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At first sight the program verification is trustworthy and convenient,
which is guaranteed by its well-developed formal basis. However, this method
works smoothly in an ideal case only: a program and its annotations are cor-
rect, a domain theory is complete and a theorem prover is powerful enough.
In case any of these prerequisites do not hold, the verification becomes much
more complicated. Apart from possible defects in the foundations (which are
not discussed here), one of the reasons is that verification, as a process, still
relies on informal methods or implementation tricks. Error tracing is one of
them. In this paper we would like to address this issue by giving a review of
error localization and explanation methods developed in the C-light project.
Their application is illustrated by examples.
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Íà ïåðâûé âçãëÿä âåðè�èêàöèÿ ïðîãðàìì � ýòî íàäåæíûé ìåòîä,÷òî ãàðàíòèðóåòñÿ åå ïðîðàáîòàííîé �îðìàëüíîé áàçîé. Îäíàêî îíà ðà-áîòàåò áåç ïðîáëåì òîëüêî â èäåàëüíîì ñëó÷àå, êîãäà ïðîãðàììà è ååñïåöè�èêàöèè êîððåêòíû, òåîðèÿ ïðîáëåìíîé îáëàñòè ïîëíà, è äîêàçà-òåëü òåîðåì äîñòàòî÷íî ìîùíûé. Ïðè íàðóøåíèè ëþáîãî èç ýòèõ òðå-áîâàíèé âåðè�èêàöèÿ çíà÷èòåëüíî óñëîæíÿåòñÿ. Ïîìèìî âîçìîæíûõïðîáëåì â �îðìàëüíûõ îñíîâàõ (íå ðàññìàòðèâàþòñÿ â äàííîé ðàáîòå)ïðè÷èíîé ìîæåò áûòü òî, ÷òî âåðè�èêàöèÿ, êàê ïðîöåññ, ïî ïðåæíåìóèñïîëüçóåò íå�îðìàëüíûå èëè ïîëó�îðìàëüíûå ìåòîäû. Ê íèì îòíî-ñèòñÿ ëîêàëèçàöèÿ îøèáîê. Äàííàÿ ðàáîòà ÿâëÿåòñÿ îáçîðîì ìåòîäîâëîêàëèçàöèè/îáúÿñíåíèÿ îøèáîê, ðàçðàáîòàííûõ â ïðîåêòå C-light äëÿðåøåíèÿ ýòîé ïðîáëåìû. Èõ ïðèìåíåíèå ïîêàçàíî íà ïðèìåðàõ.
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INTRODUCTION

In the field of verification system design we can distinguish two main-
streams. The first one is represented by systems oriented to higher per-
formance or to the search of possibly wider classes of errors1. However,
their efficiency usually results from application of less strict methods and
algorithms. As an example we can mention the ESC/Java tool which uses
incomplete or in some cases even unsound methods.

The opposite camp is represented by academical research (oriented to
verification teaching) or by the systems suitable for narrower classes of pro-
gram properties or program errors. The use of more strict and reliable ap-
proaches is typical for such systems. As a counterexample to the mentioned
ESC/Java we can note that the proof system Isabelle/HOL was used to
develop complete and sound semantics for the restricted dialects Java Card
and Javalight.

The C program verification project is being developed in the Theoretical
programming laboratory of IIS. It possesses two key features. First, we use a
multi-level approach in order to overcome numerous obstacles of C program
verification. Of course, this feature does not make our project unique. In
the corresponding Section we will mention some projects which share the
same ideology. However, the second feature consists in formal justification of
methods we have chosen. The soundness of our formalisms and algorithms
favorably distinguish our project from those which often prefer efficiency to
correctness.

While the principal stages of our approach are well developed and jus-
tified, still there are less examined parts of the verification process. Among
them we can mention the interpretation of verification results and error lo-
calization. The poor coverage of these issues in literature reveals that they
are inherent in other works too. This paper is a survey of methods and
results we developed and obtained in this field recently.

The rest of the paper requires basic knowledge of our approach. It can be
described by two schemes. First, our input language, C-light, which is a wide
subset of the standard C [8], possesses structured operational semantics. Fig.
1 demonstrates its difference from the classical Plotkin’s approach. Indeed,
we do not map the variable names directly onto their values. Instead, several
consequent mappings are used. We call these mappings meta-variables since
they play the role of variables in Hoare’s calculus. So, when the control flow

1The notion of ”industrial-strength verification”is quite suitable here.
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Fig. 1. The memory of the C-light abstract machine

reaches the declaration of the static variable x, the meta-variable MeM
allocates a new address cx for the variable x. The meta-variable MD assigns
the default zero to this new object and the meta-variable Γ sets its type to
int.

At the first stage we translate the annotated2 C-light program into an
equivalent C-kernel program. The C-kernel language, which is a restricted
core of C-light, possesses a sound axiomatic semantics. At the second stage
the verification condition generator (VCG) produces a set of verification
conditions (VC) which are interpreted in the corresponding domain theory.
Finally, the theorem prover Simplify is used to prove (or disprove) these
lemmas. All stages are shown in Fig 2.

These stages are sufficient if the verification is successful (i.e. all VCs are
true). Otherwise, we need to interpret the wrong VCs and find the corre-
sponding errors in the program. To succeed in these tasks we adopted an idea
which was pioneered in [3]. The idea is to enrich the axiomatic semantics for
C-kernel by special labels. These structural labels establish the necessary
connection between VC sub-formulas and program locations. They can be

2We use ACSL [1] as our specification language.

6



Fig. 2. The C-light verification project: simplified view

extracted from VCs, normalized and automatically translated into expla-
nations written in a natural language. A more recent study addresses the
attempt to promote those labels into the theorem prover Simplify, which is
not originally designed to support them.

The review of these studies and application of corresponding methods
form the rest of the paper (Sections 2 and 3). A survey of related works is
given in the Conclusion.

This research is partially supported by the grant 11-01-00028-a from
RFBR.

