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1. INTRODUCTION

The two-level C program verification scheme [1, 3, 5-11] is applied to C-
light language. It is a powerful subset of ISO C [4] language. The valid base
types of C-light are void, integer types, real types and enumerations. The derived
types are pointers, arrays, structures and functions. C-light covers all C state-
ments. There are two limitations on C-light statements: all case-labels and the
default label of a switch statement must be at the same level; a jump into a block
by a goto statement is prohibited. The expression evaluation order is fixed
strictly in C-light. The arguments of operators and functions are evaluated right-
to-left and initializing expressions lists are evaluated left-to-right.

The peculiarity of C-light is that it has formal operational semantics.

To verify C-light programs, we translate them into C-kernel programs. C-
kernel language is a subset of C-light. It has axiomatic semantics. All expressions
in C-kernel are in a normal form. The number of side effects is reduced to mini-
mum and the operators with control points (for example, logical operators) are
absent. A normalized expression does not contain conditional operators, comma
operators, logical operators, simple and compound assignments, increment and
decrement operators. The declaration lists are allowed only in function declara-
tions, any other declaration defines one object exactly. The initializers contain
only normalized expressions. All static objects’ names are unique.

The C-kernel statements are the following: expression statements, if state-
ments with a mandatory else branch and normalized condition, while statements
with a normalized condition, jump statements goto and return, and compound
statements.

This work represents a mixed operational semantics of C-light, a mixed
axiomatic semantics of C-kernel and a proof of the consistency theorem. This
semantics has an unambiguity of inference (i. e. one and only one inference rule
is allowed at each step of analysis). The word “mixed” means that it has special
inference rules which are applied depending on the information in annotations
about the program construction. In many cases this allows verification conditions
to be simplified. For example, we have a special inference rule for the assignment
operator in the case when there is no aliasing.

2. THE MODIFIED OPERATIONAL SEMANTICS OF C-LIGHT

A formal definition of C-light was given in terms of operational semantics in
Plotkin style [10]. A state of the abstract C-light machine (ACM) is a map which
defines the following meta-variables:



1. MD — a variable of the type Locations — CTypes.

2. Val — a variable of the type CTypes x LogTypeSpecs.

3. Variables of the type Names.

The meta-variable MD defines the values stored in the memory. Locations is
the set of addresses and CTypes is the union of all valid C-light types.

Names is a set of all program names and LogTypeSpecs is a set of logical
names of types which are logical representations of abstract names of types.

The meta-variable Val stores the value and its type returning by a function or
by an expression.

The set of all states is denoted by States. Let Greek letters 0, T with or with-
out indices stand for states. MDy(C) is a short form of o(MD)(c).

If the value of a variable is not used by pointers, we will call it a non-shared
variable. All other variables will be called shared variables.

Let us introduce ACM parameters. The first group consists of functions the
definition of which depends on a compiler.

The function mem(X) returns the address of a shared variable X:

mem: ID - Locations.

If we want to express that X is equal to 5, we should write MD(mem(x)) = 5.
In the case when X is a non-shared variable, the function mem is undefined. And
if we want to express that X is equal to 5, we should write X = 5.

The function mb(e, id) evaluates the address of an array member €[id] or a
structure member €.id:

mb: ID x (N u ID) — Locations.

The function cast(e, t, t') transforms a value of the type t into a value of the
type t'.

C-light language inherits operations from C. In order to define evaluation of
these operations symbolically, the functions UnOpSem and BinOpSem [10] are
used.

The function UnOpSem(e, v, 1) returns the result of applying the unary op-
eration e to the value v of the type t. The result has the form Val(V', ") where V'
is the value and 7' is its type.

The function BinOpSem(e, vy, t1, V2, 1) returns the result of applying the
binary operation e to the values vy and V; of types 11 and 1, respectively. The
result has the form Val(V', t'), where V' is the value and 1' s its type.
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The second group consists of functions which can be evaluated directly from
the source code.

The function std juxtaposes an identifier with the type connected with it in
the typedef-declaration, structure or enumeration declaration.

The function id(€) returns the identifier of the object which is declared in the
declaration €.

The function tp(e) returns the type of the object which is declared in the dec-
laration €.

The function labels(S) returns the number of labels at the top level of the
statement sequence S except for case and default labels.

The function storage(e) returns the storage-class specifier of the declaration
€:

e storage(e) = auto, if e contains the specifier auto or register;

e storage(e) = static, if e contains the specifier static;

e storage(e) = static, if e does not contain storage-class specifiers
and e is at the external program level;

o storage(e) = auto, if e does not contain storage-class specifiers
and € is not at the external program level.

A number of special abstract functions are also used to define how the ab-
stract C-light machine works.

The function retType gets a logical type t as an argument and returns the
type Ty, if T has the form 13 X ... X 1, = 19 or it returns T otherwise.

The function defaultValue(r, strg) returns the default value for the type T in
compliance with the storage-class specifier strg:

e defaultValue(r, static) = default value for the type t;
e defaultValue(r, auto) = w.

The function TypeofNewVal(t) returns the type of a memory cell value cre-
ated by a new operation for the derived type t:

o TypeofNewVal(array(z, k)) = t;
o TypeofNewVal(struct(s, (z1, my), ..., (to, My))) = struct s.

The function findex(t) returns the first index of the derived type t:



e findex(z) = 0if 1 is an array;
o findex(struct(s, (t1, l1), s (T, 1)) = .

The function next(t, |) returns the index of the derived type T which follows
immediately after the index I:

next(array(z, k), ) =1 + 1ifl < k- 1;
next(array(z, k), ) = wif | > k - 1;

next(struct(s, (zy, l1), ..., (t, ), ) = L+ 1ifi < k;
next(struct(s, (ty, l1), ..., (t, ), ) = wifi = k.

The function itype(r, i) returns the type of the derived type t element with
the index i:

o itype(z[k], i) = 1;
o itype(StrUCt(Sl (Tll Il)l ey (Tkl Ik))l I) =T

The declaration

e=¢e"
is in a normal form, if €' is an initializer in a fully bracketed form which does not
contain designators and the object which is declared in € is of a full type.
For example, the declarations
int y[4]1([3] = {{1, 3, 5}, {2, 4, 6}, {3, 5, 7}};

and

int y[4]([3] = {1, 3, 5, 2, 4, 6, 3, 5, 7};
contain equivalent compound initializers but only the first one is in the normal

form.
The declaration

d=d;

is the normal form of the declaration



if

1. d =d'; is in the normal form.
2. These declarations initialize the same object with the same value.

According to [4], any declaration can be transformed to its normal form. The
Boolean function isNform(d = d'; , e = €';) takes the value true if and only if
the declaration

is the normal form of the declaration

e=¢'.

Let A = (A, A). The functions fst(A) and snd(A) are the projections: fst(A)
= Ay, and snd(A) = A,.

The function family type evaluates the type of C-light constructions. It in-
cludes three functions.

The function type(u) evaluating the type of the constant U, is defined by the
following axioms which are split into three groups.

