nd) = t & dm : nilled(nd) = false).

8) if n is a QName and t a type name, then s :: element(n, t?) denotes the
following sequence of nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = element
& dm:node-name(nd) = n & dm:type-name(nd) = t).

9) if t is a type name, then s :: element(∗, t?) denotes the following sequence
of nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = element
& dm:type-name(nd) = t).

10) if n is a QName, then s :: attribute(n) denotes a singleton sequence of
nodes s′ defined as follows:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = attribute
& dm:node-name(nd) = n).

11) if n is a QName and t a type name, then s :: attribute(n, t) denotes the
following sequence of nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = attribute &
dm:node-name(nd) = n & dm:type-name(nd) = t).

12) if t is a type name, then s :: attribute(∗, t) denotes the following se-
quence of nodes s′:

s′ = (nd | nd ∈ s & dm:node-kind(nd) = attribute
& dm:type-name(nd) = t).

6.3.2. Predicate tests

Let x be a variable, t a type from the signature Σ, s a (Σ, {x})-expression of
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type Seq(t), y a variable of type t, and p a (Σ, {y})-expression either of type
Boolean or Seq(Boolean), then select(y : s) :: p is a (Σ, {x})-expression of
type Seq(t).
Interpretation. Let A be a Σ-algebra, ν = {x → |A|},
[[sν]]A = 〈A′, (v1, . . . , vn)〉, i = 1, . . . , n,
p′ be p if p has type Boolean and itemize(p) in the opposite case,
ξi = {y → vi}, [[p′ξ1]]A

′
= 〈A1, p1〉, . . . , [[p′ξn]]A

′
= 〈An, pn〉,

then
[[select(y : s) :: p]]A = 〈A′, (vi | pi)〉.

Note that the algebra A′ is part of the final result since any node that may
be created in an intermediate algebra Ai, i = 1, ..., n, is not needed as
soon as the predicate p′ has been evaluated.

Example. If the variable books denotes a sequence of book nodes, then
select(x: books) :: typed-value(x.attribute :: attribute(year))= 2000

denotes a sequence of book nodes for the books published in 2000 and
select(x: books) :: typed-value(x.child :: element(price)) > 100

denotes a sequence of book nodes for the books whose price is greater than
100 dollars.

Note that both selection expressions do not depend on a global variable,
which may be the case when the selection expression is part of the right
step in the path expression (see next section).

The expression can be written in a simpler form if t is a record type.
Formally: if x is a variable, s a (Σ, {x})-expression of type Seq(rec x1 : t1,
..., xn : tn end) and p a (Σ, {x1, ..., xn})-expression either of type Boolean
or Seq(Boolean), then select(s) :: p is a (Σ, {x})-expression of type Seq(t).
Interpretation. Let A be a Σ-algebra, ν = {x → |A|},
[[sν]]A = 〈A′, (r1, ..., rm)〉, i = 1, ..., m, ri = rec(vi1, ..., vin),
ξi = {x1 → vi1, ..., xn → vin},
p′ be p if p has type Boolean and itemize(p) in the opposite case,
[[p′ξ1]]A

′
= 〈A1, p1〉, ... [[p′ξm]]A

′
= 〈Am, pm〉,

then
[[select(s) :: p]]A = 〈A′, (ri | pi)〉.

Example. If books denotes a sequence of book nodes, then
select(�x : books � ∗ � y = x.child ::element(author)�) :: count(y) > 2

is a selection expression. Note that the local variable x ranges over books,
y denotes the authors of a particular book, the expression

(�x : books � ∗ � y = x.child :: element(author)�)
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is a sequence of pairs 〈book, sequence of authors〉, and the predicate
count(y) > 2 leaves in the sequence only those pairs where there are more
than two authors.

6.4. Path expression

This kind of expression permits one to navigate over a tree by using
navigating functions.

If x, y are variables, s1 a (Σ, {x})-expression of type Seq(Node), t2
an atomic/node type, and s2 a (Σ, {y})-expression of type Seq(t2), then
path(y : s1)/s2 is a (Σ, {x})-expression of type Seq(t2). The expressions
s1 and s2 are called left step and right step, respectively.
Interpretation. Let A be a Σ-algebra, ν = {x → |A|},
[[s1ν]]A = 〈A′, (nd1, . . . , ndn)〉, i = 1, ..., n, ξi = {y → ndi},
[[s2ξ1]]A

′
= 〈A1, v1〉, ... [[s2ξn]]A

n−1

= 〈An, vn〉, then

[[path(y : s1)/s2]]A =

⎧⎨
⎩

〈An, f(asSeq(asSet(v1 ∪ . . . ∪ vn)))〉
if t2 is a node type

〈An, v1 + . . . + vn〉 if t2 is an atomic type,

where f is document_order if order_mode = ordered, and identity func-
tion in the opposite case. Note that an ordered set is the result of the
interpretation of this expression in the first case and a sequence in the sec-
ond case.