1. EXTENDING HOARE LOGIC BY LABELS

In practice users are often confronted with failed VCs but receive no ad-
ditional information about the causes of the failure. They must thus analyze
the VCs, interpret their constituent parts, and refer to the corresponding
source code locations. Most verification systems based on the Hoare logic
offer some basic tracing support by emitting the current line number when-
ever a VC is constructed. However, this does not provide any information
as to which other parts of the program have contributed to the VC, how it
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has been constructed, or what is its purpose, and is therefore insufficient as
a basis for informative explanations or precise error localization.

The first part of this Section is a review of the labeling and explana-
tory techniques developed in our research. Their detailed description can
be found in [11, 13]. The second subsection represents a more recent result,
when we tried to preserve the labels during the proof stage. As we will see
in Section 3, combination of all these methods simplifies significantly the
analysis of VCs and error localization.

Using the idea from [3], we will extend the Hoare rules by “semantic
mark-up” so that the calculus itself builds up explanations of the VCs.
This mark-up takes the form of structured labels that are attached to the
formulas in the Hoare rules. The labels are maintained through different
processing steps and are then extracted from the final VCs and rendered as
natural language explanations.

1.1. Concepts and labels.

Here we focus on error localization and VC understanding. While the
error tracing idea is obvious (file names, line numbers and, ideally, source
columns), the explanation of a VC requires understanding of the roles it can
play. The first approximation appears if we recall that, after simplification,
VCs usually look like Horn clauses, i.e. H1 ∧ . . . ∧ Hn ⇒ C. Here, the
unique conclusion C of the VC can be considered as its purpose. However,
for a meaningful explanation of the VC structure, we need a more detailed
characterization of the sub-formulas.

Concepts. The basic information for explanation generation is a set of
underlying concepts, which depends on the particular aspect of the VCs to
be explained.

Hypotheses consist of assertions and control flow predicates. Assertions
include pre- and post-conditions (labels asm pre and asm post), function pre-
and post-conditions (asm fpre and asm fpost), and loop invariants. Since a
loop invariant serves as a hypothesis in two different positions, we distin-
guish asm inv and ass inv exit. Control flow predicates reflect the program
control flow. For both the if statement and while loop, the controlling
expressions occurring in a program are required in both their original and
negated forms, so that we get four different concepts: then, else, while t, and
while f.

Conclusions capture the primary purpose of a VC, which includes ensur-
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ing that different types of assertions hold at given locations. As in the case
of hypotheses, invariants are used in two different forms, the entry form (or
base case) ens inv and the step form ens inv iter.

Qualifiers further characterize hypotheses and conclusions by record-
ing how a sub-formula was produced. Different substitution concepts reflect
substitutions of the underlying Hoare calculus. The assignment concept sub
captures the origin and the effect of assignments and array updates on the
form of the resulting VCs.

Contributors capture the secondary purpose of a VC; this arises when a
recursive call of VCG (applied to a nested program structure) produces VCs
that are conceptually connected to the purpose of the larger structure. For
example, all VCs emerging from the premise {I ∧ e} S {I} of the classical
while-rule contribute to the proof of preservation of the invariant I over the
loop body S independent of their primary purpose.

Note. In our project, we have chosen ACSL as the specification lan-
guage. That is why, comparing with [3], we use the words “assumes” and
“ensures” in the concepts instead of “asserts” and “establishes”.

Labels. We will use the notation from [3] to derive labeled terms ⌈t⌉l ,
where each term t can be marked with a label l. Labels will have the form
c(o, n). Here the concept c describes the role the labeled term plays and thus
determines how it is rendered. The location o records where it originates; it
refers either to an individual line number or to a range. The optional list of
labels n nested inside contains further qualifying information which applies
either directly to the top-level term, or has been extracted from sub-terms
during normalization and extraction.

Note. This notion of a label can be confusing when a usual C label
arises. It was not a problem in [3], where a language without labels was
examined. We hope that the reader can distinguish between these semantic
labelings and program labels depending on the context.

1.2. Extended Hoare logic

A typical Hoare triple looks like Env  {P} S {Q}, where P and Q are
(labeled) pre- and postcondition, respectively, S is a program, and environ-

ment Env is a triple 〈cf, nl, IAx〉. Here, cf is the name of current function,
a nonnegative integer nl corresponds to a current nesting level and a set
of Hoare triples IAx denotes the inductive hypotheses. We will use the
superscripts Envi to access the environment components.
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When the deductive verification is studied, an interesting question arises.
Most Hoare systems presented in papers do not contain any rule for a pro-
gram as a whole (which is called a compilation unit in C). In rare cases,
simple programs à la Pascal are examined. The reason is obvious: if we do
not model an operating system, it is not clear what should be a Hoare triple
for the entire program. In fact, such rules are hidden in VCGs implementing
the corresponding Hoare systems.

However, in the context of VCs explanation such a semi-formal rule
deserves our attention. Let F denote a function definition. Let D stand for
an arbitrary external nonfunctional declaration. A C-kernel program is a
sequence of such Fi and Dj accompanied by the function main:

P(D1, ..., Dn, F1, ..., Fm, main) .

We assume that subscripts of the declarationsDi correspond to their relative
positions within the program. Let Hyp stand for the following set:

{

{pre(Fi)} name(Fi)(vi) {post(Fi)}
∣

∣

∣
i = 1, ...,m

}

,

where vi is the parameter list of Fi. Then the starting rule looks like

(name(F1), 1, Hyp)  {⌈pre(F1)
⌉asm pre} body(F1) {⌈post(F1)

⌉ens post}
. . .