The first group of nine axioms defines numerical constant types in a standard
way (octal and hexadecimal constants are not considered for short). As is usual
for signed integers, the key word signed is omitted:

e type(n) is one of {int, long int, long long int};

e type(nU) is one of {unsigned int, unsigned long int, unsigned
long long int};

e type(nlL) is one of {long int, long long int};

type(nUL) is one of {unsigned long int, unsigned long long

int};

type(nLL) = long long int;

type(nULL) = unsigned long long int;

type([n:].[n][E [£] n3]) = double;

type([ni].[n][E [£] n3]F) = float;

type([n;].[n][E [£] n3]L) = long double.
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The words “one of” mean that the first type is selected which is enough to
store the constant. The square brackets stand for optional elements.
The second group of four axioms defines the character and string constant

types:

type('c’) = int;

type(L'cic,") = unsigned short;

type("c;...c,") = array(char, n + 1);
type(L"c;...c,") = array(unsigned short, n / 2 + 1).

The first axiom reflects the C language feature: character constants are of in-
teger type (though strings are arrays of type char). In this semantics, simple con-
stants consisting of more than one symbol or containing non-standard escape-
sequences (i. e. not corresponding to any one-byte symbol) are not considered
because their values depend on complier implementation.

The third group consists of the axiom for a null pointer:

type(NULL) = void".

The function type(e, t1, 1) evaluates the type of the value returned by the
operator ® in the case when it has the arguments of types t; and t,. The manda-
tory argument T, is used for a binary and conditional operator. Semantics of this
function is defined according to ISO C standard [4].

Let X be a variable and C be a constant. The function type(e) evaluates the
type of the expression €:

type(x) = t if the declaration T X exists;

type(c) = type(c);

type(e e) = type(e, (type(e));

type(e;  &;) = type(e, type(e1), type(ez));

type(e: ? e;: €3) = type(? :, type(ey), type(es));
type((e)) = type(e);

type(e(ey, ..., e))) = tiftype(e) =11 X ... X 1, > 1.

The function logtype(t, MD) converts the abstract name of the type 1 into
the corresponding logical type name according to the value of meta-variable MD:

logtype(r, MD) = 7',
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where 7' is the logical type name corresponding to the abstract name of the type

T.

The function addr(e, MD) evaluates the address of the expression € accord-
ing to the MD value:

addr(e, MD) = mem(e), if e is a shared variable;

addr(e, MD) = w, if e is a constant or a non-shared variable;
addr(e[e'], MD) = mb(e, val(e', MD));

addr(e[e'], MD) = w, if € is a non-shared array;

addr(e.m, MD) = mb(val(e, MD), val(m, MD));
addr(e.m, MD) = w, if e is a non-shared structure;
addr(&e, MD) = w;

addr(e, MD) = val(e, MD).

The function val(e, MD) returns the value of the expression € according to
the values of the meta-variable MD:

val(e, MD) = MD(mem(e)), if e is a shared variable;

val(e, MD) = e, if e is a constant or a non-shared variable;
val(e[e'], MD) = MD(mb(e, val(e', MD)));

val(e[e'], MD) = e[val(e', MD)], if e is the non-shared array;
val(e.m, MD) = MD(mb(val(e, MD), val(m, MD)));

val(e.m, MD) = e.m, if e is a non-shared structure;

val(&e, MD) = addr(e, MD);

val("e, MD) = MD(val(e, MD));

val((r) e, MD) = cast(val(e, MD), type(e), fst(logtype(r,
MD)));

val(e e, MD) = UnOpSem(e, val(e, MD), type(e)) , where o is a
non-logical unary operation;

val(e o €', MD) = BinOpSem(e, val(e, MD), type(e), val(e',
MD), type(e")) where e is the non-logical binary operation;

val(e e, MD) = e (val(e, MD)) , where e is a logical unary opera-
tion;

val(e ¢ €', MD) = val(e, MD) e val(e', MD) , where e is a logical
binary operation.

The function logval(e, MD) analyses the expression e and performs its infil-
tration if it is of the Boolean type.
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e logval(e, MD) = val(e, MD), if e is Boolean;
e logval(e, MD) = (cast(val(e, MD), type(e), int) # 0), if e is not
Boolean.

Let 11 be a simple type and 1 be a derived type. The function init(z, €, MD)
initializes the cell of the type T in accordance with the initialization specifier €
and the value of the meta-variable MD modifying it. The initialization specifier
can be either an initializer or a storage-class specifier (if there is no initializer). In
the last case initialization is performed by default. The function init is defined in
the following way:

init(t;, storage, MD) = (MD, defaultValue(r;, storage));

init(t; (v, t), MD) = (MD, cast(v, 1, t1));

init(t;, e, MD) = (MD, cast(val(e, MD), type(e), t1));

init(t,, €, MD) = (updv(MD, nc, t,, €), hc), where MD(nc) = w.

The function updv(MD, nc, 1, €) modifies the meta-variable MD. This modi-
fication specifies the values of the allocated cells and defines the objects of
nested derived types (if any) by calling the function init. Thus the functions updv
and init are mutually recursive:

updv(MD, nc, 7, €) = updv(MD, nc, t, e, findex(t));
updv(MD, nc, 1, storage, |) =

updv(upd(MD', mb(nc, 1), Val'), nc, t, storage, next(l)),
if| # w and (MD', Val') = init(itype(x, 1), storage, MD);
updv(MD, nc, 1, {ey, ..., &}, ) =

updv(upd(MD', mb(nc, 1), Val'), nc, 1, {e, ..., &, next(l)),
if | # wand (MD', Val') = init(itype(z, 1), e, MD);
updv(MD, nc, 7, { }, ) =

updv(upd(MD', mb(nc, 1), Val'), nc, 1, { }, next(l)),

if | # wand (MD', Val') = init(itype(z, 1), static, MD);
updv(MD, nc, 1, e, w) = MD.

The configuration of the abstract C-light machine is a pair (P, ), where P is
a program and O is a state.
The axioms of operational semantics have the form
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(A, 0) = (B, 0)

It means that one execution step of a program fragment A started in the state ¢
leads to the state ¢' and B is the fragment remained to execute. All semantics
rules have the form
Py, ..., Pn
(A, 0) - (B, 0"

It means that, when the conditions Py, ..., P, hold, we can pass from the first
configuration to the second. Thus program execution in operational semantics
leads to configuration chains which can be infinite in the general case:

<51, 0'1> - <Sz, 0'2> T d <Si, 0i> - ..

The configuration (S;, 0y) is called an initial configuration. If the chain is finite
and (S,,, 0y,) is the last configuration of this chain, then we say that execution of
the fragment S; started in the state oy leads to the final configuration (S, O,). If
we designate the transitive reflexive closure of the relation — as —”, then in the
general case such execution can be designated as

(S1, O1) = (Sn, Ow).

The empty program fragment will be denoted by €. The empty fragment can
be both an empty program and empty expression.