Examples:
1) The following expression consists of two path subexpressions4.
path(x: fn:doc(“books.xml” /

path (y: x.child::element(bib)) / y.child::element(book);
In the main path expression (not depending on a global variable), the left
step is represented by the function fn:doc(), which produces a singleton
sequence containing a document node. The right step is represented by
another path expression (depending on the global variable x), which is eval-
uated for each element of the sequence produced (singleton sequence in this
case). In this expression, the left step x.child::element(bib) gives us an ele-
ment node at the top of the node hierarchy, which is used by the right step
y.child::element(book) selecting the book elements within the bib elements.

4In this example and henceforth, it is considered that the operator ’.’ has a higher
priority that the operator ’::’ which, in its turn, has a higher priority than the operator
’/’. There is also no attempt to use any syntactic sugar in expressions.
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2) If books denotes a sequence of book nodes, then
path(y:select(x: books) :: typed-value(x.attribute :: attribute(year)) =

2000)/ y.child :: element(title);
is an expression evaluating to the titles of the books published in 2000 (note
that x ranges over all books and y ranges only over those books that satisfy
the selection condition).

3) Let doc denote the following document:
< a >

< b >< c > 1 < /c >< c > 2 < /c >< /b >
< b >< c > 3 < /c >< c > 4 < /c >< /b >

< /a >,
then the expression

path(x : doc.child :: element(a))/
path(y : x.child :: element(b))/seq(y.child :: element(c)[2])

evaluates to
(< c > 2 < /c >, < c > 4 < /c >) or (< c > 4 < /c >, < c > 2 < /c >).

6.5. Ordering expressions

In XQuery, the clause order by in the FLWOR expression orders a
sequence of tuples (records) produced by evaluation of the preceding clauses,
basing on the values of a number of expressions evaluated for each tuple of
the sequence. Therefore, an ordering expression in our algebra serves to
order a sequence of tuples (records) basing on the values of one or more of
ordering keys, which are empty or singleton sequences. .

Generally, two values of the same ordering key are compared using a
predefined operation “>” (greater). However, in case the ordering key has
the string type, the name of a specific collation used for ordering may be
indicated (as a string value). We will take both options into account.

Let t be a record type rec x1 : t1, ..., xn : tn end, s a sequence of
type Seq(t), e1, ..., el be (Σ, {x1, ..., xn})-expressions each denoting either
an empty or a singleton sequence of type Seq(t′k) where t′k is an atomic
type, ak and bk are one of the symbols ’↑’ or ’↓’ (a indicates whether the
order is ascending (’↑’) or descending (’↓’) and b indicates whether the empty
sequence has preference (’↑’) or not (’↓’)), and ck is a possibly nonempty
string if t′k is the type string and the empty string in all other cases, then

stable_order(e1[a1, b1, c1], ..., el[al, bl, cl] : s) and
order(e1[a1, b1, c1], ..., el[al, bl, cl] : s)

are expressions of type Seq(t).
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Interpretation. Let A be an algebra and [[s]]A = 〈A′, s〉. Assume for simplic-
ity that the interpretation of an ordering key does not update the algebra
(it is difficult to imagine that an ordering key contains a node constructor).
Then

[[stable_order(e1[a1, b1, c1], ..., el[al, bl, cl] : s)]]A = 〈A′, s′〉 and
[[order(e1[a1, b1, c1], ..., el[al, bl, cl] : s)]]A = 〈A′, s′〉.

The interpretation of the first expression should produce a sequence s′ con-
taining the same items as s (i.e., el ∈ s ⇐⇒ el ∈ s′) in the order dictated
by a, b, and c. The second expression differs from the first one in retaining
the relative positions of two items having equal values of the ordering key.

Two auxiliary Boolean expressions are used for comparing the values of an
ordering key, which are empty or singleton sequences. They are defined as
follows. If t is a type with an operation >: t, t → Boolean, s1 and s2 are
empty or singleton expressions of type Seq(t), and col a possibly nonempty
string if t is String and the empty string in all other cases, then

esfs1,s2,col and esls1,s2,col

are expressions of type Boolean. The first expression evaluates to true if
the first sequence is empty and the second one is not; if both of them are
non-empty sequences and col is not empty, then it evaluates to true iff the
result of the standard function fn : compare(s2, s1, col) is less than zero; if
both of them are non-empty sequences and col is empty, then it evaluates
to true iff the element of the first sequence is greater then the element of
the second sequence (the empty sequence precedes a nonempty one). The
second expression evaluates to true if the second sequence is empty and the
first one is not or both of them are non-empty sequences and the conditions
of the previous case hold (the empty sequence follows a nonempty one)5.
The expressions are interpreted as follows.

esfs1,s2,col =

⎧
⎪⎪⎨
⎪⎪⎩

true if |s1| = 0 ∧ |s2| > 0

false if |s1| = 0 ∧ |s2| = 0 ∨ |s1| > 0 ∧ |s2| = 0

fn : compare(s2, s1, col) < 0 if |col| > 0 ∧ |s1| > 0 ∧ |s2| > 0

v1 > v2 if |col| = 0 ∧ s1 = (v1) ∧ s2 = (v2).

esls1,s2,col =

⎧⎪⎪⎨
⎪⎪⎩

true if |s1| > 0 ∧ |s2| = 0

false if |s1| = 0 ∧ |s2| = 0 ∨ |s1| = 0 ∧ |s2| > 0

fn : compare(s2, s1, col) < 0 if |col| > 0 ∧ |s1| > 0 ∧ |s2| > 0

v1 > v2 if |col| = 0 ∧ s1 = (v1) ∧ s2 = (v2).