(name(Fm), 1, Hyp)  {⌈pre(Fm)⌉asm pre} body(Fm) {⌈post(Fm)⌉ens post}
(main, 1, Hyp)  {⌈pre(main)} body(main) {⌈post(main)⌉ens post}

(∅, 0, ∅)  {true} D1 ... Dn {⌈pre(main)⌉ens pre}

P(D1, ..., Dn, F1, ..., Fm, main)

Thus, this rule reduces the verification of the entire program verifying its
separate functions and forms the set of inductive hypotheses Hyp to handle
the function calls. Note that verification of each function starts with the
nesting level equal to one. The last Hoare triple in the premise guarantees
that execution of external declarations Di precedes the execution of main.

It is the first time when semantic labeling appears in a rule. Labels reflect
the purpose of each sub-formula: pre-conditions are assumed to hold at the
beginning and post-condition must be ensured.

Consequence rule. The extended version of this standard rule looks like:

⌈P ⌉asm pre ⇒ P1 Env  {P1} S {⌈Q1
⌉ens post} ⌈Q1

⌉asm post ⇒ Q

Env  {⌈P ⌉ens pre} S {Q}
.
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As you can see, we must ensure that Q1 is an intermediate post-condition
and also serves as an assumption for Q.

Declaration statement. In order to avoid unnecessary multiplication of
rules, we use a generic Hoare rule, where a special function HDec performs
the case analysis:

Env  {HDec(Q,Decl)} Decl {Q} .

The volume of the paper does not allow us to show HDec for every legal
C-kernel declaration (see [9] for details). Let us consider the declaration of a
global integer variable and the declaration of a local array with initialization:

HDec(Q, static int v;) =

Q (MeM← ⌈upd(MeM, (v, Env2), nc)⌉alloc)
(MD← ⌈upd(MD, nc, 0)⌉init)
(Γ← upd(Γ, nc, int))

HDec(Q, T a[n] = { l0, ..., lk}) =
Q (MeM← ⌈upd(MeM, Env2, a, nc)⌉alloc)
. . . (MD← ⌈upd(MD, (nc, i), li)

⌉init) . . .
. . . (MD← ⌈upd(MD, (nc, j), ω)⌉init) . . .
(Γ← upd(Γ, (nc, l), T ))

where 0 ≤ i ≤ k, k + 1 ≤ j ≤ n− 1;

So, when the control flow reaches a static variable declaration, the meta-
variable MeM allocates a new address nc for the variable v. The meta-
variable MD assigns the default zero to this new object, and the meta-
variable Γ sets its type to int. In the case of an array, in addition to nc
we have a set of offset locations (nc,∆). Depending on the initializer, some
elements obtain the initial values li and some elements remain undefined
(ω).

Expression statement. By analogy with declarations, we use a universal
function (here, Upd) to combine all legal expressions (except for function
calls) in a single rule:

Env  {Upd(Q,Expn)} Expr {Q} . (1)

A fragment of Upd definition is as follows:
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Upd(Q, a[i] = rval;) =

Q (MD ← ⌈upd(MD, (MeM(a, Env2), i), rval)⌉upd);

Upd(Q, lval = rval;) =
Q (MD ← ⌈upd(MD, (MeM(lval, Env2), 0), rval)⌉asgn);

Upd(Q, lval = new T;) =
Q (MD ← ⌈upd(MD, (MeM(lval, Env2)), nc)⌉alloc)(Γ← upd(Γ, nc, T ));

Upd(Q, delete ptr;) = Q(MD ← ⌈upd(MD, MeM(ptr, Env2), ω)⌉free).

Note that the label upd signals about the array update, not about the meta-
variable MD modification.

We use a separate rule, when the result of a function call is assigned to
a variable. Let x stand for the formal parameter list of f and e denote an
actual argument list. Given that z is a fresh name (i.e. not occurring in the
program and specifications), the rule looks like3

⌈P ⌉asm pre ⇒
⌈
(⌈P ′α ∧ (Q′γ(Val← z))⌉ens specs ⇒ Qγβδ)

⌉call

Env  {P} lval = f(e); {Q}
,

provided that for some P ′ and Q′ {P ′} f(x) {Q′} ∈ Env3. The substitutions
α, β, γ, δ are as follows:
α = (MeM← SI(MeM,MD, Env2, x));
β = (MeMγ ← MeM);
δ = (MD← upd(MD,MeM(lval, Env2), z));
γ changes all logical variables from P ′ and Q′ with fresh names.

The function SI (Stack Initialization, see [9]) creates a new scope for
the function parameters temporarily forbidding access to other local objects.
Variable renaming allows us to avoid universal quantification on the local
level.

The C language does not distinguish between functions and procedures.
Procedures are functions returning void. Thus, the only difference in the
following rule is that no substitution into Val takes place:

⌈P ⌉asm pre ⇒
⌈
(⌈P ′α ∧Q′γ⌉ens specs ⇒ Qγβ)

⌉call

Env  {P} f(e); {Q}
,

3Let us restrict the presentation with a simple assignment case.
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provided that for some P ′ and Q′ {P ′} f(x) {Q′} ∈ Env3.

Composition. The classical Hoare rule for composition turns unsound
in the presence of jumps. To avoid this, the composing parts should be
restricted. Thus, in the following rule, we explicitly assume that neither S1

nor S2 contains labeled statements on the uppermost nesting level:

Env  {P} S1 {⌈R⌉ens post} Env  {⌈R⌉asm pre} S2 {Q}

Env  {P} S1 S2 {Q}
. (2)

Considering that jumps into blocks are forbidden in C-light, this require-
ment guarantees that no jump from S1 into S2 or from S2 into S1 can take
place. Of course, even a single label in a C-kernel program will make this
rule useless. As we will see later, the Hoare rule for labeled statements will
provide successful applicability of (2).

Compound statement. The rule for blocks should accurately model the
corresponding stack manipulations:

Env(nl ← nl + 1)  {P} Statements {Q′}

Env  {P} {Statements} {Q}
, (3)

where Q′ = Q(MeM← Reduce(MeM, n))(Γ← Reduce(Γ, n)). The function
Reduce guarantees that all local objects become inaccessible when we leave
a block [9]. Except for forming a nesting scope, the compound statement
does not change the control flow at all. Neither does it involve any exterior
logical assertions. Thus, no semantic labeling is required.