The assignment operator. Let t" be a type different from array and € be a
shared variable. The rule for a simple assignment has the form:

(eo, 0) =" (Val(V', 1), 0", (e, 0"y > (Val(v", 1), 0"},
v = cast(v', 7', "), ¢ = addr(v")
(e = &, 0) - (Val(v, "), 0"(MD « upd(MD, ¢, v)))

If e is a non-shared variable, the rule has the form:

(60, 0) > (Val(V', 1), @Y, (e, 0") - (Val(e, "), a"), v = cast(v}, 7', t")
(e = ey, 0) —(Val(v, "), 0"(e < v))

The rule for a compound assignment operator has the form:
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(€, O) - <Va|(vll T')I 0'>I (€&, 0J> - <VaI(V"I T")/ 0">/
v = cast(fst(BinOpSem(e, V", ", V', 1)),
snd(BinOpSem(e, V"', 1", V', 7)), "
(e o= gp, 0) » (Val(v, t"), "(MD « upd(MD, addr(v"), v)))

Variables and constants. Semantics of a variable and constant evaluation is
defined by one axiom:

(x, 0y = (Val(val(x, MDo), type(x)), o)

Access to the elements of compound types. Let t' be the integer type. The
rule for access to the elements of an array has the form:

(e, 0) > (Val(v, 1), 0", (e, 0" =" (Val(c, ), "), 0"
(e[eg], 0) - (Val(MDg(mb(MDy(c), V)), 1), G")

The rule for selection of a structure field has the form:

(e, oy =" (Val(v, 1), 0)
(e'ml O> - (VaI(MDU'(mb(VI m))l T)I OJ>

Indirection operator. The rule for the indirection operator has the form:

(e, 0) > (Val(v, t°), 0"
(e, 0) > (Val(MDgy(v), 1), ")

Address operator. The rule for the address operator has the form:

(e, 0) - (Val(v, 1), 0
(&e, 0) - (Val(addr(v), 1), 0')

Cast operators. The rule for the cast operator has the form:

(e, 0) - (Val(v, 1), o)
((v)e, 0y — (Val(cast(v, 7', 1), 1), 0")

Comma operator. Assume that an expression € does not contain the comma
operator at the top level. The rule for the comma operator has the form:
14



(e, 0) > (v, 0"
(e, €', 0y~ (e, a)

Logical operators. Let T be a scalar type. Expressions containing logical op-
erators AND and OR can be evaluated incompletely. For their evaluation, an aux-
iliary construction OrAnd is introduced.

The rule for AND has the form:

(e1, 0) = (Val(v, 1), "), cast(v, t, int) = 0
(e; && e;, 0) - (Val(0, int), a"

(e, 0) =" (Val(v, 1), 0"), cast(v, t, int) £ 0
(e; && e;, 0) - (OrAnd(e,), 0"

The rule for OR has the form:

(e, 0) =" (Val(v, 1), 0"), cast(v, t, int) £ 0
(e1 || &, 0y > (Val(1, int), o'

(e, 0) =" (Val(v, 1), 0"), cast(v, t, int) = 0
(e1 || &, 0) > (OrAnd(e,), 0')

Semantics of OrAnd operator is defined by two rules:

(e, 0) > (Val(v, 1), 0"), cast(v, t, int) = 0
{OrAnd(e), o) — (Val(0, int), 0"

(e, @) »" (Val(v, 1), "), cast(v, z, int) # 0
(OrAnd(e), o) - (Val(1, int), ")

Increment and decrement operators. The prefix increment and decrement
operators are defined by the following axioms:

(++e,0)—> (e +=1, 0)
<"el 0) - <e = 11 G>
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Let t be a type different from array. The rules for postfix increment and dec-
rement operators have the form:

(e, 0) =" (Val(v, 7), 0"
(e++, 0) > (Val(v, 1),
0'(MD « upd(MDy, addr(v), fst(BinOpSem(+, v, t, 1, int)))))

(e, 0) " (Val(v, t), 0
(e__l 0> - (Val(vl T)I
0'(MD « upd(MDy, addr(v), fst(BinOpSem(-, v, t, 1, int)))))

Conditional operator. Let t( be a scalar type. The rules for a conditional op-
erator have the form:

T =*type(? ;, type(es), type(e,)),
{eg, 0) = (Val(v, 1p), 0"), cast(v, 1o, int) # 0
(&0 ?e;: e 0)—{()e, a"

T =*tYDe(? :, type(ey), type(ey)),
{9, 0) = (Val(v, 19), 6", cast(v, 1o, int) = 0
(€0 ?€1: €, 0)—>((1) & 0)

Other unary operators. The unary operators which do not have their own
rules are defined by a general rule:

(e, 0y > (Val(v, 1), 0
(ee, 0) - (Val(UnOpSem(e, v, 1)), 0"

Other binary operators. The binary operators which do not have their own
rules are defined by a general rule:

(€2, Go) = (Val(Vy, 12), O1), (€1, O1) = (Val(vi, 1), 02)
<e1 L4 eZI 0> - (VaI(BInOpSem(-, Vi, T1, V2, TZ))I 02>

Variable declarations. Semantics of a variable declaration is defined by
three rules: one for a declaration without initialization and two for a declaration
with an initializer.
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Let e; be a variable declaration without a specifier enum and containing a
single declarator without initializer. The rule for a variable declaration without an
initializer has the form:

1 € logtype(e, MDy;), MDy(nC) = L,
(MD', V) € init(z, storage(e), upd(MD;, nc, w))
{e; , 0) > (€, d(MD « upd(MD', nc, fst(V))))

Let @ = €'; be a variable declaration not including a specifier enum and con-
taining a single declarator with an initializer. The rules for a variable declaration
with an initializer have the form:

isNform(d = d';, e = e';), {computelnit(d"), o) - (Val(v), 0", v # w,
MD,(nc) = L, 1 € logtype(d, MD,), (MD', V) € init(z, v, upd(MDg, nc, m))

(e =¢€';, 0)—> (g, o(MD « upd(MD', nc, fst(V))))

isNform(d = d';, e = €';), (computelnit(d"), o) - (Val(w), 6"
(e =¢€;,0)—-(Val(w), 0"

The auxiliary construction computelnit(e) evaluates all expressions’ values
entering the initializer € left-to-right:

(computelnit(e;), go) = (Val(vy), 01), V1 # W,

(computelnit(ey), ok_1$..—> (Val(vg), ok), vk # ©
{computelnit({ey, ..., &}), oo) = (Val({vy, ..., Vi}), Ok

{computelnit(e;), ag) = (Val(vy), o), vi ¥ W,

(computelnit(en), Om-1) = (Val(Vy), Om), Vm # @, M < K,
(computelnit(€n+1), Om) = (Val(Vi), Ok), Vm+1 = @
(computelnit({ey, ..., &}), Oo) — (Val(w), oy

Let the initializer € be not in brackets. Then

{computelnit(e), o) - (e, 0)
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Variable declarations with the specifier enum. Semantics of a variable
declaration with the specifier enum is defined as follows:

(storage enum x {e} €', o) — (storage enum x {e,} €', 0),
if e is not ended by a comma.
(storage enum {e} €', o) — (storage enum {e,} €', 0),
if € is not ended by a comma.
(storage enum x {e,} €', o) - (storage enum x ¢, €', 0)

enum(x, ...) € logtype(enum{e}, MD,)
(storage enum {e, } €', 0) - (storage x g, €', G)

Type declaration. The axiom for a type declaration has the form:
(typedef e, 0) - (g, 0)
Function declaration. The rule for a function declaration has the form:

7' € logtype(r f(t1 X4, ..., Tnh Xn), MD;), MDg(NC) = L

<T f('cl X1y «oor Tn Xn){S}, 0) - <€I O(MD < upd(MDOI nc, (f/ [Xll ey Xn]l S)»

Labeled statement. Besides regular labels, the statements can be labeled by
the labels case and default.