Now, our task is to construct a bijection σ : {1, ..., |s|} → {1, ..., |s|}
such that s[i] = s′[σ(i)], where 1 ≤ i ≤ |s|. We present an algorithm

5It is assumed, of course, that both the operation “>” and the function fn : compare
are implemented as nonreflexive, antisymmetric, and transitive relations.
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constructing the bijection. Let i and j be natural numbers such that
1 ≤ i, j ≤ |s| and i �= j, s[i] = rec(vi1, ..., vin), s[j] = rec(vj1, ..., vjn),
ξ1 = {x1 → vi1, ..., xn → vin}, ξ2 = {x1 → vj1, ..., xn → vjn}, and k = 1,
then

1) let s1k = ekξ1 and s2k = ekξ2 in:
2) if ak = ′ ↑′ (ascending order)
3) then if bk = ′ ↑′ (empty sequence first)
4) then if esfs1k,s2k,ck then σ(j) > σ(i)
5) else if esfs2k,s1k,ck then σ(i) > σ(j)
6) else (equal sequences)
7) if k = l (all ordering expressions are taken into account)
8) then if i < j then σ(i) < σ(j) else σ(j) < σ(i)
9) else start item 1 with k = k + 1
10) else (empty sequence last)
11) if esls1k,s2k,ck then σ(i) > σ(j)
12) else if esls2k,s1k,ck then σ(j) > σ(i)
13) else (equal sequences)
14) if k = l (all ordering expressions are taken into account)
15) then if i < j then σ(i) < σ(j) else σ(j) < σ(i)
16) else start item 1 with k = k + 1
17) else (descending order)
18) if bk = ′ ↑′ (empty sequence first)
19) then if esfs1k,s2k,ck then σ(j) < σ(i)
20) else if esfs2k,s1k,ck then σ(i) < σ(j)
21) else (equal sequences)
22) if k = l (all ordering expressions are taken into account)
23) then if i < j then σ(i) < σ(j) else σ(j) < σ(i)
24) else start item 1 with k = k + 1
25) else (empty sequence last)
26) if esls1k,s2k,ck then σ(j) < σ(i)
27) else if esls2k,s1k,ck then σ(i) < σ(j)
28) else (equal sequences)
29) if k = l (all ordering expressions are taken into account)
30) then if i < j then σ(i) < σ(j) else σ(j) < σ(i)
31) else start item 1 with k = k + 1

For the second expression, the ordering is defined in the same way with the
exception that there should be
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σ(i) < σ(j) or σ(i) > σ(j)
instead of if-then-else clauses in lines 8, 15, 23, and 30.

Example. If books denotes a sequence of type Seq(rec book : Element, price :
Seq(Integer) end, then the following expression indicates ordering the records
in the descending order of book prices (records without indicated prices
last):

order(price[↓, ↓, ()] : books).

6.6. Mapping expression

This expression denotes the result of a FLWOR query. The constructor
of this expression takes a sequence of tuples (records) and an expression and
produces a final sequence by evaluating the expression on each tuple of the
first sequence. Formally: if s is a Σ-expression of type Seq(rec x1 : t1, ...,
xn : tn end) and e a (Σ, {x1, ..., xn})-expression either of type t or Seq(t),
then s1 � e is a Σ-expression of type Seq(t), called a mapping expression.
Interpretation. Let [[s]]A = 〈A′, (r1, ..., rm)〉, i = 1, ..., m,
ri = rec(vi1, ..., vin), ξi = {x1 → vi1, ..., xn → vin},
e′ = (e) if e has type t and e′ = e in the opposite case,
[[e′ξ1]]A

′
= 〈A1, v1〉, ... [[e′ξm]]A

m−1

= 〈Am, vm〉, then [[s�e]]A = 〈Am, v1 + ... + vm〉.
Note that the resulting sequence retains the order of the input sequence.

Example. Assume the variable proc denotes a sequence of proceedings
nodes, and we want to pose the following query: “find the titles of all pro-
ceedings whose editors have not have a publication in the proceedings they
have edited.”. It can represented by the following expression:
select(�x : proc � ∗ � y : x.child :: element(editor) � ∗

�z : x.descendant :: element(author)�) :: y �= z�x.child :: element(title).
The first operator “*” creates a stream of pairs of (proc, author) nodes, the
second operator “*” converts it into a stream of triples of (proc, author, title)
nodes, the predicate y �= z selects in the stream those tuples where editor
and author are different nodes, and finally the operator “�” produces the
sequence of the titles of the remaining proceedings.