Labels. As we already mentioned, restrictions in the rule (2) guarantee
the absence of interference between S1 and S2. On the other hand, it also
means that we cannot prove a Hoare triple unless all labels are found and
excluded. Fortunately, since jumps into blocks are banned in C-light, we
do not need to look for all program labels. Given a statement sequence,
it is sufficient to handle all labels on the uppermost nesting level of this
sequence. The following rule performs this task:

Env1  {P} S0 {⌈I1⌉ens inv} Env1  {⌈I1⌉asm inv} S1 {⌈I2⌉ens inv}
. . .

Env1  {⌈In⌉asm inv} Sn {R} Env1  {R} Sn+1 {Q}

Env  {P} S0 l1: S1 . . . ln: Sn Sn+1 {Q}
,
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where Env31 = Env3 ∪
{

(

{Ii} goto li; {false}, Env2
)

∣

∣

∣
i = 1, . . . , n

}

and

the nesting level of every li is equal to Env2. Thus, we assume that for every
label li there exists an assertion Ii which holds whenever control reaches li.
The set of inductive hypotheses of the form {Ii} goto li; {false} is used to
handle the corresponding gotos.

Conditional statement. Among other things, the rule should reflect
that, in C, the if statement forms a scope, so the nesting level is incre-
mented:

Env(nl ← nl + 1)  {P ∧ ⌈Eval(e)⌉then} S1 {Q}
Env(nl ← nl+ 1)  {P ∧ ⌈¬Eval(e)⌉else} S2 {Q}

Env  {P} if (e) S1 else S2 {Q}
.

The evaluating function Eval is defined in [9] by induction over the structure
of the expression e. For example, if e is a variable name x and the declaration
of x belongs to the nesting level m, then Eval(e) = MD(MeM(x, m)).

Loops. The semantics of while is defined using an intermediate form:

Env  {P} { loop(e, S) } {Q}

Env  {P} while (e) { S } {Q}
.

Conceptually, loop means the same: ”do something while a condition is
true”. However, it does not form a scope, whereas the while statement
does. Thus, we avoid unnecessary complication in the rule4. In turn, the
semantics of loop is based on a classical Hoare rule:

Env 
⌈
{⌈I⌉asm inv ∧⌈ Eval(e)⌉while t} S {⌈I⌉ens inv iter}

⌉pres inv

Env  {⌈I⌉ens inv} loop(e, S) {⌈I⌉asm inv exit ∧ ⌈¬Eval(e)⌉while f}
.

The labeling reflects the rule meaning. The invariant should be ensured at
the loop entry point and is thus labeled with ens inv. The individual sub-
formulas of both the exit-condition I ∧¬Eval(e) and the step-condition I ∧
Eval(e) are labeled appropriately. In the triple of the premise, the incoming
postcondition I is labeled with its purpose (i.e., the invariant is reinsured
to hold after one loop iteration). Finally, the purpose of all VCs emerging
from the loop body is to contribute to invariant preservation. That is why
we labeled the entire triple with pres inv.

4Note the explicit braces in the premise.
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Jumps. As long as the inductive hypotheses for program labels are gath-
ered by the rule above, the Hoare rule for the goto statement is straight-
forward:

Env  {⌈BR(I,m, Env2)⌉ens inv} goto l; {false} , (4)

provided that for some assertion I and nesting level m
(

{I} goto l; {false},m
)

∈ Env3 .

Function BR (BigReduce) is a generalized form of Reduce mentioned in (3).
Obviously, when performing a jump, we can leave several nesting blocks. The
successive application of Reduce is implemented by definition:

BE(Φ,m, n) =
{

Φ, if m = n,

BR(Φ(Reduce(MeM, n)/MeM, Reduce(Γ, n)/Γ),m, n− 1), if m < n.

By analogy, we can formalize the return statement:

Env  {⌈BR(Q(Val← Eval(e)), 1, Env2)⌉ens post} return e; {false} ,

provided that for some assertion Q {Q} return; {false} ∈ Env3. When
nothing is returned, the substitution into Val is empty.

2. REWRITING AND RENDERING

VCs (labeled or unlabeled) become complex and need to be simplified
aggressively before they can be proven. The purpose of the rewriting stage is
to remove redundant labels, to minimize the scope of the remaining labels,
and to keep enough labels to explain any unexpected failures.

The labeled rewriting rules do not simply reuse the usual unlabeled ones
because labels need careful handling. For example, we can safely remove la-
bels from trivially true sub-formulas because these require no explanations.
On the other hand, labels from trivially false labeled sub-formulas are re-
moved selectively, since there must be a context to explain the failure. A
detailed review of labeled rewriting and simplification rules can be found in
[3]. In the meantime we will discuss one of rewriting aspects below.

The final generation of actual explanations, i.e., turning the (labeled)
VCs into a human-readable text, is called rendering. It relies on the build-
ing blocks described in Fig. 3 and comprises four steps: (1) VC normalization
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Fig. 3. Labels and labeled VCs

using the labeled rewrite system; (2) label extraction; (3) label normaliza-
tion to fit the labels to the explanation templates; (4) text generation using
the explanation templates.

2.1. Verification condition simplification revisited

The two-level access model resolves the problems of composite objects
and aliasing but leads to an explosion in the size of verification conditions
(VC). In [10] we discussed some of the simplification strategies. Those strate-
gies were intuitively clear, but their implementation required non-trivial
analysis algorithms. The newly developed labeling technique gave us an op-
portunity to simplify them. So, we would like to return to an example from
[10] in order to demonstrate the changes.

Let us consider a simple program:

int x, y, z;

x = 1;

y = 2;

z = 3;

z = 4;

Actually, this program is so simple that it could be verified in the clas-
sical Hoare logic without the use of metavariables. Let us compare the VCs
obtained in each approach. For such program we can use true as a precon-
dition.