A statement labeled by a label L is executed either in a normal sequential
program run or when it catches the exception Exc(gotoStart(L)) raised by the
statement goto L:

(L: T, 0) - (T, 0)
(Exc(gotoStart(L)) L: T, ) - (T, 0)

A statement labeled by the label case is executed either in a normal sequen-
tial program run or when it catches the exception Exc(switchStart(c, 1)) raised
by the switch statement:
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(case e: T, 0) » (T, 0)

cast(val(e, MDy), type(e, MDy), ) = C
(Exc(switchStart(c, 1)) case e: T, 6) - (T, 0)

The statement labeled by the label default is executed either in a normal se-
quential program run or when it catches the exception Exc(defaultStart) raised
by the auxiliary construction switchStop:

(default: T, o) - (T, 0)
(Exc(defaultStart) default: T, o) —» (T, o)

The auxiliary construction switchStop(T) catches the exception
Exc(switchStart(c)), raised by a switch statement with the body T in the case
when none of case labels in T were matched with the control expression value,
and starts executing the body T raising the exception Exc(defaultStart) first.
Otherwise this instruction is ignored:

(Exc(switchStart(c)) switchStop(T) T', o) —
(Exc(defaultStart) T defaultStop T', o)

(switchStop(T), o) - (¢, ©)

The auxiliary construction defaultStop catches the exception
Exc(defaultStart) raised by switchStop(T) in the case when T does not contain
the label default. Otherwiese this instruction is ignored:

(Exc(defaultStart) defaultStop T, o) - (T, o)
(defaultStop, o) — (¢, o)

Compound statement. When defining semantics of a block, it is necessary
to take into consideration that the rules for a goto statement transfer the control
only forward. When meeting goto L, we raise the exception Exc(gotoStart(L))
and skip the next statements until we meet the statement labeled by the label L
which catches this exception.
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But how can we restore the passed program part if control is transferred
backward? The idea is the following. When transferring the control, we move
always forward but at the end of each block we check if the label L belongs to
this block. If yes, the goto L statement was met in the block body and the label is
situated earlier in the text. In this case we jump to the beginning of the block and
descend to the label L. Otherwise control is transferred to the covering block
which will perform the same check.

To handle blocks of labels, th e auxiliary construction gotoStop(T) is used,
where T is a sequence of block statements.

The axiom for the block has the form:

{({T}, 0) - (T gotoStop(T), o)

The auxiliary construction gotoStop(T) catches the exception
Exc(gotoStart(L)) raised by the statement goto L in the case when the label L is
situated in the sequence of statements T. Otherwise this construction is ignored:

L € labels(T)
(Exc(gotoStart(L)) gotoStop(T) T', o) —
(Exc(gotoStart(L)) T gotoStop(T) T', o)

{gotoStop(T), o) - (¢, 0)

Expression statement. Execution of an expression statement is reduced to
evaluation of the corresponding expression:

(&;, 0)~ (&, 0)
Null statement. Null statement performs no actions:
G:0) = (& 0)

Selection statements. In a normal sequential program run, the selection
statement execution is defined by the following rules:

(e, 0) - (Val(w), 0"
(if (e) S; else S,, 0) - (Val(w), a"
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(e, 0) =" (Val(v, 1), 0", cast(val(v), , int) # 0
(if () S; else S,, o) —» (S, 0"

(e, @) »" (Val(v, 1), 0'), cast(val(v), t, int) = 0
(if () Sy else S,, 6) - (S,, A"

(e, 0) > (Val(w), 0")
(if (e) S, 0) — (Val(w), a')

(e, 0) = (Val(v, 1), 0"), cast(val(v), 7, int) # 0
(if (e) S, 0) > (S, o)

(e, 0) - (Val(v, 1), 0"), cast(val(v), z, int) = 0
(if (e) S, 0) - (g, 0

In a normal sequential program run the statement switch (e) S evaluates the
value of the expression € and raises the exception Exc(switchStart(c)) which
could be caught by the statements from S labeled by the labels case and default
in accordance with the rules for labeled statements. The use of this exception
allows us not to search for the required branch in the switch statement and to
jump to its body directly:

(e, 0) =" (Val(w), 0"
(switch (e) S, o) - (Val(w), 0"

(e, @) > (Val(v, 1), 0"

(switch (e) S, o) —»
(Exc(switchStart((val(v), 1))) S switchStop(S) gotoStop(S) breakStop, ¢')

The auxiliary construction breakStop catches the exception
Exc(breakStart(c)) raised by the break statement:

(Exc(breakStart) breakStop T, o) - (T, o)

Iteration statements. In these rules we use the auxiliary construction
continueStop(e, S), which catches the exception Exc(continueStart) raised by
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the continue statement and, besides, checks the condition € when leaving the loop
body S:

(e, 0) - (Val(w), o")
{continueStop(e, T) T', 0) — (Val(w), o")

(e, 0y =" (Val(w), 0"
{Exc(continueStart) continueStop(e, T) T', o) — (Val(w), 0"

(e, 0) =" (Val(v, 1), 0", cast(val(v), t, int) = 0
{continueStop(e, T) T', o) - (T', &"

(e, 0) =" (Val(v, 1), 0", cast(val(v), 7, int) = 0
(Exc(continueStart) continueStop(e, T) T', 6) - (T', 0")

(e, 0) »" (Val(v, 1), 0", cast(val(v), 7, int) # 0
{continueStop(e, T) T', o) — (T gotoStop(T) continueStop(e, T) T', 0"

(e, 0) =" (Val(v, 1), 0", cast(val(v), t, int) # 0

{Exc(continueStart) continueStop(e, T) T', ) —»
(T gotoStop(T) continueStop(e, T) T', 0"

In a normal sequential program run, execution of the loop body statements is
reduced to execution of the construction continueStop:

(while (e) S, o) - (continueStop(e, S) breakStop, o)
(do S while (e), o) - (S gotoStop(S) continueStop(e, S) breakStop, o)

(for (ey; &; €3) S, 0) -
(ey; if (e,) break; S gotoStop(S) continueStop((es, €,), S) breakStop, o)

Jump statements. Jump statements raise exceptions of the form EXxc(...).

These exceptions are intercepted by another language construction by analogy
with the exception processing mechanism:

22



{goto L;, o) - (Exc(gotoStart(L)), o)
(break;, o) —» (Exc(breakStart, o)
{continue;, 6) - (Exc(continueStart, o)
{return;, a) - (Exc(returnStart), o)

(e, 0) " (val(v, 1), 0"
{return e;, o) —» (Exc(returnStart(v, 1)), ")

(e, 0) =" (Val(w), ")
(return g;, o) - (Val(w), ")

The beauty of this approach is that there is no need to search for a program
point to jump to when transferring control. Such a search is difficult to formalize.
It is much easier to ignore the next statements until control is in the required
point or in a program position where the required point could be easily found.