6.7. Sequence expressions

XQuery possesses a number of sequence constructing and manipulat-
ing expressions. They are supported in our algebra by several expressions
defined as follows.
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1. If e1, ..., en are Σ-expressions of respective types t1, ..., tn, where ti is
either Seq(t′i) or t′i where t′i is an atomic or node type, then seq(e1, ..., en)
is a Σ-expression of type Seq(t) where t = Union(t′1, ..., t

′
n).

Interpretation. Let e′i be ei if ei is a sequence, and (ei) if it is an item, A
an algebra, and [[e′1]]

A = 〈A1, e1〉, ..., [[e′n]]A
n−1

= 〈An, en〉, then

[[seq(e1, ..., en)]]A = 〈An, e1 + ... + en〉.

2. If e1 and e2 are Σ-expressions of type Integer, then range(e1, e2) is
a Σ-expression of type Seq(Integer).

Interpretation. Let A be an algebra and [[e1]]A = 〈A1, e1〉, [[e2]]A
1

= 〈A2, e2〉,
then

a) [[range(e1, e2)]]A = 〈A2, (v1, v2, ..., vn)〉,
where v1 = e1, vn = e2, and vi+1 = vi + 1, for i = 1, ..., n− 1, if e1 ≤ e2;

b) [[range(e1, e2)]]A = (), otherwise.

3. If s1 and s2 are expressions of type Seq(Node) then

union(s1, s2), intersect(s1, s2), and except(s1, s2)

are expressions of type Seq(Node) interpreted as follows. Let A be an alge-
bra, [[s1]]A = 〈A1, s1〉, [[s2]]A = 〈A2, s2〉, then

[[union(s1, s2)]]A = 〈A2, f(asSeq(asSet(s1) ∪ asSet(s2)))〉;
[[intersect(s1, s2)]]A = 〈A2, f(asSeq(asSet(s1) ∩ asSet(s2)))〉;
[[except(s1, s2)]]A = 〈A2, f(asSeq(asSet(s1)\asSet(s2)))〉;

where f is document_order if order_mode = ordered, and identity func-
tion in the opposite case.

4. If s1 and s2 are expressions of type Seq(anyAtomicType) and � is
one of the relation symbols “=”, “!=”, “<”, “<=”, “>”, or “>=”, then s1 � s2

is an expression of type Boolean.
Interpretation. This expression implements the operation of general com-
parison. It consists in existential comparison of the sequences’ components
so that the expression evaluates to true iff the relation holds for at least one
pair of the components. Since the components may have different types,
the comparison may need casting of one operand to the type of the other
operand. We use for this purpose the function fs:convert-operand defined
in Section 7.1.3 of [24] and define the semantics of the expression as the
semantics of the expression constructed of the components defined above:
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[[s1 � s2]]A = [[exists(x1 : s1, x2 : s2)!
(�y1, fs:convert-operand(x1, x2) � ∗ � y1, fs:convert-operand(x2 , x1))�

y1 � y2]]A.

7. NODE CONSTRUCTORS

This is a set of expressions copying existing nodes or constructing new
nodes. The interpretation of these expressions updates the current algebra
and produces an element of the new algebra. Therefore, we use a notion of
pair 〈A, v〉, where A is an algebra and v ∈ |A| is an algebra element, as the
result of interpretation. The set of all pairs 〈A, v〉 where A is a Σ-algebra
and v a value of type t is denoted by At(Σ). The functions fst and snd
applied to such a pair produce its first and second component, respectively.

The signature of our algebras is supposed to include the data type
constructionMode = Enumaration(strip, preserve) and the constant
con_mode : constructionMode that governs the values of some node ac-
cessors (they may have different values in different algebras depending on
whether con_mode is set to strip or preserve in the algebra).

7.1. Node copying

This facility is used in XQuery where parts of existing document trees
are used in the construction of new elements or documents.

If s is an expression of type Seq(Node), then copy_node(s) and
copy_nodes(s) are expressions of type Seq(Node). In a Σ-state A they
are respectively interpreted by the functions

copy_nodeA : ANode × AElement → ANode(Σ)

and
copy_nodesA : ASeq(Node) × AElement → ASeq(Node)(Σ)

as follows6:

[[copy_node(s)]]A = copy_nodeA(s, NULL),
[[copy_nodes(s)]]A = copy_nodesA(s, NULL),

where NULL indicates a nonexisting node. The function copy_nodesA is
defined with the use of the function copy_nodeA as follows. Let

6The first argument of both functions is/are the node/nodes to be copied, and the
second argument, if not NULL, is the parent node of each new node.
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end ∈ AElement, s = (nd1, ..., ndm),
copy_nodeA(nd1, end) = 〈A1, nd′1〉, ..., copy_nodeA

m−1

(ndm, end) = 〈Am, nd′m〉,
then

copy_nodesA((nd1, ..., ndm), end) = 〈Am, (nd′1, ..., nd′m)〉.
Several auxiliary functions are used in the definition of copy_node as fol-
lows.
If nd ∈ ANode and end ∈ AElement, then

copy_node
A(nd, end) =

⎧⎪⎪⎨
⎪⎪⎩

copy_text_nodeA(nd, end) if nd ∈ AText
copy_attribute_nodeA(nd, end) if nd ∈ AAttribute
copy_element_nodeA(nd, end) if nd ∈ AElement
copy_document_nodeA(nd) if nd ∈ ADocument