The postcondition for the classical logic is x = 1∧y = 2∧z = 4. Applying
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c1 = naddr(MD1) ∧

MeM2 = upd(MeM1, x, c1) ∧

Γ2 = upd(Γ1, c1, int) ∧

MD2 = upd(MD1, c1, ω) ∧

c2 = naddr(MD2) ∧

MeM3 = upd(MeM2, y, c2) ∧

Γ3 = upd(Γ2, c2, int) ∧

MD3 = upd(MD2, c2, ω) ∧

c3 = naddr(MD3) ∧

MeM = upd(MeM3, z, c3) ∧

Γ = upd(Γ3, c3, int) ∧

MD4 = upd(MD3, c3, ω) ∧

MD5 = upd(MD4,MeM(x), 1) ∧

MD6 = upd(MD5,MeM(y), 2) ∧

MD7 = upd(MD6,MeM(z), 3) ∧

MD = upd(MD7,MeM(z), 4)

























































=⇒





MD(MeM(x)) = 1 ∧

MD(MeM(y)) = 2 ∧

MD(MeM(z)) = 4





Fig. 4. The verification condition

the Hoare assignment rule 4 times, we obtain the true assertion:

true =⇒ (1 = 1 ∧ 2 = 2 ∧ 3 = 3) .

Two-level access in the C-kernel logic immediately complicates the pre-
condition: MD(MeM(x)) = 1∧MD(MeM(y)) = 2∧MD(MeM(z)) = 4. The
verification condition (VC) from [10] is presented in Fig. 4. In order to sim-
plify its proof we proposed some rewriting strategies. Many of them were
based on the following observations:

1. The VC carefully accumulates information about program objects.
New memory locations (c1, c2, c3) are reserved, object types are iden-
tified correspondingly to declaration (int) and the default indefinite
values (ω) are assigned to automatic variables.

2. The primary goal of the VC (as described in postcondition) con-
cerns only the final values of the variables without appealing to their
addresses or types.

3. So, we can safely omit all information unnecessary for the proof.

Well, it sounds obvious, but the implementation of such ‘simplifier’ is
not so easy. Indeed, simple examination of the conjunct

MD2 = upd(MD1, c1, ω)
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tells nothing about its necessity. We must trace the whole chain of MDi

to understand that this is an intermediate update of the metavariable MD.
By the way, the names MDi themselves are not hints, since they are chosen
only for the reader’s convenience. As we noticed in the introductory section,
we try to avoid the situation when our formal algorithms are built on semi-
formal information or implementation tricks5.

Again, allow us to formulate the argument from [3] in favor of labeling
techniques. In the classical Hoare’s approach a verification condition does
not contain any information about the process of its own generation. For
example, if we replace the first assignment by x = 2 we will receive a false
VC

true =⇒ (1 = 2 ∧ 2 = 2 ∧ 3 = 3) ,

but the conjunct 1 = 2 does not reveal the assignment which procreated it.
In the logical formulas (VCs) all connections to the source locations are lost.
Thus, the analysis in rewriting strategies can be as complex as the direct
VC proof.

On the contrary, our labels are introduced by formal inference rules and
provide all necessary hints. According to the new labeled semantics for C-
kernel our VC takes the form represented in Fig. 5. And now we can handle
all sub-formulas in a more formal way.

The use of labels has an additional outcome. We slightly simplified the
Hoare’s rule for variable declaration. Indeed, in the previous version of the
semantics we were forced to postulate explicitly that every new object has
a unique address (note the terms “ci = naddr(MDj)” in Fig. 4). Now that
every allocation is decorated by the label alloc, we can retrieve such in-
formation when it is needed. For example, if we are verifying a program
on pointers, we can search all terms labeled by alloc and supply the proof
environment with axioms about the originality of every address.

Apart from the removal of unnecessary information, simplifying strate-
gies include splitting into sub-goals and antecedent unfolding. All details
can be found in [10]. As a final illustration here let us consider one of the
resulting sub-VCs:

upd(MD7, upd(MeM3, z, c3)(z), 4)(upd(MeM3, z, c3)(z)) = 4.

The standard semantics of upd immediately provides the truth of this as-
sertion. The comparison with the starting VC in Fig. 5 shows that such

5For example, the information on how the verification condition generator introduces
new names.
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⌈
true

⌉asm pre(1)
∧

⌈MeM2 = upd(MeM1, x, c1)
⌉alloc(1)

∧

Γ2 = upd(Γ1, c1, int) ∧

⌈MD2 = upd(MD1, c1, ω)
⌉init(1)

∧

⌈MeM3 = upd(MeM2, y, c2)
⌉alloc(1)

∧

Γ3 = upd(Γ2, c2, int) ∧

⌈MD3 = upd(MD2, c2, ω)
⌉init(1)

∧

⌈MeM = upd(MeM3, z, c3)
⌉alloc(1)

∧

Γ = upd(Γ3, c3, int) ∧

⌈MD4 = upd(MD3, c3, ω)
⌉init(1)

∧

⌈MD5 = upd(MD4,MeM(x), 1)⌉asgn(2) ∧

⌈MD6 = upd(MD5,MeM(y), 2)⌉asgn(3) ∧

⌈MD7 = upd(MD6,MeM(z), 3)⌉asgn(4) ∧

⌈MD = upd(MD7,MeM(z), 4)⌉asgn(5)



















































=⇒









MD(MeM(x)) = 1∧
MD(MeM(y)) = 2∧
MD(MeM(z)) = 4









ens post(5)

Fig. 5. The labeled verification condition

simplification makes sense.

2.2. Keeping labels in theorem provers

In our previous work [11, 13], we examined only the explanatory appli-
cation of labels. Correspondingly, the VCs had been striped of labels before
they were fed to a theorem prover (Simplify, for example). It is not a problem
when Simplify validates a VC as true.