Declarator sequences. Declarator chains are divided into separated declara-
tions by the following rules:

7' € logtype(t, MDy)
(storage t ey, ..., €,;, O) > (storage ' e;; ...; storage ' e,;, 0)

7' € logtype(r, MDy)
(tey ..., &, O)>(t' ey ...; T €&y, O)

Statement sequences. Let S be a statement or an auxiliary construction, T be
a non-empty statement and an auxiliary construction sequence. The rule for a
statement sequence has the form:

S, 9=, 0)
(ST, 0)=>('T,0)

Exceptional values infiltration axioms. These axioms are applied every
time when no other axiom or auxiliary construction could be applied. This is not
a meta-condition which sorts the application of C-light operational semantics
axioms and inference rules in the whole, i. e. these axioms are only a convenient
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abbreviation for those axiom groups, the elements of which are defined by spe-
cialization of T, namely, by the definition of the first operator in the sequence T.
Because the number of C-light statements is finite, these groups define the finite
number of axioms:

(Exc(e) ET, o) - (Exc(e) T, @")
Mal(w) ET, o) » (Val(w) T, ¢")
(Val(v, ©) ET, o) » (Val(v, ©) T, ")

The program. The rule for the program Prgm(T) consisting of the declara-
tion sequence T with one dedicated function main has the form:

(T, o) =" (g, 0"), MDs(&main) = (params, S)
(Prgm(T), 6) - ({S} returnStop Cast(tmain), 0"

where Tmain is the type of the value returning by the function main. In our ap-
proach the arguments of the function main are considered as global variables, the
values of which are defined by the initial state O.

3. THE MIXED AXIOMATIC SEMANTICS MHSC OF C-KERNEL LANGUAGE

An environment E is a tuple (f, t, B, bid, lab), where f is the name of a cur-
rent function which returns a value of the type 1, B is its body, bid is a unique
identifier of the current block and lab is the label of a goto statement or the iden-
tifier of the function body block. In all other cases lab = w. We assume that the
function main is the current function for the whole program.

A specification SP = (SPgy,, SPiap) defines the information about function
preconditions and postconditions and about the invariants of labelled statements.

The function specification SPgyn is a pair (SPpre; SPpost) of maps SPpre and
SPpost called the specifications of the function pre- and postconditions, respec-
tively.

The specification of the function preconditions SPpe is a map from the names
of the function f to functions Ps of meta-variables. An assertion P{MD) is called a
precondition of the function f.
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The specification of the function postconditions SPpest is a map from the
names of the function f to functions Q¢ of meta-variables. An assertion Q{(MD) is
called a postcondition of the function f.

The specification of labels is a map from labels to assertions. An assertion
SP.b(L) is called an invariant of the label L.

A formula ¥ of the assertion language can contain the specification of func-
tion preconditions SPpre and the specification of function postconditions SPpst.

Let SPs,, E W denote that W is true in any state, when semantics of the maps
SPpre and SPpost is fixed and SPpre = fSt(SPryn), SPpost = SNA(SPun).

Let P, Q, and R denote assertions, A and S stand for statement sequences, the
environment E = (f, t, B, cur, w), and a program block identifier is Prgm.

We define the mixed axiomatic semantics MHSC (Mixed Hoare System for
C) of C-kernel language as a Hoare triples calculus [2] with an environment. We

write E, SP Fwnsc {P} S {Q} if the triple {P} S {Q} is deducible in the MHSC
system.

To get the unambiguity of inference, we use forward tracing [1, 3, 6]. We de-
duce the verification conditions by eliminating left statements.

The deducibility of the program Prgm(T) consisting of a declaration se-

quence T is denoted by E Fwnsc {P} Prgm(T) {Q}.

Let symbols ' and " near the variable identifier stand for the introduction of a
new variable.

Function call. The rule for a function denoted by an expression €y in the case
when it returns a value has the form:

E, SP I {3Val' a A (P'(x; « cast(val(e;, MD"), type(ey), t1), ...,
X, « cast(val(e,, MD"), type(ey), 1)) =
Q'(xy « cast(val(e;, MD"), type(es), 1), -/ (3.1)
Xn < cast(val(e,, MD'"), type(en), t))} A; {Q}
E, SP = {P} e = eo(ey, --., €n); A; {Q}

where SPg, is the specification of the function €g;

P' = fst(SPgun(val(ey, MD")))(MD', Val') is the precondition of the function €g;
Q' = snd(SPsn(val(ey, MD")))(MD', Val') is the postcondition of the function
€o;

X1, ---, Xp are formal parameters of the function €y of the types 14, ..., T, respec-
tively;
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a = IMD' P(MD « MD")(Val « Val') A MD = upd(MD', addr(val(e, MD"),
MD"), cast(fst(Val"), snd(Val'), type(e))) if e is a shared variable;
a = 3e' P(e « e")(Val « Val') A e = cast(fst(Val'), snd(Val'), type(e)) if e
is a non-shared variable;
a = 3v' P(v « v')(Val « Val') A v = upd(V', cast(val(i, MD), type(i), int),
cast(fst(Val), snd(Val), type(v))) if e = V[i] is a non-shared array member;
a = 3s' P(s « s")(Val « Val') A s = upd(s', t, cast(fst(Val), snd(Val),
type(s))) if e = s.t is a non-shared structure field;
MD', €', V', s' are fresh variables of corresponding types.

The inference rule for a function denoted by an expression € in the case
when it does not return a value has the form:

E, SP I {P A (P'(x; « cast(val(e;, MD), type(ey), t1), ...,
X, « cast(val(e,, MD), type(e), tw)) =
Q'(x; « cast(val(e;, MD), type(ey), t1), -\ (3.2)
Xn < cast(val(e,, MD), type(en), 1))} A {Q}

E, SP {P} eO(ell ey en); Al {Q}

Assignment operator. Assume that an expression €y does not contain func-
tion calls and cast operators.

E, SP I {IMD' P(MD « MD') A MD = upd(MD', addr(val(e, MD"),
MD"), cast(val(eo, MD"), type(eo), type(e)))} A; {Q} (3.3)

E, SP - {P} e = eo; A; {Q}

where € is a shared variable.
In the case when e is a non-shared variable, the rule has the form:

E,SP I {3e'P(e <€) A
e = cast(val(eq(e < '), MD), type(eo), type(e))} A; {Q} (3.4

E, SP = {P} e =eo; A; {Q}

If e = V[i] is a non-shared array member, then
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E, SP F {3aVv' P(v « V') A v = upd(V', val(i, MD),
cast(val(eo(v < V'), MD), type(eo), type(v[i])))} A; {Q} 3.5)

E, SP = {P} v[i] = eo; A; {Q}
If e = s.t is a non-shared structure field, then

E, SP I {3s' P(s « s") A s = upd(s, t, cast(val(ey(s < s'), MD),
type(eo), type(s.t)))} A; {Q} (3.6)

E, SP I {P} s.t = eg; A; {Q}

Variable declarations. The inference rule for the declaration of a shared
variable without an initializer has the form:

E, SP  {aMD' anc 3t 3V IMD" P(MD « MD') A
t = logtype(tp(e), MD") A MD'(nc) = w A
(MD", V) = init(z, storage(e), MD")) A (3.7)
MD = upd(MD", nc, V)} A {Q}

E, SP - {P} e; A; {Q}

For a non-shared variable e, the rule has the form:

E, SP I {3e' P(e « €') A e = defaultValue(r, storage)} A {Q}

(3.8)
E, SP - {P} storage 1 e; A; {Q}
If a non-shared array V is defined in a declaration, then
E,SPF {av' P(v V) Av=(dV,..dV), ..(@V, .., dV)} A{Q} (3.9)