The function

copy_text_nodeA : Atext × AElement → AText(Σ)

produces a clone of a text node. Definition:

copy_text_nodeA(nd, end) = 〈A′, nd′〉,
where nd′ is a node such that nd′ /∈ AText, and A′ is the following extension
of A:

1) A′Text = AText ∪ {nd′};
2a) parent(nd′) = end and childrenA

′
(end) = childrenA(end) + (nd′) if

end �= NULL;
2b) parent(nd′) = (), otherwise
3) acc(nd′) = acc(nd) for any other node accessor acc.

The function

copy_attribute_nodeA : AAttribute × AElement → AAttribute(Σ)

produces a clone of an attribute node.

Definition:
copy_attribute_nodeA(nd, end) = 〈A′, nd′〉,

where nd′ is a node such that nd′ /∈ AAttribute, and A′ is the following exten-
sion of A:
1) A′Attribute = AAttribute ∪ {nd′};
2a) parent(nd′) = end and attributesA

′
(end)= attributesA(end) + (nd′)

if end �= NULL;
2b) parent(nd′) = (), otherwise;
3a) type-name(nd′) = xdt:untypedAtomic,
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string-value(nd′) = string-value(nd),
typed-value(nd′) = string-value(nd′), and acc(nd′) = acc(nd) for
any other node accessor acc if con_mode = strip;

3b) acc(nd′) = acc(nd) for any other node accessor acc if con_mode =
preserved.

The function

copy_element_nodeA : AElement × AElement → AElement(Σ)

produces a clone of an element node. Definition. Assume for simplicity the
following order of node copying: the element node itself, its attribute nodes,
its child nodes. Then

copy_element_nodeA(nd, end) = 〈A′, nd′〉,
where nd′ is a node such that nd′ /∈ |A|, and A′ is an extension of A produced
as follows. Let

1. A1 be an extension of A such that
• nd′ ∈ A1Element,
– parent(nd′) = end and
childrenA

1

(end) = childrenA(end) + (nd′) if end �= NULL;
– parent(nd′) = (), otherwise;

• children(nd′) = (), attributes(nd′) = (),
• one of the following alternatives holds:
– type-name(nd′) = xdt:untyped,
string-value(nd′) = string-value(nd),
typed-value(nd′) = string-value(nd′),
nilled(nd′) = false, and acc(nd′) = acc(nd) for any other
node accessor acc if con_mode = strip;
– acc(nd′) = acc(nd) for any other node accessor acc
if con_mode = preserved.

2. Aatm = fst(copy_nodesA
1

(attributes(nd), nd′));
then A′ = fst(copy_nodesA

atm (children(nd), nd′)).

The function

copy_document_nodeA : ADocument → ADocument(Σ)

produces a clone of a document node. Definition. Assume for simplicity the
following order of node copying: the document node itself, its child nodes.
Then

copy_document_nodeA(nd) = 〈A′, nd′〉,

29



where nd′ is a node such that nd′ /∈ |A|, and A′ is an extension of A produced
as follows.

Let A1 be an extension of A such that
• nd′ ∈ A1Document,
• parent(nd′) = (), children(nd′) = () and acc(nd′) = acc(nd) for any
other node accessor acc,

then A′ = fst(copy_nodesA
1

(children(nd), nd′)).

7.2. Attribute node constructor

This is a node constructing expression whose interpretation produces a
new attribute node on the base of a name and string value supplied in a
query. Definition: If n is a QName and e a String, then attribute_node(n, e)
is an expression of type Attribute interpreted as follows.

[[attribute_node(n, e)]]A = 〈A′, nd〉,
where nd is a node such that nd /∈ AAttribute, and A′ is the following exten-
sion of A:
1) A′Attribute = AAttribute ∪ {nd};
2) node-name(nd) = n, node-kind(nd)= “attribute”, parent(nd) = (),

type-name(nd) = “xdt:untypedAtomic”, string-value(nd) = e,
typed-value(nd) = string-value(nd).

See an example in Section 7.4.

7.3. Text node constructor

This is a node constructing expression whose interpretation produces a
new text node on the base of a string value supplied in a query. Definition:
If e is a String, then text_node(e) is an expression of type Text interpreted
as follows.

[[text_node(e)]]A = 〈A′, nd〉, where nd is a node such that nd /∈ AText, and
A′ is the following extension of A:
1)A′Text = AText ∪ {nd};
2) node-name(nd) = (), node-kind(nd) = “text”, parent(nd) = (),

type-name(nd) = “xdt:untypedAtomic”, string-value(nd) = e,
typed-value(nd) = string-value(nd).