However, if Simplify discards a VC, then there are two possibilities.
• In some cases this prover is not powerful enough, giving an empty
counterexample or the whole formula as a counterexample. Then the
user must analyze the wrong VC manually. Here, explanations built
by label renderer (see Fig. 3) are of great help.
• Simplify can give a stronger counterexample built out of some sub-
formulas of the original formula. This complicates the error localiza-
tion task. Remember that the explanation which contains links to
the source code, is built for the whole VC. Thus, the user has to
match the sub-formulas against the original formula in order to find
the corresponding parts of the explanation. Taking into account the
Lisp-like syntax of Symplify and higher order of meta-variables (see
Fig. 1) it is not an easy task.

Here is an intermediate conclusion. When we remove labels from VCs we
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have to perform an additional task. The whole idea of labels was to promote
them up to separate operations. But theorem provers accept logical formulas
only, not labels.

There are two solutions. In the long-term outlook we could turn to a
more powerful prover (like Z3, for example), which provides its own API. It
may allow us to develop a driver for such prover. This driver will handle all
necessary labels and links in a transparent manner from the user’s point of
view.

On the other hand, while we prefer the “simpler” prover Simplify, we
could use a less elegant, but still working approach. We could introduce
labels into logical terms as dummy arguments, which do not impact the
truth.

According to this solution we replace the label remover (see Fig. 3)
by the “label introducer” (LI). It translates labeled logical terms, given in
prefix notation, into a so-called S-expression. Precisely, when LI meets the
following term

⌈e1 op e2
⌉c(o,n)

it transforms it into
(L op′ e1 e2 (label c o n ))

where op′ is an appropriate Lisp representation for op. For example, the
equality sign ’=’ will be replaced by L EQ. Finally, we need to provide a
connection of new names L op′ with the standard keywords. This is done
via Simplify patterns. So, if the ’=’ sign was present in the original VC, the
final formula will be accompanied by

(FORALL (e1 e2 dum)

(PATS (L_EQ e1 e2 dum))

(EQ e1 e2))

This is the main shortcoming of proposed solution. Besides the growing
length of formulas, every VC passed to Simplify must be proven in such
an environment. Fortunately, the set of functional/operational names and
logical connectives is finite. We may create a library of such patterns to
use in our experiments with C-light programs. Moreover, the user does not
need to examine these patterns. When he obtains a counterexample, the
only task he must do is to find the label-terms (quite straightforward) and
find the corresponding parts in the VC explanation. The following Sect.
demonstrates such experiments.
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3. CASE STUDIES

Let us try to apply these methods in order to find errors in programs.
At the moment we are focused on experiments with the Standard Library
functions, but they are quite complex to serve as an obvious demonstra-
tion. Instead, let us appeal to our successful experience with a well-known
collection of verification challenges [6]. Those programs are simple (if not
primitive) but they represent some theoretical obstacles for deductive veri-
fication. We have already demonstrated that we can verify them [10], now
we deliberately introduce some bugs in them. Also these examples will give
us some idea about applicability of proposed methods.

3.1. An incorrect expression

Consider the following program (with omitted annotations):

void NegateFirst(int ia[], int Length)

{

//@ pre ...

int i;

//@ inv ...

for (i = 0; i < Length; i++) {

if (ia[i] < 0) {

ia[i] = ia[i];

break;

}

}

//@ post ...

}

In theory, this program should search an array. When the first negative
element is reached, its sign changes and the loop aborts. As you can see,
the minus sign is dropped in the assignment ia[i] = -ia[i] in the loop
body.

Actually, this issue deserves some additional discussion. As a rule, pro-
grammers switch off the strict mode of their compilers in order to avoid a
flood of unimportant warning messages. So, a typical compiler may simply
ignore that assignment (since it does nothing) without giving any notice.
In such case, the user will have to test program trying to understand what
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went wrong. Now, lets us see whether our verification methods can be of
any use.

First of all, we need formal specifications which correctly reflect the
intended behavior of the program.

pre : ∃old : int[]. MD(MeM(ia)) 6= null∧
MD(MeM(ia)) = MD(MeM(old))

post: ∀i. (0 ≤ i ≤ MD(Length) =⇒
((MD(MeM(old, i)) < 0∧
(∀j. 0 ≤ j < i⇒ MD(MeM(old, j)) ≥ 0))⇒
MD(MeM(ia, i)) = −MD(MeM(old, i))∧

old[i] ≥ 0⇒ MD(MeM(ia, i)) = MD(MeM(old, i)))

inv : 0 ≤MD(i) ≤ MD(Length)∧
(∀j. 0 ≤ j < MD(i)⇒

(MD(MeM(ia, j)) ≥ 0 ∧MD(MeM(ia, j)) = MD(MeM(old, j))) .

Now we translate the original program into a corresponding C-kernel
program:

1 void NegateFirst(int ia[], int Length) {

2 //@ pre ...

3 auto int i;

4 i=0;

5 while(i < Length){

6 //@ inv ...

7 if (ia[i]<0){

8 ia[i] = ia[i];

9 goto L;

10 }

11 else {}

12 auto int* q1;

13 q1 = &i;

14 *q1 = *q1 + 1;

15 }

16 L:;

17 //@ post ...

18 }
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In fact, the translation process does not add line numbers. Nevertheless, we
will need them later. Note that for is replaced by while, break is replaced
by goto, and the postfix increment i++ requires an additional pointer q1.

The LVCG produces five labeled VCs and one trivially true Hoare triple.
Four VCs are proved successfully by Simplify or Z3 provers. One of them
corresponds to the path from the function entry point up to the loop entry
point. Its labeled form is









⌈pre(MeM ←MeM1)(MD ←MD1)
⌉asm pre(2) ∧

⌈MeM = upd(MeM1, (i, 1), nc)
⌉alloc(3) ∧

⌈MD2 = upd(MD1, nc, ω)
⌉init(3) ∧

⌈MD = upd(MD2,MeM(i, 1), 0)⌉asgn(4)









⇒ ⌈inv⌉ens inv(6) .