E, SP I {P} storage t[ny, ..., n] v; A; {Q}

where dV = defaultValue(r, storage).
In the case when a non-shared structure S is defined, the rule has the form:

E, SP I {3s' P(s « s") A s = (defaultValue(z;, storage), ...,
defaultValue(r,, storage))} A {Q} (3.10)

E, SP - {P} storage struct s {t; t; ...; ©, to;}; A; {Q}
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The inference rule for a shared variable with an initializer has the form:

E, SP I {aMD' anc 3t 3V 3IMD" P(MD « MD') A
t = logtype(tp(e), MD") A MD'(nc) = w A
(MD", V) = init(t, ey, MD")) A (3.11)
MD = upd(MD", nc, V)} A {Q}

E, SP = {P} e = eo; A; {Q}

For a non-shared variable e, the rule has the form:

E,SP I {3e' P(e « €') A e = gy(e « €')} A{Q}
E, SP - {P} storage t e = ey; A; {Q}

(3.12)

If a non-shared array V is defined in a declaration, then

E,SP {3V P(v « V') A
v =((Vo.ovVe V), oy Voona(V < V), .oy
(Voktnk1 oV < V'), ooy Vikeonka(V < V) A {Q} (3.13)

E, SP - {P} storage t[ny, ..., ;] v = {{Vo..0s +++s Vo..0n1-1}/
wiep AVik-1...nk-1 07 *=+s Vik-1..nk-1 3 37 A; {Q}

In the case when a non-shared structure S is defined, the rule has the form:

E,SPF {3s'P(s « s") As=(vi(s « S"), ..., va(s « S"))} A{Q}

E, SP - {P} storage struct s {11 t; = vy; ...; To th = vV} }; (.14)
A; {Q}

Type declaration.

E, SP {31 P A © = logtype(tp(e), MD)} A; {Q} (3.15)

E, SP I {P} typedef e; A; {Q}
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Function declaration.

E, SP I {3MD' 3t' anc P(MD « MD') A
' = logtype(r f(t1 X4, ..., Th Xn), MD") A

MD'(nC) =wAMD-= Upd(MD'I nc, (f, (Xll .. Xn), S))} A, {Q} (3.16)

E, SP I {P} t f(t1 X1, +.ey 0 Xn) {S} A; {Q}

Labelled statement.

(f, , B, cur, L), SP I {P} A; {Q}
(f, 7, B, cur, w), SP - {SP.n(L1)} S; A; {Q} L=L; (3.17)
(f, 7, B, cur, L), SP F {P} {SPin(L1)} L1: S; A; {Q}
SPin E P = SPg(L) Es=
(f, <, B, cur, ), SP F {SPus(L)} S; A; {Q} Bl (18)
(f, 7, B, cur, Es), SP I {P} {SPu(L)} L: S; A; {Q}

Compound statement.

(f, =, B, id, Es), SP I {P} S; blockEnd(cur); A; {Q}
(fl T, BI cur, ES)I SP l_ {P} {S}id AI {Q}

(3.19)

Let Xj, ..., Xn be shared variables and yj, ..., yx be non-shared variables de-
clared in the block id.

(f, t, B, cur, Es), SP - {aMD' 3y,' ... 3y,
P(MD < MD')(y1 < y1') ... (Vi < Yi) A
MD = upd(MD', {mem(Xy), ..., mem(x,)}, ®) A id = Es (3.20)
Yi=0A ...V = 0} A {Q}

(f, <, B, id, Es), SP I~ {P} blockEnd(cur); A; {Q}
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SPwn F (3MD' 3y;' ... 3y’ P(MD « MD')(y1 < Y1) «o. (Y < ') A
MD = upd(MD', {mem(x,), ..., mem(x,)}, ®) A

3.21
Yi= WA ... Vi = ®) = SPuos(f) (3:21)

(f, =, B, id(f), id(f)), SP - {P} blockEnd(cur); A; {Q}

Null statement.

E, SP - {P} A; {Q}
E, SP F{P}; A {Q}
SPin FP=Q
(f, t, B, cur, w), SP I {P}; {Q}

(3.22)

(3.23)

The if statement.
E, SP I {P A logval(e)} S;; A; {Q}
E, SP I {P A =logval(e)} S;; A; {Q} (3.24)
E, SP I {P} if (e) S; else Sj; A; {Q}

The while statement.

SPun E P = INV
E, SP - {INV A logval(e)} S; {INV}

E, SP - {INV A =logval(e)} A {Q} (3.25)

E, SP I {P} {INV} while (e) S; A; {Q}
Jump statements.
(f, 7, B, cur, L), SP = {P} A; {Q}
(f, t, B, cur, ), SP - {P} goto L; A; {Q}

(f, 7, B, cur, L), SP = {P} A; {Q}
(f, v, B, cur, L), SP = {P}T; A; {Q}

(3.26)

(3.27)

where T is not a labelled statement and is not blockEnd(cur).
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(f, 7, B, cur, id(f)), SP - {P} A {Q}
(f, 7, B, cur, w), SP I {P} return; A {Q} (3.28)

(f, =, B, cur, id(f)), SP - {P} A {Q}
(f, 7, B, cur, id(f)), SP - {P} T; A{Q} (3.29)

(f, =, B, cur, id(f)), SP F {3val' P(Val « Val') A
Val = (cast(val(e, MD), type(e), 0, D} A{Q} 5,
(f, t, B, cur, o), SP - {P} return e; A {Q}

where T is not a labelled statement and is not blockEnd(...).

Consequence rule.

SPun E P=>R E, SP - {R} S {T} SPin FT=Q
E, SP - {P} S{Q}

(3.31)

Statement sequence. Let T and T' be sequences of non-empty statements and
auxiliary constructions.

E, SP - {P} T{R} E, SP - {R} T' {Q}
E,SPH{P}TT {Q}

(3.32)

The program. The rule for the program Prgm(T) consisting of a declaration
sequence T has the form:
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(f, t, Sr, bide, @), ((SPpre; SPpost), SPab)
{SPpre(F)(Xy, ..., Xn)(MD, Val)} Sf; blockEnd(bidr)
{SPpost(f)(X4, --., Xn)(MD, Val)}
through all function names f defined in T except for main, (3.33)
(main, Tmain, Smains Didmain, ®), SP +
{P} T Sain; blockEnd(bidmain) {Q}

E, SP - {P} Prgm(T) {Q}

where Xy, ..., X, are formal parameters of the function f.

4. CONSISTENCY OF MIXED AXIOMATIC SEMANTICS

One of the main properties of mixed axiomatic semantics is its consistency as
an inference system with respect to mixed operational semantics i. e. we can get
valid formulae from valid formulae during inference.

Let us define the notion of Hoare triple truth. For the program prg, the truth
of the Hoare triple {P} prg {Q} is defined as follows: {P} prg {Q} is true in the

sense of partial correctness (designation E {P} prg {Q}) if

M [[prgl1dlIPID) < |IQIl . e. the statement Q is true in all final states of all possi-
ble program prg executions started in those states, where P is true).