See examples in Section 7.4.
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7.4. Element node constructors

There are two forms of element node constructing expressions.
1. The first one constructs an element with simple content on the base of
a string value supplied in a query. Definition: If n is a QName, atseq an
expression of type Seq(Attribute)7, and e an expression of type Text such
that parent(e) = (), then element_node(n, atseq, e) is an expression of type
Element.
Interpretation. If m > 0 then let [[atseq]]A = 〈Am, (and1, ..., andm)〉, and
[[e]]A

m

= 〈Atxt, tnd〉. Then:
[[element_node(n, atseq, e)]]A = 〈A′, nd〉,

where nd is an element such that nd /∈ |Atxt|, and A′ is an extension of Atxt
produced as follows.

1. A′Element = AtxtElement ∪ {nd};
2. node-name(nd) = n, node-kind(nd) = “element”,

parent(nd) = (), string-value(nd) = string-value(tnd),
typed-value(nd) = string-value(nd), children(nd) = (tnd),
nilled(nd) = false, parent(tnd) = nd;

3. type-name(nd) = “xdt:untyped” if con_mode = strip, and
type-name(nd) = “xs:anyType” if con_mode = preserved,

4. attributes(nd) = {and1, ..., andm} and for each and ∈ {and1, ..., andm}:
parent(and) = nd.

If m = 0 (no attribute is associated with the element), then the above men-
tioned Am = A and the item 4 is as follows:

4. attributes(nd) = ().

Example. The following fragment of the XML text:
<title>Data on the Web</title>

can be represented by the following element constructor:
element_node(title, (), text_node("Data on the Web"))

2. The second one constructs an element with complex content. Def-
inition: If n is a QName, atseq an expression of type Seq(Attribute)8,
and elseq an expression of type Seq(Union(Element, T ext)) such that if
type(elseq[i]) = Text then type(elseq[i]) = Element (no adjacent text

7Constraints: 1) if ni = node-name(atseq[i]), nj = node-name(atseq[j]) and i �= j,
then ni �= nj ; 2) parent(atseq[i]) = (). The constrains let one make sure that attributes
have different names and none of them is part of an existing tree.

8See the above constraint.
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nodes are allowed) and parent(elseq[i]) = () for any i = 1, ..., |elseq|, then
element_node(n, atseq, elseq) is an expression of type Element.
Interpretation.If |atseq| > 0, then let [[atseq]]A = 〈AAm, (and1, ..., andm)〉,
and if |elseq| > 0, then let [[elseq]]AA

m

= 〈EAk, (end1, ..., endk)〉. Then:
[[element_node(n, atseq, elseq)]]A = 〈A′, nd〉,

where nd is an element such that nd /∈ |EAk|, and A′ is an extension of EAk
produced as follows.

1. A′Element = EAkElement ∪ {nd};
2. node-name(nd) = n, node-kind(nd) = “element”,

parent(nd) = ();
3. type-name(nd) = “xdt:untyped” if con_mode = strip, and

type-name(nd) = “xs: anyType” if con_mode = preserved,
4. attributes(nd) = {and1, ..., andm} and for each

and ∈ {and1, ..., andm}: parentA′(and) = nd;
5. string-value(nd) = string-value(end1)+...

+string-value(endk),
typed-value(nd) = string-value(nd),
children(nd)= (end1, ..., endk), nilled(nd) = false, and for each
end ∈ {end1, ..., endk}: parentA′(end) = nd.

If |atseq| = 0 (no attribute is associated with the element), then the above
mentioned AAm = A and the item 4 is as follows:

4. attributes(nd) = ().

If |elseq| = 0 (neither an element or a text is associated with the element),
then the above mentioned EAk = AAm and the item 5 is as follows:

5. string-value(nd) = (), typed-value(nd) = (),
children(nd) = (), nilled(nd) = false.

Example. The following fragment of the XML text:
<book> year="1992">

<title>Data on the Web</title>
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>
<publisher>Morgan Kaufman Publishers</publisher>
<price>65.95</price>

</book>
can be represented by the following element constructor:
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element_node(book, (attribute_node(year, "1992")),
(element_node(title, (), text_node("Data on the Web"))
element_node(author, (), text_node("Abiteboul")),
element_node(author, (), text_node("Buneman")),
element_node(author, (), text_node("Suciu")),
element_node(publisher, (),

text_node("Morgan Kaufman Publishers")),
element_node(price, (), text_node("65.95")))).

A more complex example. The following XQuery query transforms a bib
document (bound to the variable $bib) into a list in which each author’s
name appears only once, followed by a list of titles of books written by that
author. The fn:distinct-values function is used to eliminate duplicates
(by value) from a list of author nodes. The author list, and the lists of
books published by each author, are returned in alphabetic order using the
default collation.