For clarity, we kept the pre-condition and loop invariant in their symbolic
form. The reader can substitute them with real formulas to estimate the
volume of the final VC. What does this formula mean? What role does it
play in the verification process? To answer these questions, we use our label
rendering methods which produce the following explanation:

This VC corresponds to lines 2--6 in the function

NegateFirst. Its purpose is to ensure that the loop

invariant at line 6 holds at the loop entry point.

Hence, given

- assumption that function precondition holds

at line 2,

- substitution for MeM originating in object

allocation at line 3,

- substitution for MD originating in object

initialization at line 3,

- substitution for MD originating in assignment

at line 4,

show that the loop invariant at line 6 holds at the loop

entry point at line 5.

This is the explanatory aspect of the labeling technique. Though its ne-
cessity in the case of true VC is questionable, it may be useful for verification
teaching.

In the meantime, the VC corresponding to then-branch of the if state-
ment proved false. It was produced after the application of rules (1) and (4)
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from Section 2.1. Its labeled form is

























⌈inv(MD← MD1)
⌉asm inv(6) ∧

⌈MD1(MeM(i)) < MD1(MeM(Length))⌉while t(6) ∧
⌈MD1(MeM(ia),MD1(MeM(i))) < 0⌉then(7) ∧
⌈MD = upd(MD1, (MeM(ia),MD1(MeM(i))),

MD1(MeM(ia),MD1(MeM(i))))⌉upd(8)

⇒
⌈post⌉ens inv(9,L)

























pres inv(6..10)

Here, to make the formula observable, the post-condition and the loop in-
variant are also given in symbolic form. If we try to prove this VC, we will
see that the conjunct

⌈MD = upd(MD1, (MeM(ia),MD1(MeM(i))),

MD1(MeM(ia),MD1(MeM(i))))⌉upd(8)

contradicts the conclusion. In principle, this is enough to localize the bug.
However, the Simplify prover does not produces the counterexamples in such
infix and well-formatted form. Instead, the user will encounter something
like that:

(L_EQ md

(upd md1 (index (mem ia) (md1 (mem i)))

(md1 (index (mem ia) (md1 (mem i)))))

(label_upd 8))

Again, those who are familiar with the C-light abstract machine and the
Lisp-like syntax of Simplify can understand it. Nevertheless, with more re-
alistic programs the complexity of formulas grows considerably, becoming a
challenge even for a specialist. Besides, our aim is to hide all technical and
prover-dependant details as much as possible.

This is where the explanatory method begins to work providing a pos-
sibly better solution. Indeed, in applying our label rendering algorithms we
will obtain the following explanation for the whole VC:
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This VC corresponds to lines 6--10 in the function

"NegateFirst". Its purpose is to contribute the loop

invariant preservation on each iteration.

Hence, given

- assumption that loop invariant holds at line 6,

- assumption that the loop condition holds at line 6,

- assumption that "thenbranch is chosen at line 7,

- substitution for MD

originating in array update at line 8 ,

show that label invariant holds at line 9.

So, instead of deciphering the Lisp-like terms appropriate for Simplify,
the user can address the descriptions written in natural language. Knowing
the label of a troublesome conjunct he can check the corresponding program
location (the boxed sub-sentence).

3.2. Missed initialization

In Sect. 2.1 we discussed the case when the default initialization can be
irrelevant to verification goals and, thus, can be omitted. On the contrary,
in the following example it will play a crucial role.

This is also one of challenging programs from [6] and the corresponding
problem is known as aliasing. Our successful verification was demonstrated
in [10]. Now, let us remove one of strings (by a comment) so that access to
uninitialized object takes place:

#include "stdio.h"

struct C {

struct C *a;

int i;

};

int m(void) {

struct C c;

c.a = &c;

// c.i = 2;

return c.i + (c.a)->i;

};
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int main(void){

printf("%d", m());

return 0;

}

Just like in the previous case study, the error here can or cannot be signaled
by the compiler depending on the warning level switch. In any case this
program can be compiled and executed with unpredictable results.

Specifications for the function m6 have the form:
Pre(m) : true

Post(m) : Val = 4
An intermediate C-kernel counterpart for the function m looks like

int m(void)

{

auto struct C c;

auto struct C* x1;

auto struct C** y1;

x1 = &c;

y1 = &c.a;

*y1 = x1;

auto int ret_val;

auto int x2;

auto int x3;

x2 = (c.a)->i;

x3 = c.i;

ret_val = x3 + x2;

return ret_val;

};

Expressions in the C-kernel language are very simple. This leads to ex-
pansion in the length of intermediate programs but allows us to simplify
axiomatic semantics.

6Verification of the function main is of little interest.
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The body of m forms a single linear area. The axiomatic semantics pro-
duces a single VC, which after simplification looks like













MD1 = upd(MD0, c1, ω)∧
MD2 = upd(MD1, c1, c1)∧
MD3 = upd(MD2, c, c1)∧
MD4 = upd(MD3,mb(c1, a), val(&c,MD4))∧
Val = BinOpSem(+,MD4(mb(c1, i)), val((c.a)->i), int)













⇒ Val = 4.