To prove the consistency of the inference system MHSC, we should general-
ize the notion of partial correctness semantics for program fragments which differ
from the whole program. In this case it is necessary to take into consideration the
global context of program fragment execution that connects this fragment with
the whole program. Information about the program context is defined by the en-
vironment E and program specification SP.

Semantics of partial correctness with respect to the specification SP is defined

for an arbitrary C-light construction S as a map M ¢p[[S]] from States to 25%*:

M p[[S])(0) = {0 | (S gotoStop(S), 6) =" (€, o)} U
{o'(Val « (v, 1)) | (S gotoStop(S), o) - (Val(v, 1), ")} U
{0" | (gotoStart(L) S gotoStop(S), 0"y - (g, 0"
for a certain label L contained in S and a state " such that 0" = SPjap}
This means that the semantics considers all possible executions of the pro-
gram construction S such that this construction finishes in a normal way under
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the condition that the construction execution starts either in the state O or in the
state when a jump to this construction by the statement goto L occurs. In the last
case the state must satisfy the invariant SPj5,(L) of the label L. Addition of the
construction gotoStop(S) allows us to take into account the loops made with the
help of goto statement.

To prove that the specification SPjap(L) is really a label invariant, we need
one more sort of semantics. The semantics of exit in the label L with respect to
the specification SP is defined for an arbitrary C-light construction S as a map
M s [[S]] from States to 255

M H[S]1(0) = {a" | (S gotoStop(S), o) - (gotoStart(L), ¢")
for a certain label L} U
{0" | (gotoStart(L") S gotoStop(S), 0"y »" (gotoStart(L), c')
for a certain label L' and the state 0" such that L' is contained in S

and 0" E SP|ab}

This means that the semantics considers all possible executions of the pro-
gram construction S in which this construction finishes with a jump to the label L
under the condition that construction execution starts either in the state O or in the
state when a jump to this construction by the statement goto L occurs. In the last
case the state must satisfy the invariant SP;p(L) of the label L. Addition of the
construction gotoStop(S) allows us to take into account the loops made with the
help of goto statements.

Also we define

M ISP = U M [S] (o)

oelPll

and

MEISI(IPI) = U ML[S](0)

aellpl

where P is a formula.
Let us consider an environment E of the form (f, 1;, {S}, bid, lab). Let
Dom(E) stand for the formula
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retType(type(&f)) = 1 A snd(MD(&f)) = Sif f # main
true otherwise

The Hoare triple {P} S {Q} is true in the sense of partial correctness with re-

spect to the environment E and the specification SP (the designation is E, SP F

{P}S{Qhif

e FE P = Dom(E);
o MTSINIPI) < lIQll

Lemma 1 (about nesting blocks). For any state 0 and any statement se-
quence T, we have

1. M[[{{T}}11(0) = M s[[{T}]1(0).
2. M[[{T}HI(0) = M sp[[T]](0) if T does not contain declarations at
the external level.

The proof is given in [10].

Lemma 2 (about a normalized expression). For any normalized expression
€ and for any state 0, we have the following:

(e, 0) > (Val(val(e, MDy), type(e)), o)
The proof is given in [10].

Theorem 1. The inference system MHSC is consistent for the partial correct-

ness property, i. e. E Fuusc {P} prg {Q} implies E E {P} prg {Q}.

The proof.
Let us introduce several auxiliary notions. The size size(S) of the program
fragment S is defined as follows

e size(Prgm(S)) = 2 * size(S) + 2;
e size(D) = size(S) + 1 if D is a function declaration with the body
S;
o size(L: S) = size(S) + 1;
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size({S}) = size(S) + 2;

size(if (e) S else S") = max(size(S), size(S")) + 1;
size(while (e) S) = size(S) + 1,

size(S S") = size(S) + size(S");

size(S) = 2 otherwise.

Let us expand the function Size on Hoare triples and assertion language
statements:

e size(®) = 0if @ is an assertion language formula;
o size({P} S {Q}) = size(S) otherwise.

Let us define the partial order relation < on Hoare triples and assertion lan-
guage statements as follows: K < m if

size(k) < size(m).

Let m and Kk stand for a Hoare triple and an assertion language formula,
A({P} S {Q}) stand for the statement that if the Hoare triple or the formula {P}
S {Q} is deducible in MSHC, then the following properties hold:

1. E, SPE {P}S{Q}
2. Msp[[SIIUIPI) < [ISPab(L)|| for each label contained in the body St of
the function named f.

The truth of the formula Vm A(m) implies the truth of the theorem. Let us

notice that the premises of all MHSC rules are less with respect to the relation <
than its conclusions except for the consequence rule. That’s why the proof of this

formula is divided into three stages using induction on <. At the first stage we
prove that the consequence rule holds the truth, i. e. the truth of premises implies
the truth of the corollary. At the second stage the induction base is proved. At the
third stage the inductive transition is proved.

Consequence rule.

Let us prove that if 0 = P and (S, 0) =" (€, 0" then &' = Q.
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According to the premise SPg,, E P = R of the rule (3.31) 6 E R.
According to the premise E, SP - {R} S {T} of the rules (3.31) ¢' = T.
According to the premise SPg,y E T = Q of the rule (3.31) 0" E Q.

Induction base.

The induction base has the form V@ A(Q), where @ is an assertion language
formula. Its truth follows from the fact that the set of the derivable MHSC formu-
lae is equal to the set of the true assertion language formulae by the definition of
MHSC.

Inductive transition.

The inductive transition has the form Vm (Vk k < m = A(k)) = A(m).
The proof of the inductive transition is reduced to investigation of cases of differ-
ent program fragments.

The assignment statement.

Let € be a shared variable, S have the form e = €'; A and the Hoare triple m
= {P} S {Q} be derivable.

Let P' = IMD' P(MD « MD") A MD = upd(MD', addr(val(e, MD"), MD'"),
cast(val(eq, MD"), type(eyp), type(e))). According to the rule (3.3) the triple k
= {P'} A {Q} is also derivable.

Let 0 = P and (ey, 0) =" (Val(V', "), 0'), (e, 0"y =" (Val(v", t"), "), v =
cast(v', 7', t"), ¢ = addr(v").

Then, according to the rule for an assignment statement, (€ = €, 0) —
(Val(v, "), 6"(MD « upd(MD, ¢, v))). Then ¢" E P".

As k < m, the triple K is true by the inductive hypothesis. It means that if (A,
0"y »" (g, 0"y then 0" E Q.

The case when € is a non-shared variable is considered similarly.

Empty statement.
Let A be a non-empty statement sequence and the Hoare triple m =

{P} ; A {Q} be derivable.
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According to the rule (3.22), the triple k = {P} A {Q} is also derivable.

As k < m, the triple K is true by the inductive hypothesis. It means that if
o FE Pand(A, 0) - (g, 0", thena' E Q.

According to the rule for an empty statement, {; , 0) — (€, 0), then (; A, O)
—" (A, 0). Therefore, (; A, ) " (€, 0"y and m is true.

Let the triple m = {P} ; {Q} be derivable.

According to the rule (3.23), the formula P = Q is also derivable.

As (P = Q) < m the formula P = Q is true by the inductive hypothesis.
Therefore, if 0 F P, then 0 E Q and, according to the rule for an empty state-
ment, (5, O) = (€, O).

The if statement.