<authlist>
{

for $a in fn:distinct-values($bib/book/author)
order by $a
return

<author>
<name> $a </name>
<books>
{

for $b in $bib/book[author = $a]
order by $b/title
return $b/title

}
</books>

</author>
}

</authlist>

The query can be represented in the algebra as follows:
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element_node(authlist, (),
order(typed_value(a)[↑,↑,""]:

�a: fn:distinct-values(path(x: bib)/
path(y: x.child::element(book))/

y.child::element(author))�)�
element_node(author, (),

(element_node(name, (), text_node(string_value(a))),
element_node(books, (), copy_nodes(
order(typed_value(b/title)[↑,↑,""]:
�b: path(x: bib)/

select(y: x.child::element(book))::
a ∈ y.child::element(author) ��

b/title))
)

)
)

)

7.5. Document node constructors

The result of the document node constructor is a new document node
whose children are element and/or text nodes. Definition: If elseq is an
expression of type Seq(Union(Element, T ext)) such that if type(elseq[i]) =
Text then type(elseq[i]) = Element (no adjacent text nodes are allowed),
then document_node(el1, ..., elk) is an expression of type Document.
Interpretation. If |elseq| > 0, then let [[elseq]]A = 〈Ak, cnd1, ..., cndk〉.
Then

[[document_node(elseq)]]A = 〈A′, nd〉,
where nd is an element such that nd /∈ |Ak|, and A′ is an extension of Ak
produced as follows.

1. A′Document = AkDocument ∪ {nd};
2. node-name(nd) = (), node-kind(nd) = “document”,

parent(nd) = (), type-name(nd) = (), attributes(nd) = ();
3. string-value(nd) = string-value(cnd1)+...

+string-value(cndk),
children(nd)= (cnd1, ..., cndk) and for each cnd ∈ {cnd1, ..., cndk},
parent(cnd) = nd.

If |elseq| = 0 (neither an element nor a text is associated with the docu-
ment), then the above mentioned Ak = A and the item 3 is as follows:
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3. string-value(nd) = (), children(nd) = ().

Example. The XQuery query
document

{
<author-list>

fn:doc("bib.xml"/bib/book/author)
</author-list>

}
returning an XML document containing a root element named author-list
is represented by the following algebra expression:

document_node((element(author_list, (),
copy_nodes(fn:doc("bib.xml"/bib/book/author)))))

8. RELATED WORK

One of the first works presenting an XML algebra is [7] (an updated
version of this work was proposed as a working draft of W3C [19]). The
following operations are defined there: projection, selection, and iteration.
The projection operation uses a sequence and an element name to produce
a sequence of children nodes, i.e., it is a special case of our path expression
where the second argument is the name of a child element rather than a
sequence. The selection expression permits inspection of a sequence with
selection of some of its items satisfying a predicate. There is no facility to
select items basing on kind tests. The iteration operation permits processing
a sequence of items, one item at a time. It resembles the conventional
for-loop of an imperative programming language. In fact, this is the main
operation of the algebra. The authors show how nested for-loops can be used
to provide restructuring and joining of existing documents and, moreover,
how projection can be formally expressed by iteration. There is no algebraic
definition of any operation. One can say that just a simple query language
is defined that has no relation to XQuery and cannot be used for defining
its semantics.

A number of algebras were proposed in the process of design and devel-
opment of the database system TIMBER [10]. A tree algebra, called TAX,
is described in [9]. According to TAX, the database is a collection (set) of
ordered labeled trees. For this reason, all operations of this algebra take
collections of trees as input and produce a collection of trees as output.
The algebra thus uses more complex data structures (trees) compared to
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our algebra and therefore it is much more heavier. It is noted in [3] that
the direct set-oriented evaluation of XQuery is possible, but can get quite
complicated even for simple queries.

The complexity of the algebra has forced the authors of TAX to design,
in addition, a lower-level algebra, called physical algebra (reported in the
unpublished paper [15]), manipulating sequences of trees and serving for
implementation of the TAX algebra. It is assumed that each of the opera-
tions of the physical algebra is likely to be available as an access method in
any XML database. However, in the further development of the project the
authors practically forgot of TAX and directly used an updated version of
the physical algebra for implementation of a newly designed data structure,
Generalized Tree Pattern [3], which represents an XQuery as a pattern con-
sisting of one or more trees. All the operations of this algebra are described
informally.

The next step in the project development was the introduction of the
notion of a tree logical class as a labeled set of tree nodes matching a des-
ignated node and development of a new algebra, designed for manipulating
tree logical classes [16]. The algebra uses the notion of logical class re-
duction for converting a heterogeneous set of trees into a homogenous set,
thus eliminating the problem of performing set-oriented bulk operations on
heterogeneous sets. However, there is no formal definition of the operations.

An XML algebra for data mining, called XAL, is reported in [28]. An
XML document is regarded in XAL as a rooted directed graph with a par-
tial relation on its edges. A XAL operation takes a set of nodes as input
and produces a set of nodes as output. The main operations are selection,
projection, product, and join. No detailed description of the operations is
given.

A logical algebra and a physical algebra supporting XQuery are reported
in [8]. It is claimed that an XQuery query is first translated into the log-
ical algebra and then, after a possible optimization, is evaluated using the
physical algebra. The logical algebra operates with ordered collections of
primitive values or nodes or tuples of primitive values or nodes. Both al-
gebras are described informally. Moreover, since many their operations use
functions and predicates as operands, they are not algebras in fact.