We omitted labels for brevity.
Despite the fact that this program is simpler than the previous example,

it represents a more complex class of errors. In Sect. 3.1 the prover Simplify
explicitly gave a counterexample to demonstrate the falsity of VC. But here
Simplify signals that it is unable to prove the following formula:

(IMPLIES

(AND

(DISTINCT i a)

(DISTINCT c_1 c_2)

(EQ

MD

(upd MD1_5 (get MeM i)

(+ (get MD1_5 (get MeM i)) 2)

)

)

(EQ

MD1_5

(upd

MD1_4

(get MD1_4 (get MeM a))

(+ (get MD1_4 (get MD1_4 (get MeM a))) 2)

)

)

(EQ MD1_4 (upd MD1_3 (get MeM a) (get MeM i)))

(EQ (get MD1_2 c_2) |@undef|)

(EQ MD2_2 MD1_3)

(EQ MeM (upd MeM1_3 a c_2))

(EQ MeM1_3 (upd MeM1_2 i c_1))

(EQ MD1_3 (upd MD1_2 c_2 0))
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(EQ (get MD1_1 c_1) |@undef|)

(EQ MD2_1 MD1_2)

(EQ MD1_2 (upd MD2_1 c_1 0))

(EQ

MeM1_2

(upd (upd MeM1_1 i |@undef|) a |@undef|)

)

)

(EQ val 4)

)

The problem is that the undefined value ω is being matched against nat-
ural numbers. So, error localization required some additional work here.
For example, the logical axioms establishing the connection between unde-
fined values and explicit falsity were added to the proof environment. Then
manual analysis was applied in order to find which conjunct introduced an
undefined value. Its label revealed the declaration struct C c;. So, like any
compiler we can only give a warning that an uninitialized variable (structure
member) is used in the statement return c.i + (c.a)->i;

The examples in this Sect. demonstrate the domains of fully automatical
and semi-automatical applications of our error localization method. Indeed,
errors can be divided into two classes. The first case corresponds to a pro-
gram, which is in some sense complete, but incorrect. In such a case we
can precisely show the wrong construction. On the contrary, in the second
case we can only isolate some region where something is missed, but cannot
automatically deduce it.

An additional disadvantage consists in the restriction of these formal
methods to the C-kernel language. In order to trace possible errors back to
the original C-light source the user must refer to translation protocols and
manually establish the necessary links. Automatic solution (based on the
formal methods) of this task is one of the goals in our future work.

4. RELATED WORK

Let us mention here two C program verification projects which are ide-
ologically similar to ours. First, a promising approach is proposed within
the framework of INRIA project WHY [4]. In fact, WHY is a platform
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appropriate for verification of many imperative languages. An intermedi-
ate language of the same name WHY is defined, and input programs are
translated into it. This translation is aimed at the generation of VCs inde-
pendent of theorem provers. The WHY platform serves as a base for the
toolset Frama-C that provides static analysis and deductive verification.
Unsupported C features include arbitrary gotos, function pointers, arbi-
trary casts, unions, variadic functions and floating point computations. The
verified program list includes rather simple programs (mainly in the field of
search and sorting).

Second, the VCC (A Verifier for Concurrent C) project is being devel-
oped in Microsoft Research [2]. Programs are translated into logical formu-
las using the Boogie tool which combines an intermediate language, Boogie
PL and VC generator. VCs are validated in SMT solver Z3. Boogie PL is
not limited to the C language support only. For example, it is used in the
Spec# project. However, translation into a different language could be a
disadvantage since no correctness proof is presented7. At the moment, the
VCC developers are focused on the verification of the Hyper-V hypervisor,
so the information about other case studies is insufficient.

Apart from these two projects, there are many other works dedicated to
C program verification. A more extensive review can be found in [9, 10]. On
the contrary, works concerning VC understanding and formal error tracing
are not numerous. Here we can mention the following three. First, the INRIA
project Centaur [5]. Generated VCs were analyzed while searching for the
initial conditional expressions which were used in if statements and loops.
This search involves some algorithms from the program debugging field. The
language under study is quite simple.

A more recent study [3] has inspired this paper greatly. Denney and
Fischer extended the Hoare rules by labels to build up explanations of VCs.
Labels are maintained through different processing steps and rendered as
natural language explanations. Explanations can easily be customized and
can capture different aspects of VCs; the authors focused on labelings that
explain their structure and purpose. The approach is fully declarative and
generated explanations are based only on analysis of labels rather than
directly on the logical meaning of the underlying VCs or their proofs. The
research was focused on simple languages, appropriate for automatic code
generation.

Finally, Leino et al. [7] also extend an underlying logic with labels to

7The same is true for the WHY project.
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represent explanatory semantic information, but their use of labels is differ-
ent. Labels are introduced when a language is “desugared” into a lower-level
form. This labeled language is then processed by a standard “label-blind”
VCG. The authors use explanations for traces to safety conditions. This is
sufficient for program debugging, which is their main motivation.

5. CONCLUSION

Deductive verification was designed as a way of trustworthy proof of pro-
gram correctness compared to the more probabilistic nature of traditional
testing. Naturally, the question of its reliability arises. While the theoret-
ical foundations have been justified in classical papers quite long ago, in
practice the whole question rests on the correctness of verification system
implementation. Obviously, an ideal solution is to implement it in the tar-
get programming language and then apply it to self-verification. This is a
non-trivial task for a language such as C. There are two main obstacles.

First, any sensible C program uses the standard library. This library
does not possess a complete formal specification, let alone its verification.
The first steps in this direction were not taken until recently. Apart from
the experiments within the framework of WHY/Frama-C (not represented
in papers), some work is in progress in our C-light project [12].

Second, the formal verification basis applies only to VCs generation and
their proofs. The processes of verification results interpretation (especially,
the negative results) and error localization are formalized insufficiently.

Results. This paper describes the combination of tracing and explanatory
techniques in our C program verification project. The Hoare logic of the
C-kernel language was extended by labeling techniques in a formal way.
The extended calculus will provide a user with information necessary to
understand VCs and to find potential errors. In addition a method of label
logical promotion is proposed. It allows us to turn labels into logical terms
so that a theorem prover can safely handle them. The application points of
these methods during verification process are shown in Fig. 5.

Outlook. Obviously, the labeling method concerns only the intermediate
C-kernel stage of our two-level approach. Since the initial C-light programs
are translated into C-kernel, the opposite translation of traces should be im-
plemented. An interesting opportunity here is provided by APIs developed
for the LLVM infrastructure and its Clang front-end. In particular, they
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Fig. 6. Methods for error localization

allow to associate the translating handlers with nodes of abstract syntax
tree. The place of these future studies is also shown in Fig. 5.
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