Let the Hoare triple m = {P} if (€) S; else S,; A {Q} be derivable. Accord-
ing to the rule (3.24), the Hoare triples k; = {P A logval(e)} S;; A {Q} and k;
= {P A =logval(e)} S,; A {Q} are also derivable.

As k; < m and k; < m, the triples k; and k are true by the inductive hy-
pothesis.

Leto F P A logval(e), theno E P.

Let (e, 0) =" (Val(v, 1), 0"), logval(e) be true and (S;; A, 0" - (€, G").
Then 0" FE Q.

According to the rule for if statement, (if (€) S; else S,, ) - (S, 0"). Then
(if (€) S else Sy; A, 6) = (Sy; A, 0"), therefore (if () S; else Sy; A, 0) = (€,
0”>.

So m is true. The case of else-branch is considered similarly.

Statement sequence.

Let the triple m = {P} T T' {Q} be derivable. According to the rule (3.32),
the triples ky = {P} T {R} and k, = {R} T' {Q} are also derivable. As k; < m
and k; < m, therefore k; and k; are true by the inductive hypothesis.

Let us prove that if 0 = P and (S, 0) " (g, @), then 0" E Q.
With respect to the rules of operational semantics, the proof of this statement

is equivalent to the proof of the following statement: 0; = P and

37



(Ei S, o) > (E', o)
(E'S', o'y =" (E", oi")
Ei" otoStop(S S' , OIH either <E| +1 ) gOtOStOp(S S|), Oi + 1>,
&9 P(S 5) o) = { either (Ei + 1, Gi + 1)
where

e 1<i<k;

e the constructions E;, E' and E" have the form €, gotoStart(L), returnStart
or returnStart(e);

e if2 < i <k, then E; = gotoStart(L) for a certain L € labels(S S");

e if Ex,; # gotoStart(L) for any L € labels(S S'"), then 0k + 1 E Q.

From the truth of the triple k; we have that if /' = €, then 0; E R.

According to the rule for gotoStop, if E; + ;' = €, then E" = € and o
Ok + 1.

IfE,' # &, then the truth of 0" FE Q follows from the truth of the triple k».

IfE' = €, then 6" E R and from the truth of the triple k; we have 0" E Q
again.

Then ok 4+ 1 E Q.

The property M sp"[[STIUIPI) € lISPian(L)]| is proved similarly.

Labeled statement.

Let S have the form L: T; A and the Hoare triple m = {SP;;,(L)} S {Q} be
derivable. According to the rule (3.18) the triple kK = {SPiap(L)} T; A {Q} and
the formula P = SPpu(L) are also derivable. As k < m and (P = SP;;5(L)) < m,
the triple k and the formula P = SPj;p(L) are true by the inductive hypothesis.

Let 0 = P, then 0 = SPy(L). Let (T; A, 0) = (€, 0'). As K is true, then 0"
F Q.
According to the rule for the labeled statement: {L: T, o) — (T, ). According

to the rule for statement sequence: {L: T; A, o) = (T; A, O).
So, (S, @) - (g, 0"). It means that m is true.
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Jump statements.

Let S have the form goto L; A and the Hoare triple m = {P} S {Q} be deriv-
able. According to the rule for goto statement, the triple k = {P} A {Q} is also
derivable. As k < m, the triple K is true by the inductive hypothesis.

Let 0 = Pand (A, 0) " (g, 0"). As K is true, then 0" = Q.

According to the rule for goto statement: (goto L;, 0) -
(Exc(gotoStart(L)), o). According to the rule for statement sequence: {goto L;
A, 0) - (Exc(gotoStart(L)); A, o).

If there is a labeled statement L: T inside the statement sequence A, then
(Exc(gotoStart(L)); A, o) =" (Exc(gotoStart(L)); L: T, o) - (T, 0) =" (g, 0').
So (goto L; A, o) = (g, 0').

If there is no labeled statement L: T inside the statement sequence A, then
(Exc(gotoStart(L)); A, o) — (Exc(gotoStart(L)) gotoStop(T) T', o) — ¢
Exc(gotoStart(L)) T gotoStop(T) T', o) =" (g, 0').

Iteration statements.

Let S have the form while(e) T; A and the Hoare triple m = {P} S {Q} be
derivable. Let a = logval(e).

As we can apply only the rule (3.25) to this triple, the triple k; = {INV A a}
T; {INV} and the triple k, = {INV A =a} A; {Q} are also derivable.

As k; < m and k; < m, the triples k; and k; are true by the inductive hy-
pothesis.

It is easy to prove that

M [[while (a) A]] = UZ, M[while (a) A)]],
where

e while (a) A)° = while(1), i. e. we have infinite iteration;
o while (a) A)**! = if (a) {A; while(a) A¥)}.

Suppose that for a certain proposition P the following property holds:
M s[[TIIAIP A all) < |IP]I

We will prove by induction on i = 0 that
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M se[[(while (a) T)TI(IPI) < IIP A —all.

For i = 0 it is obvious. Suppose that this relation holds for a certain i > 0.
Then

M sel[(while (a) T)' * "T1IPI) = M s[[if (a) {T; (while (a) T)}I(IPI) =
M sp[[{T; (while (@) T)3I(IP A all) U Msp[[;11(IP A =all) =

M sp[[(while (a) T)TI(MILTIIAIP A al)) U [IP A =all

M sp[[(while (a) TYTICIPI) U [IP A =all < [IP A =all.

Thus
Uszo Msp[[(while (@) T)TICIPI) < [IP A =all.
Then
M sp[[while (a) TII(IPID < [IP A —all.

Making a substitution of P by INV, we will get the truth of the triple {INV}
while (a) T {INV A =a} from the truth of the triple k;.

But the triple k; is also true. Applying the rule for a statement sequence, we
get the truth of the triple m.

The satisfiability of the property M sp[[S1](|IPIl) € [ISPan(L) || for the triple
m follows from its satisfiability for the triple K, as S does not contain goto
statement at the top level.

Program.

Let S have the form Prgm(T) and the Hoare triple m = {P} S {Q} be deriv-
able. As only the rule for a program is applicable to this triple, then the triples k¢
of the form

{SPpre(f)} Sr {SPpost(f)

where f runs through all function names defined in T except for the main with
bodies St and returning values types 7, respectively, and the triple K of the form

{P} T {Smain} {Q}
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are also derivable. As ks < m and k < m, the triples k¢ and K are true by the in-
ductive hypothesis.

Let us prove that if 0 = P and (S, 0) =" (g, 0'), then 0' E Q.
According to the rule for the program we have:

(T, 0) > (g, o1)
<{Smain}l 01> - <€I 0'>-

From the truth of the triple k and the consequence rule, we get ' E Q.

SPpre and SPpest are pre- and postconditions of f because the triples k¢ are
true. The way to prove is induction on the depth of mutual-recursive function
calls defined in the program Prgm(T).

5. CONCLUSION

This work represents the mixed axiomatic semantics of C-kernel. This se-
mantics is an essential part of the two-level C-light program verification method.
It has the unambiguity of inference and special variants of inference rules for the
same program statement which are applied depending on the variable type and
static information. This approach allows us to simplify verification conditions
significantly. The theorem which provides consistency of the mixed axiomatic
semantics has been proved.
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