An algebra whose operations work in a certain context is reported in
the unpublished paper [21]. The context represents a point in an XML
document during query evaluation. It is supplied to an operator as a path
taken to reach its input. The authors argue that the use of the context
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contributes to the construction of powerful query optimizers and evaluators.
The input and output to all operations are collections of collections (called
outer and inner collections, respectively). There is no hint in the paper
on the motivation of the choice of the operations, which does not looks
XQuery-oriented. For this reason the translation of an XQuery query to
this algebra is not straightforward.

Another XML algebra, called XAT, is reported in the unpublished pa-
per [27]. It is intended to support XQuery like the algebra described in this
paper. The XAT data model represents data as hierarchical tables (col-
lections of tuples). The set of XAT operators is divided in three groups:
XML operators, SQL operators, and Special operators. The operators of the
first group serve for performing the actions typical of the XML data model
(Navigate, Agregate, Composer, etc.), the operators of the second group
serve for performing SQL-like operations (Progect, Select, Join, Groupbe,
etc.), and the operators of the third group serve to perform special functions
like iterating through a collection of making a choice. No updating operator
is reported. All operators are described informally, using examples. It is
also informally described how an XQuery expression can be translated into
the algebra. However, any subtle detail is ignored.

Relation-like flat tables are the main data structures used in the Xtasy
algebra [18]. Each tuple in a table consists of variable-value pairs also re-
ferred to as bindings. The table is constructed by the path operator, which
takes a database instance and input filter (a tree describing the paths to
follow in the database, the variables ro bind, and the way to combine the
results coming from different paths) as arguments. The opposite action is
performed by the return operator, which takes a table and output filter (an
element or attribute constructor) as arguments and produces an XML doc-
ument. The other operators resemble the familiar relation algebra operators
(Join, Selection, Projection, etc.). The semantics of all the operators are
described informally. Only some simple XQuery queries can be represented
by the algebra.

The tuple-oriented algebra described in the unpublished paper [14] re-
sembles the previous one with the exception that the tuple can have a hier-
archical structure, i.e., a tuple element can be a set of tuples. The algebra
is also informally described.

An XML algebra designed for effective stream processing is briefly de-
scribed in [2, 6]. The inputs and output of each operator of the algebra
are streams represented as tuple sequences. Projection is similar to its re-
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lational counterpart while selection, join, and unnest are similar to their
object-oriented algebra counterparts proposed earlier by one of the authors
of these papers [5]. Entirely new operators are extraction, which gets an
XML data source and returns a singleton stream whose unique element
contains the entire XML tree, and reduce, which produces the final result of
a query in the form of an XML document. The semantics of the operators
are defined by equations using list comprehensions and monoid calculus.
Typing details are neglected. Only predicates are used as selection criteria.
No navigating function is defined. Differences in paths expressions are not
taken into account.

A set of primitive operations for modifying the structure and content
of an XML document is proposed in [20]. It includes such operations as
delete a node from a document tree, rename an existing node, insert a new
node in the document tree, and update the content of a node. It is assumed
that XQuery will be extended by these operations. The semantics of the
operations are described informally.

9. CONCLUSION

We have presented an XML algebra supporting XQuery. The algebra is
in fact a number of kinds of expressions (expression constructing operators)
algebraically defined. The introduction of kinds of expressions instead of
high-order operations using functions as parameters has permitted us to
remain in the limits of first-order structures whose instance a many-sorted
algebra is.

The set of kinds of expression of the presented algebra substantially dif-
fers from the set of operators of relation algebra. The difference is caused
by the more complex structure of the XML document compared to the rela-
tion. In fact, only selection by predicate test is more or less the same in both
algebras. At the same time, the XML algebra in addition permits selection
by node test. The projection operator of relation algebra is replaced by the
path expression and a number of navigating functions permitting selection
of different parts of the document tree. The join operator is replaced by a
number of unnesting join expressions permitting creation of a stream of flat
tuples on the base of several possibly nested parts of the document tree.

In addition, we have defined a number of node constructing expressions
permitting update of the current algebra by introduction of new nodes and
corresponding node accessors. The evaluation of such an expression pro-
duces a new algebra as a side effect. Since XQuery allows expressions to be
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nested with full generality, the evaluation of each expression theoretically
may produce a side-effect. For this reason, the semantics of any expression
in our approach is a pair, an algebra and a value, which corresponds one-
to-one to the semantics of XQuery expressions. This feature is not present
in any existing XML algebra. Another distinguishing feature of our algebra
is that the first operand of many expressions (path, mapping, etc.) pro-
vides a context for the evaluation of the second operand, which may help
in optimizing query performance.

Our algebra does not possess facilities corresponding to the branching
and type-checking expressions of XQuery. As we have noted in Introduction,
we consider these facilities more appropriate in the XQuery interpreter than
in the XML algebra. Specification of such an interpreter is one of the
directions of our future work.

In conclusion, the authors thank P. Emel’ianov for his valuable com-
ments on the draft of the paper.
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